
INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF
S-DOMINATED INTEGRATORS WITH APPLICATIONS (II)

S.S. DRAGOMIR1;2

Abstract. Assume that u; v : [a; b] ! R are monotonic nondecreasing on
the interval [a; b] : We say that the complex-valued function h : [a; b] ! C is
S -dominated by the pair (u; v) if

jh (y)� h (x)j2 � [u (y)� u (x)] [v (y)� v (x)]
for any x; y 2 [a; b] :

In this paper we show amongst other that����Z b

a
f (t) g (t) dh (t)

����2 � Z b

a
jf (t)j2 du (t)

Z b

a
jg (t)j2 dv (t) ;

for any continuous functions f; g : [a; b]! C.
Applications for the trapezoidal inequality are given. New inequalities for

some µCeby�ev and (CBS)-type functionals are presented. Natural applications
for continuous functions of selfadjoint and unitary operators on Hilbert spaces
are provided as well.

1. Introduction

One of the most important properties of the Riemann-Stieltjes integral
R b
a
f (t) dg (t)

is the fact that this integral exists if one of the function is of bounded variation while
the other is continuous. The following sharp inequality holds

(1.1)

�����
Z b

a

f (t) dg (t)

����� � max
t2[a;b]

jf (t)j
b_
a

(g) ;

provided that f : [a; b]! C is continuous on [a; b] and g : [a; b]! C is of bounded

variation on this interval. Here
b_
a

(g) denotes the total variation of g on [a; b] :

When g is Lipschitzian with the constant L > 0; i.e.,

jg (t)� g (s)j � L jt� sj

for any t; s 2 [a; b] ; then we have

(1.2)

�����
Z b

a

f (t) dg (t)

����� � L
Z b

a

jf (t)j dt

for any Riemann integrable function f : [a; b]! C.
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Moreover, if the integrator g is monotonic nondecreasing on the interval [a; b]
and the integrand f : [a; b]! C is continuous, then we have the modulus inequality

(1.3)

�����
Z b

a

f (t) dg (t)

����� �
Z b

a

jf (t)j dg (t) :

In order to provide other inequalities of this type, we introduced in [29] the following
class of functions.
Assume that u; v : [a; b]! R are monotonic nondecreasing on the interval [a; b] :

We say that the complex-valued function h : [a; b]! C is S -dominated by the pair
(u; v) if

(S) jh (y)� h (x)j2 � [u (y)� u (x)] [v (y)� v (x)]
for any x; y 2 [a; b] :
We observe that by the monotonicity of the functions u and v and by the sym-

metry of the inequality (S) over x and y we can assume that (S) is satis�ed only
for y > x with x; y 2 [a; b] :
We can give numerous examples of such functions.
For instance, if we take f; g 2 L2 [a; b] the Hilbert space of all complex-valued

functions that are square-Lebesgue integrable and denote

h (x) :=

Z x

a

f (t) g (t) dt; u (x) :=

Z x

a

jf (t)j2 dt and v (x) :=
Z x

a

jg (t)j2 dt;

then we observe that u and v are monotonic nondecreasing on [a; b] and by Cauchy-
Bunyakovsky-Schwarz integral inequality we have for any y > x with x; y 2 [a; b]
that

jh (y)� h (x)j2 =
����Z y

x

f (t) g (t) dt

����2 � Z y

x

jf (t)j2 dt
Z y

x

jg (t)j2 dt

� [u (y)� u (x)] [v (y)� v (x)] :

Now, for p; q > 0 if we consider f (t) := tp and g (t) := tq for t � 0; then

hp;q (x) :=

Z x

0

tp+qdt =
1

p+ q + 1
xp+q+1

and

up (x) :=

Z x

0

t2pdt =
1

2p+ 1
x2p+1; vq (x) :=

Z x

0

t2qdt =
1

2q + 1
x2q+1:

Taking into account the above comments we observe that the function hp;q is S -
dominated by the pair (up; vq) on any subinterval of [0;1) :
In the recent paper [29] we proved the following result:

Theorem 1. Assume that u; v : [a; b] ! R are monotonic nondecreasing on the
interval [a; b] : If h : [a; b] ! C is S-dominated by the pair (u; v) and f : [a; b] ! C
is a continuous function on [a; b] ; then the Riemann-Stieltjes integral

R b
a
f (t) dh (t)

exists and

(1.4)

�����
Z b

a

f (t) dh (t)

�����
2

�
Z b

a

jf (t)j du (t)
Z b

a

jf (t)j dv (t) :

As some simple applications of this result, we have [29]:
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Corollary 1. Assume that u; v : [a; b] ! R are monotonic nondecreasing on the
interval [a; b] : If h : [a; b]! C is S-dominated by the pair (u; v) ; then�����h (a) + h (b)2

(b� a)�
Z b

a

h (t) dt

�����
2

(1.5)

