
INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF
S-DOMINATED INTEGRATORS WITH APPLICATIONS (I)

S.S. DRAGOMIR1;2

Abstract. Assume that u; v : [a; b] ! R are monotonic nondecreasing on
the interval [a; b] : We say that the complex-valued function h : [a; b] ! C is
S -dominated by the pair (u; v) if

jh (y)� h (x)j2 � [u (y)� u (x)] [v (y)� v (x)]
for any x; y 2 [a; b] :

In this paper we show amongst other that����Z b

a
f (t) dh (t)

����2 � Z b

a
jf (t)j du (t)

Z b

a
jf (t)j dv (t) ;

for any continuous function f : [a; b]! C.
Applications for the trapezoidal and midpoint inequalities are given. New

inequalities for some µCeby�ev and (CBS)-type functionals are presented. Nat-
ural applications for continuous functions of selfadjoint and unitary operators
on Hilbert spaces are provided as well.

1. Introduction

One of the most important properties of the Riemann-Stieltjes integral
R b
a
f (t) dg (t)

is the fact that this integral exists if one of the function is of bounded variation while
the other is continuous. The following sharp inequality holds

(1.1)

�����
Z b

a

f (t) dg (t)

����� � max
t2[a;b]

jf (t)j
b_
a

(g) ;

provided that f : [a; b]! C is continuous on [a; b] and g : [a; b]! C is of bounded

variation on this interval. Here
b_
a

(g) denotes the total variation of g on [a; b] :

When g is Lipschitzian with the constant L > 0; i.e.,

jg (t)� g (s)j � L jt� sj

for any t; s 2 [a; b] ; then we have

(1.2)

�����
Z b

a

f (t) dg (t)

����� � L
Z b

a

jf (t)j dt

for any Riemann integrable function f : [a; b]! C.
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Moreover, if the integrator g is monotonic nondecreasing on the interval [a; b]
and f : [a; b]! C is continuous, then we have the modulus inequality

(1.3)

�����
Z b

a

f (t) dg (t)

����� �
Z b

a

jf (t)j dg (t) :

The above inequalities have been used by many authors to derive various integral
inequalities. We provide here some simple examples.
The following generalized trapezoidal inequality for the function of bounded vari-

ation f : [a; b]! C was obtained in 1999 by the author [21, Proposition 1]�����
Z b

a

f (t) dt� (x� a) f (a)� (b� x) f (b)
�����(1.4)

�
�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f) ;

where x 2 [a; b] : The constant 12 cannot be replaced by a smaller quantity. See also
[19] for a di¤erent proof and other details.
The best inequality one can derive from (1.4) is the trapezoid inequality

(1.5)

�����
Z b

a

f (t) dt� f (a) + f (b)
2

(b� a)
����� � 1

2
(b� a)

b_
a

(f) :

Here the constant 12 is also best possible.
For related results, see [11]-[15], [17]-[20], [24]-[25], [29]-[32], [34], [40], [41], [43]-

[45] and [53]-[55].
In order to extend the classical Ostrowski�s inequality for di¤erentiable functions

with bounded derivatives to the larger class of functions of bounded variation,
the author obtained in 1999 (see [21] or the RGMIA preprint version of [23]) the
following result

(1.6)

�����
Z b

a

f (t) dt� f (x) (b� a)
����� �

�
1

2
(b� a) +

����x� a+ b2
����� b_

a

(f) ;

for any x 2 [a; b] and f : [a; b]! C a function of bounded variation on [a; b] : HereWb
a (f) denotes the total variation of f on [a; b] and the constant

1
2 is best possible

in (1.6). The best inequality one can obtain from (1.6) is the midpoint inequality,
namely

(1.7)

�����
Z b

a

f (t) dt� f
�
a+ b

2

�
(b� a)

����� � 1

2
(b� a)

b_
a

(f) ;

for which the constant 12 is also sharp.
For related results, see [1]-[11], [16]-[17], [21], [23], [25]-[27], [31], [35]-[39], [42],

[46]-[52] and [56]-[59].
Motivated by the above results, we establish in this paper a bound for the quan-

tity �����
Z b

a

f (t) dg (t)

�����
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in the case when the integrand f is continuous while the function of bounded vari-
ation g is S-dominated by a pair of monotonic functions in the sense presented at
the beginning of the next section. Applications for the trapezoidal and midpoint
inequalities are given. New inequalities for some µCeby�ev and (CBS)-type function-
als are presented. Natural applications for continuous functions of selfadjoint and
unitary operators on Hilbert spaces are provided as well.

2. Some General Inequalities

Assume that u; v : [a; b]! R are monotonic nondecreasing on the interval [a; b] :
We say that the complex-valued function h : [a; b]! C is S -dominated by the pair
(u; v) if

(S) jh (y)� h (x)j2 � [u (y)� u (x)] [v (y)� v (x)]
for any x; y 2 [a; b] :
We observe that by the monotonicity of the functions u and v and by the sym-

metry of the inequality (S) over x and y we can assume that (S) is satis�ed only
for y > x with x; y 2 [a; b] :
We can give numerous examples of such functions.
For instance, if we take f; g 2 L2 [a; b] the Hilbert space of all complex-valued

functions that are square-Lebesgue integrable and denote

h (x) :=

Z x

a

f (t) g (t) dt; u (x) :=

Z x

a

jf (t)j2 dt and v (x) :=
Z x

a

jg (t)j2 dt;

then we observe that u and v are monotonic nondecreasing on [a; b] and by Cauchy-
Bunyakovsky-Schwarz integral inequality we have for any y > x with x; y 2 [a; b]
that

jh (y)� h (x)j2 =
����Z y

x

f (t) g (t) dt

����2 � Z y

x

jf (t)j2 dt
Z y

x

jg (t)j2 dt

� [u (y)� u (x)] [v (y)� v (x)] :

Now, for p; q > 0 if we consider f (t) := tp and g (t) := tq for t � 0; then

hp;q (x) :=

Z x

0

tp+qdt =
1

p+ q + 1
xp+q+1

and

up (x) :=

Z x

0

t2pdt =
1

2p+ 1
x2p+1; vq (x) :=

Z x

0

t2qdt =
1

2q + 1
x2q+1:

Taking into account the above comments we observe that the function hp;q is S -
dominated by the pair (up; vq) on any subinterval of [0;1) :

Proposition 1. If h : [a; b] ! C is S-dominated by the pair (u; v) ; then h is of
bounded variation on any subinterval [c; d] � [a; b] and

(2.1)

"
d_
c

(h)

#2
� [u (d)� u (c)] [v (d)� v (c)] :

Proof. Consider a division � of the interval [c; d] given by

� : c = x0 < x1 < ::: < xn�1 < xn = b:
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Since h : [a; b]! C is S-dominated by the pair (u; v) then we have

jh (xi+1)� h (xi)j � [u (xi+1)� u (xi)]1=2 [v (xi+1)� v (xi)]1=2

for any i 2 f0; :::; n� 1g :
Summing this inequality over i from 0 to n � 1 and utilizing the Cauchy-

Bunyakovsky-Schwarz discrete inequality we have

n�1X
i=1

jh (xi+1)� h (xi)j(2.2)

�
n�1X
i=1

[u (xi+1)� u (xi)]1=2 [v (xi+1)� v (xi)]1=2

�
 
n�1X
i=1

[u (xi+1)� u (xi)]
!1=2 n�1X

i=1

[v (xi+1)� v (xi)]
!1=2

= [u (d)� u (c)]1=2 [v (d)� v (c)]1=2 :

Taking the supremum over � we deduce the desired result (2.1). �

Corollary 1. If h : [a; b]! C is S-dominated by the pair (u; v) ; then the cumulative
variation function V : [a; b]! [0;1) de�ned by

V (x) :=
x_
a

(h)

is also S-dominated by the pair (u; v) :

Theorem 1. Assume that u; v : [a; b] ! R are monotonic nondecreasing on the
interval [a; b] : If h : [a; b] ! C is S-dominated by the pair (u; v) and f : [a; b] ! C
is a continuous function on [a; b] ; then the Riemann-Stieltjes integral

R b
a
f (t) dh (t)

exists and

(2.3)

�����
Z b

a

f (t) dh (t)

�����
2

�
Z b

a

jf (t)j du (t)
Z b

a

jf (t)j dv (t) :

Proof. Since the Riemann-Stieltjes integral
R b
a
f (t) dh (t) exists, then for any se-

quence of partitions

I(n)n : a = t
(n)
0 < t

(n)
1 < � � � < t(n)n�1 < t

(n)
n = b

with the norm

v
�
I(n)n

�
:= max

i2f0;:::;n�1g

�
t
(n)
i+1 � t

(n)
i

�
! 0
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as n!1; and for any intermediate points �(n)i 2 [t(n)i ; t
(n)
i+1]; i 2 f0; : : : ; n� 1g we

have: �����
Z b

a

f (t) dh (t)

�����(2.4)

=

������ lim
v
�
I
(n)
n

�
!0

n�1X
i=0

f
�
�
(n)
i

� h
h
�
t
(n)
i+1

�
� h

�
t
(n)
i

�i������
� lim

v
�
I
(n)
n

�
!0

n�1X
i=0

���f ��(n)i

���� ���h�t(n)i+1

�
� h

�
t
(n)
i

����
� lim

v
�
I
(n)
n

�
!0

n�1X
i=0

���f ��(n)i

���� hu�t(n)i+1

�
� u

�
t
(n)
i

�i1=2 h
v
�
t
(n)
i+1

�
� v

�
t
(n)
i

�i1=2

� lim
v
�
I
(n)
n

�
!0

 
n�1X
i=0

���f ��(n)i

���� hu�t(n)i+1

�
� u

�
t
(n)
i

�i!1=2

� lim
v
�
I
(n)
n

�
!0

 
n�1X
i=0

���f ��(n)i

���� hv �t(n)i+1

�
� v

�
t
(n)
i

�i!1=2

=

Z b

a

jf (t)j du (t)
Z b

a

jf (t)j dv (t) ;

where for the last inequality we employed the Cauchy-Bunyakovsky-Schwarz weighted
discrete inequality

nX
k=1

mkakbk �
 

nX
k=1

mka
2
k

!1=2 nX
k=1

mkb
2
k

!1=2
;

where mk; ak, bk � 0 for k 2 f1; :::; ng : �

3. Trapezoid and Midpoint Inequalities

We can use the inequality (2.3) to derive various inequalities of trapezoidal and
midpoint type as follows.