�
"
1

2
(b� a) [u (b)� u (a)]�

Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

#

�
"
1

2
(b� a) [v (b)� v (a)]�

Z b

a

sgn

�
t� a+ b

2

�
v (t) dt

#

� 1

4
(b� a)2 [u (b)� u (a)] [v (b)� v (a)]

and �����h
�
a+ b

2

�
(b� a)�

Z b

a

h (t) dt

�����
2

(1.6)

�
Z b

a

sgn

�
t� a+ b

2

�
u (t) dt

Z b

a

sgn

�
t� a+ b

2

�
v (t) dt

� 1

4
(b� a)2 [u (b)� u (a)] [v (b)� v (a)] :

For related results to the trapezoid inequality, see [11]-[15], [17]-[20], [24]-[25],
[30]-[33], [35], [41], [42], [44]-[46] and [54]-[56].
For related results to the midpoint inequality, see [1]-[11], [16]-[17], [21], [23],

[25]-[27], [32], [36]-[40], [43], [47]-[53] and [57]-[60].
Motivated by the above results, we establish in this paper a bound for the quan-

tity �����
Z b

a

f (t) g (t) dh (t)

�����
in the case when f and g are continuous while the function of bounded variation h
is S-dominated by a pair of monotonic functions. Applications for the trapezoidal
type inequalities are given. New inequalities for some µCeby�ev and (CBS)-type
functionals are presented. Natural applications for continuous functions of selfad-
joint and unitary operators on Hilbert spaces are provided as well.

2. Inequalities for S -dominated Functions

We have the following Cauchy-Bunyakovsky-Schwarz type inequality for the
Riemann-Stieltjes integral.

Theorem 2. Let f; g : [a; b]! C be continuous on [a; b] : If h : [a; b]! C is an S-
dominated function by the pair (u; v) which are monotonic nondecreasing on [a; b] ;
then for any continuos nonnegative function p : [a; b]! [0;1) we have

(2.1)

�����
Z b

a

pfgdh

�����
2

�
Z b

a

p jf j2 du
Z b

a

p jgj2 dv:
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Proof. Since the Riemann-Stieltjes integral
R b
a
pfgdh exists, then for any sequence

of partitions
I(n)n : a = t

(n)
0 < t

(n)
1 < � � � < t(n)n�1 < t

(n)
n = b

with the norm
v
�
I(n)n

�
:= max

i2f0;:::;n�1g

�
t
(n)
i+1 � t

(n)
i

�
! 0

as n!1; and for any intermediate points �(n)i 2 [t(n)i ; t
(n)
i+1]; i 2 f0; : : : ; n� 1g we

have: �����
Z b

a

pfgdh

�����(2.2)

=

������ lim
v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

�
f
�
�
(n)
i

�
g
�
�
(n)
i

� h
h
�
t
(n)
i+1

�
� h

�
t
(n)
i

�i������
� lim

v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

� ���f ��(n)i

���� ���g ��(n)i

���� ���h�t(n)i+1

�
� h

�
t
(n)
i

����
� lim

v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

� ���f ��(n)i

���� ���g ��(n)i

����
�
���u�t(n)i+1

�
� u

�
t
(n)
i

����1=2 ���u�t(n)i+1

�
� u

�
t
(n)
i

����1=2
:= I:

Utilising the weighted Cauchy-Bunyakovsky-Schwarz discrete inequality

nX
k=1

pkakbk �
 

nX
k=1

pka
2
k

!1=2 nX
k=1

pkb
2
k

!1=2
where pk; ak; bk � 0 for k 2 f1; :::; ng ; we have

I �

0@ lim
v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

� ���f ��(n)i

����2 ����u�t(n)i+1

�
� u

�
t
(n)
i

����1=2�2
1A1=2

(2.3)

�

0@ lim
v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

� ���g ��(n)i

����2 ����v �t(n)i+1

�
� v

�
t
(n)
i

����1=2�2
1A1=2

=

0@ lim
v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

� ���f ��(n)i

����2 hu�t(n)i+1

�
� u

�
t
(n)
i

�i1A1=2

�

0@ lim
v
�
I
(n)
n

�
!0

n�1X
i=0

p
�
�
(n)
i

� ���g ��(n)i

����2 hv �t(n)i+1

�
� v

�
t
(n)
i

�i1A1=2

=

 Z b

a

p jf j2 du
!1=2 Z b

a

p jgj2 dv
!1=2

:

Making use of the inequalities (2.2) and (2.3) we deduce the desired result (2.1). �
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Remark 1. From (2.1) we also have the dual inequality

(2.4)

�����
Z b

a

pfgdh

�����
2

�
Z b

a

p jgj2 du
Z b

a

p jf j2 dv;

which together with (2.1) provide�����
Z b

a

pfgdh

�����
2

(2.5)