Theorem 2. Assume that u; v : [a; b] ! R are monotonic nondecreasing on the
interval [a; b] : If h : [a; b]! C is S-dominated by the pair (u; v) ; then�����h (a) + h (b)2

(b� a)�
Z b

a

h (t) dt

�����
2

(3.1)

�
"
1

2
(b� a) [u (b)� u (a)]�

Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

#

�
"
1

2
(b� a) [v (b)� v (a)]�

Z b

a

sgn

�
t� a+ b

2

�
v (t) dt

#

� 1

4
(b� a)2 [u (b)� u (a)] [v (b)� v (a)] :
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Proof. Integrating by parts in the Riemann-Stieltjes integral, we have that

(3.2)
h (a) + h (b)

2
(b� a)�

Z b

a

h (t) dt =

Z b

a

�
t� a+ b

2

�
dh (t) :

Applying the inequality (2.3) we have

(3.3)

�����
Z b

a

�
t� a+ b

2

�
dh (t)

�����
2

�
Z b

a

����t� a+ b2
���� du (t)Z b

a

����t� a+ b2
���� dv (t) :

Integrating by parts in the Riemann-Stieltjes integral we also have

Z b

a

����t� a+ b2
���� du (t)(3.4)

=

Z a+b
2

a

�
a+ b

2
� t
�
du (t) +

Z b

a+b
2

�
t� a+ b

2

�
du (t)

=

�
a+ b

2
� t
�
u (t)

���� a+b2
a

+

Z a+b
2

a

u (t) dt

+

�
t� a+ b

2

�
u (t)

����b
a+b
2

�
Z b

a+b
2

u (t) dt

= �b� a
2
u (a) +

Z a+b
2

a

u (t) dt+
b� a
2
u (b)�

Z b

a+b
2

u (t) dt

=
1

2
(b� a) [u (b)� u (a)]�

Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

and a similar relation for v:
By the µCeby�ev inequality for monotonic nondecreasing functions F; G that

states that

1

b� a

Z b

a

F (t)G (t) dt � 1

b� a

Z b

a

F (t) dt � 1

b� a

Z b

a

G (t) dt

we also have Z b

a

sgn

�
t� a+ b

2

�
u (t) dt(3.5)

� 1

b� a

Z b

a

sgn

�
t� a+ b

2

�
dt

Z b

a

u (t) dt = 0

and a similar result for v:
Utilizing (3.2)-(3.2) we deduce the desired result (3.1). �
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Theorem 3. Assume that u; v : [a; b] ! R are monotonic nondecreasing on the
interval [a; b] : If h : [a; b]! C is S-dominated by the pair (u; v) ; then

�����h
�
a+ b

2

�
(b� a)�

Z b

a

h (t) dt

�����
2

(3.6)

�
Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

Z b

a

sgn

�
t� a+ b

2

�
v (t) dt

� 1

4
(b� a)2 [u (b)� u (a)] [v (b)� v (a)] :

Proof. Integrating by parts on the Riemann-Stieltjes integral we have

h

�
a+ b

2

�
(b� a)�

Z b

a

h (t) dt(3.7)

=

Z a+b
2

a

(t� a) dh (t) +
Z b

a+b
2

(b� t) dh (t) :

Taking the modulus in (3.7) we have

�����h
�
a+ b

2

�
(b� a)�

Z b

a

h (t) dt

�����(3.8)

�
�����
Z a+b

2

a

(t� a) dh (t)
�����+
�����
Z b

a+b
2

(b� t) dh (t)
����� :

Applying the inequality (2.3) twice, we have

�����
Z a+b

2

a

(t� a) dh (t)
����� �

 Z a+b
2

a

(t� a) du (t)
!1=2 Z a+b

2

a

(t� a) dv (t)
!1=2

and

�����
Z b

a+b
2

(b� t) dh (t)
����� �

 Z b

a+b
2

(b� t) du (t)
!1=2 Z b

a+b
2

(b� t) dv (t)
!1=2

:

Summing these inequalities and utilizing the elementary result

�� + �� �
�
�2 + �2

�1=2 �
�2 + �2

�1=2
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where �; �; �; � � 0; we have

�����
Z a+b

2

a

(t� a) dh (t)
�����+
�����
Z b

a+b
2

(b� t) dh (t)
�����(3.9)

�
 Z a+b

2

a

(t� a) du (t)
!1=2 Z a+b

2

a

(t� a) dv (t)
!1=2

+

 Z b

a+b
2

(b� t) du (t)
!1=2 Z b

a+b
2

(b� t) dv (t)
!1=2

�
 Z a+b

2

a

(t� a) du (t) +
Z b

a+b
2

(b� t) du (t)
!1=2

+

 Z a+b
2

a

(t� a) dv (t) +
Z b

a+b
2

(b� t) dv (t)
!1=2

:

Integrating by parts in the Riemann-Stieltjes integral we have

Z a+b
2

a

(t� a) du (t) +
Z b

a+b
2

(b� t) du (t)(3.10)

= (t� a)u (t)j
a+b
2

a �
Z a+b

2

a

u (t) dt+ (b� t)u (t)jba+b
2
+

Z b

a+b
2

u (t) dt

=
1

2
(b� a)u

�
a+ b

2

�
�
Z a+b

2

a

u (t) dt

� 1
2
(b� a)u

�
a+ b

2

�
+

Z b

a+b
2

u (t) dt

=

Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

and the last integral is nonnegative as shown in the proof of Theorem 2.
The same equality holds for v as well.
Utilising the Grüss integral inequality

����� 1

b� a

Z b

a

F (t)G (t) dt� 1

b� a

Z b

a

F (t) dt � 1

b� a

Z b

a

G (t) dt

�����(3.11)

� 1

4
(M �m) (N � n)

that holds for the Lebesgue integrable functions F and G that satisfy the conditions

m � F (t) �M and n � G (t) � N
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for almost every t 2 [a; b] ; we have

0 � 1

b� a

Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

=
1

b� a

Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

� 1

b� a

Z b

a

sgn

�
t� a+ b

2

�
dt � 1

b� a

Z b

a

u (t) dt

� 1

2
[u (b)� u (a)]

which implies that

(3.12)
Z b

a

sgn

�
t� a+ b

2

�
u (t) dt � 1

2
(b� a) [u (b)� u (a)] :

A similar result holds for v:
Making use of the inequalities (3.8), (3.9) and (3.12) we deduce the desired result

(3.6). �

4. Applications for µCeby�ev and (CBS)-Type Functionals

The following lemma is of interest in itself.

Lemma 1. Let F : [a; b] � [a; b] ! C be continuous on the rectangle [a; b] � [a; b]
and h : [a; b]! C an S-dominated function by the pair (u; v) which are monotonic
nondecreasing on [a; b] : Then we have�����

Z b

a

 Z b

a

F (x; y) dh (y)

!
dh (x)

�����
2

(4.1)

�
 Z b

a

 Z b

a

jF (x; y)j du (y)
!
du (x)

!1=2

�
 Z b

a

 Z b

a

jF (x; y)j dv (y)
!
dv (x)

!1=2

�
 Z b

a

 Z b

a

jF (x; y)j du (y)
!
dv (x)

!1=2

�
 Z b

a

 Z b

a

jF (x; y)j dv (y)
!
du (x)

!1=2
:

Proof. Assume that x is �xed in [a; b] : If we apply Theorem 2.3 for the S-dominated
function h : [a; b]! C we have

(4.2)

�����
Z b

a

F (x; y) dh (y)

����� �
 Z b

a

jF (x; y)j du (y)
!1=2 Z b

a

jF (x; y)j dv (y)
!1=2

:
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Applying again Theorem 2.3 and utilizing (4.2) we have�����
Z b

a

 Z b

a

F (x; y) dh (y)

!
dh (x)

�����
2

(4.3)

�
Z b

a

�����
Z b

a

F (x; y) dh (y)

����� du (x)
Z b

a

�����
Z b

a

F (x; y) dh (y)

����� dv (x)
�
Z b

a

 Z b

a

jF (x; y)j du (y)
!1=2 Z b

a

jF (x; y)j dv (y)
!1=2

du (x)

�
Z b

a

 Z b

a

jF (x; y)j du (y)
!1=2 Z b

a

jF (x; y)j dv (y)
!1=2

dv (x) :

On making use of the Cauchy-Bunyakovsky-Schwarz inequality for the Riemann-
Stieltjes integral of monotonic nondecreasing integrators we have for the integrator
u

Z b

a

 Z b

a

jF (x; y)j du (y)
!1=2 Z b

a

jF (x; y)j dv (y)
!1=2

du (x)(4.4)

�
 Z b

a

 Z b

a

jF (x; y)j du (y)
!
du (x)

!1=2

�
  Z b

a

jF (x; y)j dv (y)
!
du (x)

!1=2

and for the integrator v

Z b

a

 Z b

a

jF (x; y)j du (y)
!1=2 Z b

a

jF (x; y)j dv (y)
!1=2

dv (x)(4.5)

�
 Z b

a

 Z b

a

jF (x; y)j du (y)
!
dv (x)

!1=2

�
  Z b

a

jF (x; y)j dv (y)
!
dv (x)

!1=2
:

Utilising (4.3)-(4.5) we deduce the desired result (4.1). �

When no confusion is possible, we write
R b
a
fdu instead of

R b
a
f (x) du (x) :

For the complex-valued functions p; f; g and h; ` de�ned on the interval [a; b]
we de�ne the following µCeby�ev type functionals