� min
(Z b

a

p jf j2 du
Z b

a

p jgj2 dv;
Z b

a

p jgj2 du
Z b

a

p jf j2 dv
)
:

In particular we have

(2.6) max

8<:
�����
Z b

a

pf2dh

�����
2

;

�����
Z b

a

p jf j2 dh
�����
2
9=; �

Z b

a

p jf j2 du
Z b

a

p jf j2 dv:

We also have the inequality

(2.7)

�����
Z b

a

pfdh

�����
2

� min
(Z b

a

pdu

Z b

a

p jf j2 dv;
Z b

a

pdv

Z b

a

p jf j2 du
)

and in particular�����
Z b

a

fdh

�����
2

(2.8)

� min
(
[u (b)� u (a)]

Z b

a

jf j2 dv; [v (b)� v (a)]
Z b

a

jf j2 du
)
:

3. Applications for the Trapezoid Inequality

In this section we provide some inequalities of trapezoid type by utilizing the
above inequalities (2.8) and (2.1).

Theorem 3. If f : [a; b] ! C is an S-dominated function by the pair (u; v) that
are monotonic nondecreasing on [a; b] ; then�����f (a) + f (b)2

(b� a)�
Z b

a

f (t) dt

�����
2

(3.1)

� min fI (u; v) ; I (v; u)g

� 1

4
(b� a)2 [u (b)� u (a)] [v (b)� v (a)] ;

where

I (u; v) := [u (b)� u (a)](3.2)

�
"
1

4
(b� a)2 [v (b)� v (a)]� 2

Z b

a

�
t� a+ b

2

�
v (t) dt

#
:
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Proof. Integrating by parts in the Riemann-Stieltjes integral, we have that

(3.3)
f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt =

Z b

a

�
t� a+ b

2

�
df (t) :

Utilizing the inequality (2.8) we have�����
Z b

a

�
t� a+ b

2

�
df (t)

�����
2

(3.4)

� min
(
[u (b)� u (a)]

Z b

a

�
t� a+ b

2

�2
dv (t) ;

[v (b)� v (a)]
Z b

a

�
t� a+ b

2

�2
du (t)

)
:

Integrating by parts in the Riemann-Stieltjes integral we have for vZ b

a

�
t� a+ b

2

�2
dv (t)(3.5)

=

�
t� a+ b

2

�2
v (t)

�����
b

a

� 2
Z b

a

�
t� a+ b

2

�
v (t) dt

=
1

4
(b� a)2 [v (b)� v (a)]� 2

Z b

a

�
t� a+ b

2

�
v (t) dt;

and a similar equation for u:
Utilizing (3.4) we deduce the �rst inequality (3.1).
By the µCeby�ev inequality for monotonic nondecreasing functions F; G that

states that

1

b� a

Z b

a

F (t)G (t) dt � 1

b� a

Z b

a

F (t) dt � 1

b� a

Z b

a

G (t) dt

we also have

1

b� a

Z b

a

�
t� a+ b

2

�
v (t) dt

� 1

b� a

Z b

a

�
t� a+ b

2

�
dt � 1

b� a

Z b

a

v (t) dt = 0

and a similar inequality for u:
This proves the last part of the inequality (3.1). �

We also have:

Theorem 4. Let f : [a; b] ! C be a di¤erentiable function on (a; b) and u; v :
[a; b] ! R be di¤erentiable and convex on (a; b) : If f 0 is S-dominated by the pair
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(u0; v0) which are monotonic nondecreasing on (a; b) ; then�����f (a) + f (b)2
(b� a)�

Z b

a

f (t) dt

�����
2

(3.6)

�
"Z b

a

u (t) dt� (b� a)u (b) + 1
2
(b� a)2 u0 (b)

#

�
"Z b

a

v (t) dt� (b� a) v (a)� 1
2
(b� a)2 v0 (a)

#
:

Proof. Observe that for f 0 of bounded variation, the following Riemann-Stieltjes
integral exists and integrating by parts twice we haveZ b

a

(t� a) (b� t) df 0 (t)(3.7)

= (t� a) (b� t) f 0 (t)jba + 2
Z b

a

�
t� a+ b

2

�
f 0 (t) dt

= 2

"�
t� a+ b

2

�
f (t)

����b
a

�
Z b

a

f (t) dt

#

= 2

"
f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt

#

giving the identity

(3.8)
f (a) + f (b)

2
(b� a)�

Z b

a

f (t) dt =
1

2

Z b

a

(t� a) (b� t) df 0 (t) :

Utilising the inequality (2.1) we have

(3.9)

�����
Z b

a

(t� a) (b� t) df 0 (t)
�����
2

�
Z b

a

(t� a)2 du0 (t)
Z b

a

(b� t)2 dv0 (t) :