(4.6) C (p; f; g;h) :=

Z b

a

pdh

Z b

a

pfgdh�
Z b

a

pfdh

Z b

a

pgdh
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and

C (p; f; g;h; `) =

Z b

a

pd`

Z b

a

pfgdh+

Z b

a

pdh

Z b

a

pfgd`(4.7)

�
Z b

a

pfd`

Z b

a

pgdh�
Z b

a

pfdh

Z b

a

pgd`

provided that all the Riemann-Stieltjes integrals involved above exist.
We observe that

C (p; f; g;h; h) = 2C (p; f; g;h)

and
C (p; f; g;h; `) = C (p; f; g; `; h) :

Theorem 4. Let f; g : [a; b]! R be continuous and synchronous on [a; b] ; i.e.,

(4.8) (f (x)� f (y)) (g (x)� g (y)) � 0
for any x; y 2 [a; b] : If h : [a; b]! C is an S-dominated function by the pair (u; v)
which are monotonic nondecreasing on [a; b] ; then for any continuous nonnegative
function p : [a; b]! [0;1) we have

(4.9) jC (p; f; g;h)j2 � 1

2
C (p; f; g;u; v) [C (p; f; g;u)]

1=2
[C (p; f; g; v)]

1=2
:

Proof. De�ne the function F : [a; b]� [a; b]! R by

F (x; y) := p (x) p (y) (f (x)� f (y)) (g (x)� g (y))(4.10)

= p (y) p (x) f (x) g (x) + p (x) p (y) f (y) g (y)

� p (x) f (x) p (y) g (y)� p (y) f (y) p (x) g (x) :
We observe that, since p is nonnegative and f; g are synchronous, then F (x; y) � 0
for any x; y 2 [a; b] : The function F is also continuous on the rectangle [a; b]� [a; b] :
By simple calculation with the Riemann-Stieltjes integral we haveZ b

a

 Z b

a

F (x; y) dh (y)

!
dh (x) = 2C (p; f; g;h) ;

Z b

a

 Z b

a

jF (x; y)j du (y)
!
du (x) = 2C (p; f; g;u) � 0;

Z b

a

 Z b

a

jF (x; y)j dv (y)
!
dv (x) = 2C (p; f; g; v) � 0

and Z b

a

 Z b

a

jF (x; y)j du (y)
!
dv (x) =

Z b

a

 Z b

a

jF (x; y)j dv (y)
!
du (x)

= C (p; f; g;u; v) � 0:
Utilising the inequality (4.1) we have

[2C (p; f; g;h)]
2 � [2C (p; f; g;u)]1=2 [2C (p; f; g; v)]1=2

� [C (p; f; g;u; v)]1=2 [C (p; f; g;u; v)]1=2 ;
which is clearly equivalent with (4.9). �
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For the complex-valued functions p; f; g and h; ` de�ned on the interval [a; b]
we de�ne the following (CBS)-type functionals

B (p; f; g;h; `) :=

Z b

a

p jf j2 dh
Z b

a

p jgj2 d`+
Z b

a

p jgj2 dh
Z b

a

p jf j2 d`(4.11)

�
Z b

a

pfgdh

Z b

a

pfgd`�
Z b

a

pfgdh

Z b

a

pfgd`

and

B (p; f; g;h) :=
1

2
B (p; f; g;h; h)(4.12)

=

Z b

a

p jf j2 dh
Z b

a

p jgj2 dh

� 1
2

24 Z b

a

pfgdh

!2
+

 Z b

a

pfgdh

!235 :
If p is nonnegative and h is real-valued, then Z b

a

pfgdh

!2
=

 Z b

a

pfgdh

!2
;

which implies that

B (p; f; g;h) =

Z b

a

p jf j2 dh
Z b

a

p jgj2 dh� Re
 Z b

a

pfgdh

!2
:

Also, if p is nonnegative and f; g are real-valued, then

B (p; f; g;h) =

Z b

a

pf2dh

Z b

a

pg2dh�
 Z b

a

pfgdh

!2
:

The following result also holds.

Theorem 5. Let f; g : [a; b] ! C be continuous on [a; b] : If h : [a; b] ! C is
an S-dominated function by the pair (u; v) ; which are monotonic nondecreasing on
[a; b] ; then for any continuos nonnegative function p : [a; b]! [0;1) we have

(4.13) jB (p; f; g;h)j2 � 1

2
B (p; f; g;u; v) [B (p; f; g;u)]

1=2
[B (p; f; g; v)]

1=2
:

Proof. De�ne the function F : [a; b]� [a; b]! R by

F (x; y) := p (x) p (y)
���f (x) g (y)� g (x) f (y)���2(4.14)

= p (y) p (x)
h
jf (x)j2 jg (y)j2 + jf (y)j2 jg (x)j2

�f (x) g (x)f (y) g (y)� f (x)g (x) f (y)g (y)
i
:

We observe that, since p is nonnegative, then F (x; y) � 0 for any x; y 2 [a; b] : The
function F is also continuous on the rectangle [a; b]� [a; b] :
By simple calculation with the Riemann-Stieltjes integral we haveZ b

a

 Z b

a

F (x; y) dh (y)

!
dh (x) = 2B (p; f; g;h) ;
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a