Integrating by parts, we haveZ b

a

(t� a)2 du0 (t) = (t� a)2 u0 (t)
���b
a
� 2

Z b

a

(t� a)u0 (t) dt

= (b� a)2 u0 (b)� 2
"
(t� a)u (t)jba �

Z b

a

u (t) dt

#

= 2

Z b

a

u (t) dt� 2 (b� a)u (b) + (b� a)2 u0 (b)

giving that

(3.10)
1

2

Z b

a

(t� a)2 du0 (t) =
Z b

a

u (t) dt� (b� a)u (b) + 1
2
(b� a)2 u0 (b) :
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We also haveZ b

a

(b� t)2 dv0 (t) = (b� t)2 v0 (t)
���b
a
+ 2

Z b

a

(b� t) v0 (t) dt

= � (b� a)2 v0 (a) + 2
"
(b� t) v (t)jba +

Z b

a

v (t) dt

#

= 2

Z b

a

v (t) dt� 2 (b� a) v (a)� (b� a)2 v0 (a)

giving that

(3.11)
1

2

Z b

a

(b� t)2 dv0 (t) =
Z b

a

v (t) dt� (b� a) v (a)� 1
2
(b� a)2 v0 (a) :

Making use of (3.8)-(3.11) we deduce the desired inequality (3.6). �

4. Applications for µCeby�ev and (CBS)-type Functionals

We can employ the inequality (2.1) to obtain some inequalities for µCeby�ev and
(CBS)-type functionals as follows:

Theorem 5. Let f; g : [a; b] ! C be continuous [a; b] : If h : [a; b] ! C is an S-
dominated function by the pair (u; v) which are monotonic nondecreasing on [a; b] ;
with u (a) < u (b) ; v (a) < v (b) and h (a) 6= h (b) ; then

(4.1) jC (f; g;h; u; v)j2 � [u (b)� u (a)] [v (b)� v (a)]
jh (b)� h (a)j2

C (f ;u)C (g; v)

where

C (f; g;h; u; v)(4.2)

:=
1

h (b)� h (a)

Z b

a

fgdh+
1

u (b)� u (a)

Z b

a

fdu � 1

v (b)� v (a)

Z b

a

gdv

� 1

v (b)� v (a)

Z b

a

gdv � 1

h (b)� h (a)

Z b

a

fdh

� 1

u (b)� u (a)

Z b

a

fdu � 1

h (b)� h (a)

Z b

a

gdh

and

(4.3) C (f ;u) :=
1

u (b)� u (a)

Z b

a

jf j2 du�
����� 1

u (b)� u (a)

Z b

a

fdu

�����
2

:

Proof. From the inequality (2.1) we have�����
Z b

a

 
f � 1

u (b)� u (a)

Z b

a

fdu

! 
g � 1

v (b)� v (a)

Z b

a

gdv

!
dh

�����
2

(4.4)

�
Z b

a

�����f � 1

u (b)� u (a)

Z b

a

fdu

�����
2

du �
Z b

a

�����g � 1

v (b)� v (a)

Z b

a

gdv

�����
2

dv:
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Observe thatZ b

a

 
f � 1

u (b)� u (a)

Z b

a

fdu

! 
g � 1

v (b)� v (a)

Z b

a

gdv

!
dh(4.5)

=

Z b

a

fgdh+
h (b)� h (a)
u (b)� u (a)

Z b

a

fdu � 1

v (b)� v (a)

Z b

a

gdv

� 1

v (b)� v (a)

Z b

a

gdv

Z b

a

fdh� 1

u (b)� u (a)

Z b

a

fdu

Z b

a

gdh

= [h (b)� h (a)]
"

1

h (b)� h (a)

Z b

a

fgdh

+
1

u (b)� u (a)

Z b

a

fdu � 1

v (b)� v (a)

Z b

a

gdv

� 1

v (b)� v (a)

Z b

a

gdv � 1

h (b)� h (a)

Z b

a

fdh

� 1

u (b)� u (a)

Z b

a

fdu � 1

h (b)� h (a)

Z b

a

gdh

= [h (b)� h (a)]C (f; g;h; u; v) ;

Z b

a

�����f � 1

u (b)� u (a)

Z b

a

fdu

�����
2

du(4.6)

=

Z b

a

jf j2 du� 1

u (b)� u (a)

�����
Z b

a

fdu

�����
2

= [u (b)� u (a)]

�

24 1

u (b)� u (a)

Z b

a

jf j2 du�
����� 1

u (b)� u (a)

Z b

a

fdu

�����
2
35

= [u (b)� u (a)]C (f ;u)

and, similarly,

(4.7)
Z b

a

�����g � 1

v (b)� v (a)

Z b

a

gdv

�����
2

dv = [v (b)� v (a)]C (g; v) :

Making use of (4.4)-(4.7) we deduce the desired result (4.1). �

Theorem 6. Let f; g : [a; b] ! C be continuous on [a; b] : If h : [a; b] ! C is an
S-dominated function by the pair (u; v) ; which are monotonic nondecreasing on
[a; b] ; then

(4.8) jL (f; g;h)j2 � 1

2
[B(f ;u)B(f ;u; v)B(g;u; v)B(g; v)]

1=2

where

L (f; g;h) := [h (b)� h (a)]
Z b

a

fgdh�
Z b

a

fdh

Z b

a

gdh;
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(4.9) B(f ;u) := [u (b)� u (a)]
Z b

a

jf j2 du�
�����
Z b

a

fdu

�����
2

(� 0)

and

B(f ;u; v) := [v (b)� v (a)]
Z b

a

jf j2 du+ [u (b)� u (a)]
Z b

a

jf j2 dv(4.10)

� 2Re
 Z b

a

fdu

Z b

a

fdv

!
(� 0) :

Proof. Utilising the inequality (2.1) we have�����
Z b

a

(f (x)� f (y)) (g (x)� g (y)) dh (y)
�����(4.11)

�
 Z b

a

jf (x)� f (y)j2 du (y)
!1=2 Z b

a

jg (x)� g (y)j2 dv (y)
!1=2

for any x 2 [a; b] :
We know that for any continuous function ` : [a; b] ! C we have the inequality

(see 1.4)

(4.12)

�����
Z b

a

` (x) dh (x)

�����
2

�
Z b

a

j` (x)j du (x)
Z b

a

j` (x)j dv (x) :

By this inequality we have�����
Z b

a

 Z b

a

(f (x)� f (y)) (g (x)� g (y)) dh (y)
!
dh (x)

�����
2

(4.13)

�
Z b

a

 �����
Z b

a

(f (x)� f (y)) (g (x)� g (y)) dh (y)
�����
!
du (x)

�
Z b

a

 �����
Z b

a

(f (x)� f (y)) (g (x)� g (y)) dh (y)
�����
!
dv (x)

�
Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!1=2

�
 Z b

a

jg (x)� g (y)j2 dv (y)
!1=2

du (x)

�
Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!1=2

�
 Z b

a

jg (x)� g (y)j2 dv (y)
!1=2

dv (x)

:= J;

where for the last part we used (4.11).
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Further, by the Cauchy-Bunyakovsky-Schwarz inequality for the Riemann-Stieltjes
integral of monotonic nondecreasing integrators we have for u

Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!1=2 Z b

a

jg (x)� g (y)j2 dv (y)
!1=2

du (x)

�
"Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!
du (x)

#1=2

�
"Z b

a

 Z b

a

jg (x)� g (y)j2 dv (y)
!
du (x)

#1=2

and a similar inequality for v:
Then

J �
"Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!
du (x)

#1=2
(4.14)

�
"Z b

a

 Z b

a

jg (x)� g (y)j2 dv (y)
!
du (x)

#1=2

�
"Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!
dv (x)

#1=2

�
"Z b

a

 Z b

a

jg (x)� g (y)j2 dv (y)
!
dv (x)

#1=2
:

Since Z b

a

 Z b

a

jf (x)� f (y)j2 du (y)
!
du (x)

= 2

24[u (b)� u (a)]Z b

a

jf j2 du�
�����
Z b

a

fdu

�����
2
35

= 2B(f ;u);

Z b

a

 Z b

a

jg (x)� g (y)j2 dv (y)
!
du (x)

= [v (b)� v (a)]
Z b

a

jgj2 du+ [u (b)� u (a)]
Z b

a

jgj2 dv

� 2Re
 Z b

a

gdu

Z b

a

gdv

!
= B(g;u; v);
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a

 Z b

a

jf (x)� f (y)j2 du (y)
!
dv (x)

= [v (b)� v (a)]
Z b

a

jf j2 du+ [u (b)� u (a)]
Z b

a

jf j2 dv

� 2Re
 Z b

a

fdu

Z b

a

fdv

!
= B(f ;u; v)

and Z b

a

 Z b

a

jg (x)� g (y)j2 dv (y)
!
dv (x)

= 2

24[v (b)� v (a)]Z b

a

jgj2 dv �
�����
Z b

a

gdv

�����
2
35

= 2B(g; v):

Moreover, Z b

a

 Z b

a

(f (x)� f (y)) (g (x)� g (y)) dh (y)
!
dh (x)

= 2

"
(h (b)� h (a))

Z b

a

fgdh�
Z b

a

fdh

Z b

a

gdh

#
= 2L (f; g;h) :

Making use of (4.13) and (4.14) we deduce the desired result (4.8). �

5. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; h�; �i) : Let A 2 B (H) be selfadjoint and let '� be
de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator
(5.1) E� := '� (A)

is a projection which reduces A:
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [34, p. 256]:
Let A be a bonded selfadjoint operator on the Hilbert space H and let m =

min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g =: maxSp (A) :
Then there exists a family of projections fE�g�2R, called the spectral family of A;
with the following properties:

a) E� � E�0 for � � �0;
b) Em�0 = 0; EM = I and E�+0 = E� for all � 2 R;
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We have the representation