 Z b

a

jF (x; y)j du (y)
!
du (x) = 2B (p; f; g;u) � 0;

Z b

a

 Z b

a

jF (x; y)j dv (y)
!
dv (x) = 2B (p; f; g; v) � 0

and Z b

a

 Z b

a

jF (x; y)j du (y)
!
dv (x) =

Z b

a

 Z b

a

jF (x; y)j dv (y)
!
du (x)

= B (p; f; g;u; v) � 0:

Utilising the inequality (4.1) we have

[2B (p; f; g;h)]
2 � [2B (p; f; g;u)]1=2 [2B (p; f; g; v)]1=2

� [B (p; f; g;u; v)]1=2 [B (p; f; g;u; v)]1=2 ;

which is clearly equivalent with (4.13). �

5. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; h�; �i) : Let A 2 B (H) be selfadjoint and let '� be
de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator

(5.1) E� := '� (A)

is a projection which reduces A:
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [33, p. 256]:
Let A be a bonded selfadjoint operator on the Hilbert space H and let m =

min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g =: maxSp (A) :
Then there exists a family of projections fE�g�2R, called the spectral family of A;
with the following properties:

a) E� � E�0 for � � �0;
b) Em�0 = 0; EM = I and E�+0 = E� for all � 2 R;

We have the representation

(5.2) A =

Z M

m�0
�dE�:

More generally, for every continuous complex-valued function ' de�ned on R
and for every " > 0 there exists a � > 0 such that

(5.3)






' (A)�
nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � "



14 S.S. DRAGOMIR1;2

whenever

(5.4)

8>>>><>>>>:
�0 < m = �1 < ::: < �n�1 < �n =M;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(5.5) ' (A) =

Z M

m�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.
With the above assumptions for A; E� and ' we have the representations

(5.6) ' (A)x =

Z M

m�0
' (�) dE�x for all x 2 H

and

(5.7) h' (A)x; yi =
Z M

m�0
' (�) d hE�x; yi for all x; y 2 H:

In particular,

(5.8) h' (A)x; xi =
Z M

m�0
' (�) d hE�x; xi for all x 2 H:

Moreover, we have the equality

(5.9) k' (A)xk2 =
Z M

m�0
j' (�)j2 d kE�xk2 for all x 2 H:

Utilising Theorem 1 we can prove easily the following Schwarz type inequality:

Proposition 2. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : If f : R! C is a continuous function on [m;M ] ; then we have the
inequality

(5.10) jhf (A)x; yij2 � hjf (A)jx; xi hjf (A)j y; yi
for any x; y 2 H:

Proof. Let " > 0 and for �xed x; y 2 H de�ne the functions h; u; v : [m� ";M ]! C
given by

h (t) := hEtx; yi ; u (t) := hEtx; xi and v (t) := hEty; yi
where fE�g�2R is the spectral family of the bounded selfadjoint operator A:
For t; s 2 [m� ";M ] with t > s by utilizing the Schwarz inequality for nonneg-

ative operators P
jhPx; yij2 � hPx; xi hPy; yi ;

we have

jh (t)� h (s)j2 = jh(Et � Es)x; yij2 � h(Et � Es)x; xi h(Et � Es) y; yi
= (u (t)� u (s)) (v (t)� v (s)) ;

which shows that h is S-dominated by the monotonic nondecreasing functions (u; v)
on [m� ";M ] :
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Applying Theorem 1 for f; h; u and v on [m� ";M ] we have

(5.11)

�����
Z M

m�"
f (t) d (hEtx; yi)

�����
2

�
Z M

m�"
jf (t)j d (hEtx; xi)

Z M

m�"
jf (t)j d (hEty; yi)

for any x; y 2 H:
Letting "! 0+ in (5.11) and utilizing the representation of continuous functions

of selfadjoint operators, we deduce the desired result (5.10). �

For continuous functions p; f; g the selfadjoint operator A and x; y 2 H we
de�ne the functionals

C (p; f; g;A; x; y) := hp (A)x; yi hp (A) f (A) g (A)x; yi(5.12)

� hp (A) f (A)x; yi hp (A) g (A)x; yi ;

C (p; f; g;A; x) := C (p; f; g;A; x; x)(5.13)

= hp (A)x; xi hp (A) f (A) g (A)x; xi
� hp (A) f (A)x; xi hp (A) g (A)x; xi ;

and

D (p; f; g;A; x; y)(5.14)

:= hp (A)x; xi hp (A) f (A) g (A) y; yi+ hp (A) y; yi hp (A) f (A) g (A)x; xi
� hp (A) g (A)x; xi hp (A) f (A) y; yi � hp (A) g (A) y; yi hp (A) f (A)x; xi :

The following result holds:

Proposition 3. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : Assume that f; g : R ! R are continuous and synchronous on
[m;M ] and p : R ! R is a nonnegative continuous function on [m;M ] : Then for
any x; y 2 H we have

jC (p; f; g;A; x; y)j2(5.15)

� 1

2
D (p; f; g;A; x; y) [C (p; f; g;A; x)]

1=2
[C (p; f; g;A; y)]

1=2
:

The proof is similar to the one from Proposition 2 by utilizing the integral in-
equality from Theorem 4. The details are omitted.
A simpler version of the above inequality (5.15) is as follows:

Corollary 2. With the assumptions of Proposition 3 for A, f and g; then for any
x; y 2 H with kxk = kyk = 1 we have

jhx; yi hf (A) g (A)x; yi � hf (A)x; yi hg (A)x; yij2(5.16)

� 1

2
[hf (A) g (A) y; yi+ hf (A) g (A)x; xi

� hg (A)x; xi hf (A) y; yi � hg (A) y; yi hf (A)x; xi]

� [hf (A) g (A)x; xi � hf (A)x; xi hg (A)x; xi]1=2

� [hf (A) g (A) y; yi � hf (A) y; yi hg (A) y; yi]1=2 :
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Remark 1. If we take, as an example, f (t) = tp and g (t) = tq for p; q > 0 then
for any positive operator A we have from (5.16) the inequality��hx; yi 
Ap+qx; y�� hApx; yi hAqx; yi��2(5.17)

� 1

2

�

Ap+qy; y

�
+


Ap+qx; x

�
� hAqx; xi hApy; yi � hAqy; yi hApx; xi

�
�
�

Ap+qx; x

�
� hApx; xi hAqx; xi

�1=2 �

Ap+qy; y

�
� hApy; yi hAqy; yi

�1=2
;

for any x; y 2 H with kxk = kyk = 1:

6. Applications for Unitary Operators

Let (H; h�; �i) be a complex Hilbert space. We recall that the bounded linear
operator U : H ! H on the Hilbert space H is unitary i¤ U� = U�1:
It is well known that (see for instance [33, p. 275-p. 276]), if U is a unitary

operator, then there exists a family of projections fE�g�2[0;2�], called the spectral
family of U with the following properties:

a) E� � E� for 0 � � � � � 2�;
b) E0 = 0 and E2� = 1H (the identity operator on H);
c) E�+0 = E� for 0 � � < 2�;
d) U =

R 2�
0
ei�dE� where the integral is of Riemann-Stieltjes type.

Moreover, if fF�g�2[0;2�] is a family of projections satisfying the requirements
a)-d) above for the operator U; then F� = E� for all � 2 [0; 2�] :
Also, for every continuous complex-valued function f : C (0; 1) ! C on the

complex unit circle C (0; 1), we have

(6.1) f (U) =

Z 2�

0

f
�
ei�
�
dE�;

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(6.2) f (U)x =

Z 2�

0

f
�
ei�
�
dE�x;

(6.3) hf (U)x; yi =
Z 2�

0

f
�
ei�
�
d hE�x; yi

and

(6.4) kf (U)xk2 =
Z 2�

0

��f �ei����2 d kE�xk2 ;
for any x; y 2 H:

Proposition 4. Let U be a unitary operator on the Hilbert space H: Then for
every continuous complex-valued function f : C (0; 1) ! C on the complex unit
circle C (0; 1), we have

(6.5) jhf (U)x; yij2 � hjf (U)jx; xi hjf (U)j y; yi

for any x; y 2 H:
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Proof. Let fE�g�2[0;2�] be the spectral family of the unitary operator U: For �xed
x; y 2 H de�ne the functions h; u; v : [0; 2�]! C given by

h (t) := hEtx; yi ; u (t) := hEtx; xi and v (t) := hEty; yi :
For t; s 2 [0; 2�] with t > s by utilizing the Schwarz inequality for nonnegative

operators P
jhPx; yij2 � hPx; xi hPy; yi ;

we have

jh (t)� h (s)j2 = jh(Et � Es)x; yij2 � h(Et � Es)x; xi h(Et � Es) y; yi
= (u (t)� u (s)) (v (t)� v (s)) ;

which shows that h is S-dominated by the monotonic nondecreasing functions (u; v)
on [0; 2�] :
Applying Theorem 1 for f

�
ei�
�
; h; u and v on [0; 2�] we have����Z 2�

0

f
�
eit
�
d (hEtx; yi)

����2 � Z 2�

0

��f �eit��� d (hEtx; xi)Z 2�

0

��f �eit��� d (hEty; yi)
for any x; y 2 H:
Utilising the representation of continuous functions of unitary operators, we

deduce the desired result (6.5). �
For the complex-valued functions f; g de�ned on the complex unit circle C (0; 1)

and the unitary operator U on the Hilbert space H we de�ne the following func-
tionals:

D (f; g;U; x; y)(6.6)

:=
D
jf (U)j2 x; x

ED
jg (U)j2 y; y

E
+
D
jg (U)j2 x; x

ED
jf (U)j2 y; y

E
� hf (U) g (U)x; xi hf (U) g (U) y; yi �



f (U) g (U)x; x

� 

f (U) g (U) y; y

�
;

B (f; g;U; x; y) :=
D
jf (U)j2 x; y

ED
jg (U)j2 x; y

E
(6.7)

� 1
2

h
hf (U) g (U)x; yi2 +



f (U) g (U)x; y

�2i
and

B (f; g;U; x) := B (f; g;U; x; x)(6.8)