(5.2) A =

Z M

m�0
�dE�:

More generally, for every continuous complex-valued function ' de�ned on R
and for every " > 0 there exists a � > 0 such that

(5.3)

' (A)�
nX
k=1

'
�
�0k
� �
E�k � E�k�1

� � "
whenever

(5.4)

8>>>><>>>>:
�0 < m = �1 < ::: < �n�1 < �n =M;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(5.5) ' (A) =

Z M

m�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.
With the above assumptions for A;E� and ' we have the representations

(5.6) ' (A)x =

Z M

m�0
' (�) dE�x for all x 2 H

and

(5.7) h' (A)x; yi =
Z M

m�0
' (�) d hE�x; yi for all x; y 2 H:

In particular,

(5.8) h' (A)x; xi =
Z M

m�0
' (�) d hE�x; xi for all x 2 H:

Moreover, we have the equality

(5.9) k' (A)xk2 =
Z M

m�0
j' (�)j2 d kE�xk2 for all x 2 H:

Utilising Theorem 2 we can prove easily the following Schwarz type inequality:

Proposition 1. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : If f; g : R ! C are continuous functions on [m;M ] ; then we have
the inequality

(5.10) jhf (A) g (A)x; yij2 �
D
jf (A)j2 x; x

ED
jg (A)j2 y; y

E
for any x; y 2 H:

Proof. Let " > 0 and for �xed x; y 2 H de�ne the functions h; u; v : [m� ";M ]! C
given by

h (t) := hEtx; yi ; u (t) := hEtx; xi and v (t) := hEty; yi
where fE�g�2R is the spectral family of the bounded selfadjoint operator A:
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For t; s 2 [m� ";M ] with t > s by utilizing the Schwarz inequality for nonneg-
ative operators P

jhPx; yij2 � hPx; xi hPy; yi ;
we have

jh (t)� h (s)j2 = jh(Et � Es)x; yij2 � h(Et � Es)x; xi h(Et � Es) y; yi
= (u (t)� u (s)) (v (t)� v (s)) ;

which shows that h is S-dominated by the monotonic nondecreasing functions (u; v)
on [m� ";M ] :
Applying Theorem 2 for f; g; h; u and v on [m� ";M ] we have�����

Z M

m�"
f (t) g (t) d (hEtx; yi)

�����
2

(5.11)

�
Z M

m�"
jf (t)j2 d (hEtx; xi)

Z M

m�"
jg (t)j2 d (hEty; yi)

for any x; y 2 H:
Letting "! 0+ in (5.11) and utilizing the representation of continuous functions

of selfadjoint operators, we deduce the desired result (5.10). �

Remark 2. The above inequality can be also proved by using the Schwarz inequality

jhu; vij2 � hu; ui hv; vi

for u = f (U)x and v = g (U) y and utilizing the properties of continuous functional
calculus. The details are omitted.

For the continuous functions f; g : R! C and the selfadjoint operator A de�ne
the functionals

C (f; g;A; x; y)(5.12)

:= hf (A) g (A)x; yi+ hx; yi � hf (A)x; xi
kxk2

� hg (A) y; yi
kyk2

� hg (A) y; yi
kyk2

� hf (A)x; yi � hf (A)x; xi
kxk2

� hf (A)x; yi

and

(5.13) C (f ;A; x) :=
D
jf (A)j2 x; x

E
� jhf (A)x; xij

2

kxk2
(� 0) ;

where x; y 2 H and x; y 6= 0:

Proposition 2. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : Assume that f; g : R! C are continuous on [m;M ] : Then for any
x; y 2 H with x; y 6= 0; we have

(5.14) jC (f; g;A; x; y)j2 � C (f ;A; x)C (g;A; y) :

The proof follows by Theorem 5 by a similar argument to the one from Propo-
sition 1 and we omit the details.
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Now we can de�ne for the continuous functions f; g : [a; b] ! C and the selfad-
joint operator A the following functionals as well:

(5.15) L (f; g;A; x; y) := hx; yi hf (A) g (A)x; yi � hf (A)x; yi hg (A)x; yi ;

(5.16) B(f ;x) := kxk2
D
jf (A)j2 x; x

E
� jhf (A)x; xij2 (� 0)

and

B(f ;x; y) := kyk2
D
jf (A)j2 x; x

E
+ kxk2

D
jf (A)j2 y; y

E
(5.17)

� 2Re
�
hf (A)x; xi



f (A) y; y

��
(� 0) ;

for any x; y 2 H:
Utilising Theorem 5 we can state the following result as well:

Proposition 3. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : Assume that f; g : R! C are continuous on [m;M ] : Then for any
x; y 2 H

(5.18) jL (f; g;A; x; y)j2 � 1

2
[B(f ;x)B(f ;x; y)B(g;x; y)B(g; y)] :

6. Applications for Unitary Operators

Let (H; h�; �i) be a complex Hilbert space. We recall that the bounded linear
operator U : H ! H on the Hilbert space H is unitary i¤ U� = U�1:
It is well known that (see for instance [34, p. 275-p. 276]), if U is a unitary

operator, then there exists a family of projections fE�g�2[0;2�], called the spectral
family of U with the following properties:

a) E� � E� for 0 � � � � � 2�;
b) E0 = 0 and E2� = 1H (the identity operator on H);
c) E�+0 = E� for 0 � � < 2�;
d) U =

R 2�
0
ei�dE� where the integral is of Riemann-Stieltjes type.

Moreover, if fF�g�2[0;2�] is a family of projections satisfying the requirements
a)-d) above for the operator U; then F� = E� for all � 2 [0; 2�] :
Also, for every continuous complex-valued function f : C (0; 1) ! C on the

complex unit circle C (0; 1), we have

(6.1) f (U) =

Z 2�

0

f
�
ei�
�
dE�

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(6.2) f (U)x =

Z 2�

0

f
�
ei�
�
dE�x;

(6.3) hf (U)x; yi =
Z 2�

0

f
�
ei�
�
d hE�x; yi

and

(6.4) kf (U)xk2 =
Z 2�

0

��f �ei����2 d kE�xk2 ;



16 S.S. DRAGOMIR1;2

for any x; y 2 H:

Proposition 4. Let U be a unitary operator on the Hilbert space H: Then for every
continuous complex-valued functions f; g : C (0; 1) ! C on the complex unit circle
C (0; 1), we have

(6.5) jhf (U) g (U)x; yij2 �
D
jf (U)j2 x; x

ED
jg (U)j2 y; y

E
for any x; y 2 H:

Proof. Let fE�g�2[0;2�] be the spectral family of the unitary operator U: For �xed
x; y 2 H de�ne the functions h; u; v : [0; 2�]! C given by

h (t) := hEtx; yi ; u (t) := hEtx; xi and v (t) := hEty; yi :
For t; s 2 [0; 2�] with t > s by utilizing the Schwarz inequality for nonnegative

operators P
jhPx; yij2 � hPx; xi hPy; yi ;

we have

jh (t)� h (s)j2 = jh(Et � Es)x; yij2 � h(Et � Es)x; xi h(Et � Es) y; yi
= (u (t)� u (s)) (v (t)� v (s)) ;

which shows that h is S-dominated by the monotonic nondecreasing functions (u; v)
on [0; 2�] :
Applying Theorem 2 for f

�
ei�
�
; h; u and v on [0; 2�] we have����Z 2�

0

f
�
eit
�
g
�
eit
�
d (hEtx; yi)

����2
�
Z 2�

0

��f �eit���2 d (hEtx; xi)Z 2�

0

��g �eit���2 d (hEty; yi)
for any x; y 2 H:
Utilising the representation of continuous functions of unitary operators, we

deduce the desired result (6.5). �
Remark 3. The interested reader may state some inequalities for functions of
unitary operators that are similar to those incorporated in Proposition 2 and 3.
The details are however omitted.
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[1] A. M. ACU, A. BABOŞ and F. SOFONEA, The mean value theorems and inequalities of
Ostrowski type. Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5�16.

[2] A. M. ACU and F. SOFONEA, On an inequality of Ostrowski type. J. Sci. Arts 2011, no.
3(16), 281�287.

[3] F. AHMAD, N. S. BARNETT and S. S. DRAGOMIR, New weighted Ostrowski and µCeby�ev
type inequalities. Nonlinear Anal. 71 (2009), no. 12, e1408�e1412.

[4] M. W. ALOMARI, A companion of Ostrowski�s inequality with applications. Transylv. J.
Math. Mech. 3 (2011), no. 1, 9�14.

[5] M. W. ALOMARI, M. DARUS, S. S. DRAGOMIR and P. CERONE, Ostrowski type in-
equalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett.
23 (2010), no. 9, 1071�1076.

[6] G. A. ANASTASSIOU, Ostrowski type inequalities. Proc. Amer. Math. Soc. 123 (1995), No.
12, 3775�3781.

[7] G. A. ANASTASSIOU, Univariate Ostrowski inequalities, revisited. Monatsh. Math. 135
(2002), No. 3, 175�189.



INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL 17

[8] G. A. ANASTASSIOU, Ostrowski inequalities for cosine and sine operator functions. Mat.
Vesnik 64 (2012), no. 4, 336�346.

[9] G. A. ANASTASSIOU, Multivariate right fractional Ostrowski inequalities. J. Appl. Math.
Inform. 30 (2012), no. 3-4, 445�454.

[10] G. A. ANASTASSIOU, Univariate right fractional Ostrowski inequalities. Cubo 14 (2012),
no. 1, 1�7.

[11] N. S. BARNETT, W.-S. CHEUNG, S. S. DRAGOMIR and A. SOFO, Ostrowski and trape-
zoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators.
Comput. Math. Appl. 57 (2009), no. 2, 195�201.

[12] N. S. BARNETT and S. S. DRAGOMIR, A perturbed trapezoid inequality in terms of the
fourth derivative. Korean J. Comput. Appl. Math. 9 (2002), no. 1, 45�60.

[13] N. S. BARNETT and S. S. DRAGOMIR, Perturbed version of a general trapezoid inequality.
Inequality theory and applications. Vol. 3, 1�12, Nova Sci. Publ., Hauppauge, NY, 2003.

[14] N. S. BARNETT and S. S. DRAGOMIR, A perturbed trapezoid inequality in terms of the
third derivative and applications. Inequality theory and applications. Vol. 5, 1�11, Nova Sci.
Publ., New York, 2007.

[15] N. S. BARNETT, S. S. DRAGOMIR and I. GOMM, A companion for the Ostrowski and the
generalised trapezoid inequalities. Math. Comput. Modelling 50 (2009), no. 1-2, 179�187.

[16] P. CERONE, W.-S. CHEUNG and S. S. DRAGOMIR, On Ostrowski type inequalities for
Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation.
Comput. Math. Appl. 54 (2007), No. 2, 183�191.

[17] P. CERONE and S.S. DRAGOMIR, Midpoint-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 135�200, Chapman &
Hall/CRC, Boca Raton, FL, 2000.

[18] P. CERONE and S. S. DRAGOMIR, Trapezoidal-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 65�134, Chapman &
Hall/CRC, Boca Raton, FL, 2000.

[19] P. CERONE, S. S. DRAGOMIR and C. E. M. PEARCE, A generalised trapezoid inequality
for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.

[20] X.-L. CHEUNG and J. SUN, A note on the perturbed trapezoid inequality. J. Inequal. Pure
Appl. Math. 3 (2002), no. 2, Article 29, 7 pp. (electronic).

[21] S. S. DRAGOMIR, The Ostrowski inequality for mappings of bounded variation, Bull. Aus-
tral. Math. Soc., 60 (1999), 495-826.

[22] S. S. DRAGOMIR, On the mid-point quadrature formula for mappings with bounded varia-
tion and applications, Kragujevac J. Math., 22 (2000), 13-19.

[23] S. S. DRAGOMIR, On the Ostrowski�s integral inequality for mappings with bounded varia-
tion and applications, Math. Ineq. & Appl., 4(1) (2001), 33-40. Preprint, RGMIA Res. Rep.
Coll. 2(1999), No. 1, Article 7. [Online: http://rgmia.vu.edu.au/v2n1.html].

[24] S. S. DRAGOMIR, On the trapezoid quadrature formula and applications, Kragujevac J.
Math., 23 (2001), 25-36.

[25] S. S. DRAGOMIR, Some inequalities of midpoint and trapezoid type for the Riemann-
Stieltjes integral. Proceedings of the Third World Congress of Nonlinear Analysts, Part 4
(Catania, 2000). Nonlinear Anal. 47 (2001), no. 4, 2333�2340.

[26] S. S. DRAGOMIR, Improvements of Ostrowski and generalised trapezoid inequality in terms
of the upper and lower bounds of the �rst derivative. Tamkang J. Math. 34 (2003), no. 3,
213�222.

[27] S. S. DRAGOMIR, Re�nements of the generalised trapezoid and Ostrowski inequalities for
functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450�460.

[28] S.S. DRAGOMIR, Some inequalities for continuous functions of selfadjoint operators in
Hilbert spaces, Acta Math. Vietnamica, to appear. Preprint RGMIA Res. Rep. Coll.
15(2012), Art. 16. http://rgmia.org/v15.php.

[29] S.S. DRAGOMIR, Inequalities for the Riemann-Stieltjes Integral of S-dominated Integrators
with Applications (I), Preprint RGMIA Res. Rep. Coll. 16(2013),

[30] S.S. DRAGOMIR,Y. J. CHO and Y.-H. KIM, On the trapezoid inequality for the Riemann-
Stieltjes integral with Hölder continuous integrands and bounded variation integrators. In-
equality theory and applications. Vol. 5, 71�79, Nova Sci. Publ., New York, 2007.

[31] S. S. DRAGOMIR and A. MCANDREW, On trapezoid inequality via a Grüss type result
and applications. Tamkang J. Math. 31 (2000), no. 3, 193�201.



18 S.S. DRAGOMIR1;2
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