=
D
jf (U)j2 x; x

ED
jg (U)j2 x; x

E
� Re hf (U) g (U)x; xi2 ;

where x; y 2 H:

Proposition 5. Let U be a unitary operator on the Hilbert space H: Then for every
continuous complex-valued functions f; g : C (0; 1) ! C on the complex unit circle
C (0; 1), we have

(6.9) jB (f; g;U; x; y)j2 � 1

2
D (f; g;U; x; y) [B (f; g;U; x)]

1=2
[B (f; g;U; y)]

1=2

for any x; y 2 H:

The proof follows by Theorem 5 applied for the functions f
�
eit
�
; g
�
eit
�
; p (t) =

1; h (t) := hEtx; yi ; u (t) := hEtx; xi and v (t) := hEty; yi where fE�g�2[0;2�] is the
spectral family of the unitary operator U and t 2 [0; 2�] : The details are omitted.
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[31] S. S. DRAGOMIR, J. PE µCARIĆ and S. WANG, The uni�ed treatment of trapezoid, Simpson,
and Ostrowski type inequality for monotonic mappings and applications. Math. Comput.
Modelling 31 (2000), no. 6-7, 61�70.

[32] H. GUNAWAN, A note on Dragomir-McAndrew�s trapezoid inequalities. Tamkang J. Math.
33 (2002), no. 3, 241�244.

[33] G. HELMBERG, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc.
-New York, 1969.

[34] Z. LIU, Some inequalities of perturbed trapezoid type. J. Inequal. Pure Appl. Math. 7 (2006),
no. 2, Article 47, 9 pp.

[35] Z. LIU, Some Ostrowski type inequalities and applications. Vietnam J. Math. 37 (2009), no.
1, 15�22.

[36] Z. LIU, Some companions of an Ostrowski type inequality and applications. J. Inequal. Pure
Appl. Math. 10 (2009), no. 2, Article 52, 12 pp.

[37] Z. LIU, A note on Ostrowski type inequalities related to some s-convex functions in the second
sense. Bull. Korean Math. Soc. 49 (2012), no. 4, 775�785.

[38] Z. LIU, A sharp general Ostrowski type inequality. Bull. Aust. Math. Soc. 83 (2011), no. 2,
189�209.

[39] Z. LIU, New sharp bound for a general Ostrowski type inequality. Tamsui Oxf. J. Math. Sci.
26 (2010), no. 1, 53�59.

[40] W.-J. LIU, Q.-L. XUE and J.-W. DONG, New generalization of perturbed trapezoid, mid-
point inequalities and applications. Int. J. Pure Appl. Math. 41 (2007), no. 6, 761�768.

[41] A. I. KECHRINIOTIS and N. D. ASSIMAKIS, Generalizations of the trapezoid inequalities
based on a new mean value theorem for the remainder in Taylor�s formula. J. Inequal. Pure
Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).

[42] M. MASJED-JAMEI and S. S. DRAGOMIR, A new generalization of the Ostrowski inequal-
ity and applications. Filomat 25 (2011), no. 1, 115�123.

[43] P. R. MERCER, Hadamard�s inequality and trapezoid rules for the Riemann-Stieltjes integral.
J. Math. Anal. Appl. 344 (2008), no. 2, 921�926.

[44] A. McD. MERCER, On perturbed trapezoid inequalities. J. Inequal. Pure Appl. Math. 7
(2006), no. 4, Article 118, 7 pp. (electronic).

[45] B. G. PACHPATTE, A note on a trapezoid type integral inequality. Bull. Greek Math. Soc.
49 (2004), 85�90.

[46] B. G. PACHPATTE, New inequalities of Ostrowski and trapezoid type for n-time di¤eren-
tiable functions. Bull. Korean Math. Soc. 41 (2004), no. 4, 633�639.

[47] J. PARK, On the Ostrowskilike type integral inequalities for mappings whose second deriva-
tives are s�-convex. Far East J. Math. Sci. (FJMS) 67 (2012), no. 1, 21�35.

[48] J. PARK, Some Ostrowskilike type inequalities for di¤erentiable real (�;m)-convex mappings.
Far East J. Math. Sci. (FJMS) 61 (2012), no. 1, 75�91

[49] M. Z. SARIKAYA, On the Ostrowski type integral inequality. Acta Math. Univ. Comenian.
(N.S.) 79 (2010), no. 1, 129�134.

[50] W. T. SULAIMAN, Some new Ostrowski type inequalities. J. Appl. Funct. Anal. 7 (2012),
no. 1-2, 102�107.



20 S.S. DRAGOMIR1;2

[51] K.-L. TSENG, Improvements of the Ostrowski integral inequality for mappings of bounded
variation II. Appl. Math. Comput. 218 (2012), no. 10, 5841�5847.

[52] K.-L. TSENG, S.-R. HWANG, G.-S. YANG, and Y.-M. CHOU, Improvements of the Os-
trowski integral inequality for mappings of bounded variation I. Appl. Math. Comput. 217
(2010), no. 6, 2348�2355.
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