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ON INTEGRAL FORMS OF SEVERAL INEQUALITIES

LOREDANA CIURDARIU

ABSTRACT. In this paper we give some integral forms of some refinements and
counterparts of Radon’s inequality using recent generalizations.

1. INTRODUCTION

We will recall the inequality of J. Radon which was published in [6].
For every real numbers p > 0, z > 0, ar > 0 for 1 < k < n, we have the
following inequality:

soot (S
—oay T (g ar)?’
In [7], the authors consider two n-tuples a = (a1, as, ..., a,) and b = (b, by, ..., by)
where ab = (a1b1, azba, ..., anb,) and o™ = (af*, ay?, ..., a}"), for any real number m.
Then @ > 0 and b > 0 if a; > 0 and b; > 0 for every 1 < ¢ < n. We consider the
expression:

p > 0.
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for real number p > 1 and for n-tuples a > 0 and b > 0.
Then the well-known Radon’s inequality can be written as:

(1.2) AlPl(a;0) > 0.

Theorem 1. ([7])For everyn > 2, p> 1, a; >0, by, >0, 1 < k < n, the following
inequality hold:

(25) 0 < A (ast) < p (A ait) - ZEE AL )
Zi:l bi
and
(2.6), 0< Agf’] (a;b) < p(M — m)(Mp_1 —mP1) ( bi>
i=1

where m < 3+ < M, fori=1,....n.
It is necessary to recall also Theorem 2.9 and Theorem 2.7 from [7].
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Theorem 2. ([7]) There is the inequality:
(2.19)

0< AP () < +m2225 11bb)p12i_1 ai]”_(M;_vln)P (Z bi> +<Z ot ) |

where m < 3+ <M, a; >0, b; >0, 1<i<n,p>1,n2>2.

Theorem 3. ([7]) For n > 2, p > 1, we have the following inequalities:

p a’ (a; + a;)?
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and

(M
0< AlPl(a;b) < {M”+m” 2:71" } (Zb)

where m < ¢+ < M, a; >, b; >0, 1 <i<n.

We need the following result from [7], which will be used also below, in the next
section.

Theorem 4. If a = (a1, as,...,a,) and b = (b, b, ..., b,) are n-tuples then we have
the inequality:
—1 p—2 ibi —a;ib; 2
(2.13) pi(g n)mb > (aab; — ajbi)” o ba] S <
Zi:l % 1<i<j<n Vg
p(p — 1)MP~? (aibj — a;b:)?
< Al(ap) < PR DM 5 (aidy —agbi)?,
2> i bi 1<i<j<n bib;
where m < Z— M, p>1,a;>0,b;>0, fori=1,...,n

2. INTEGRAL FORMS OF SEVERAL INEQUALITIES

Using the same techniques as in [1] we find the following integral form of the
inequality (2.5) and (2.6) from Theorem 2.3, see [7].
Theorem 5. For everyn >2,p>1, f(z) >0, g(z) >0 and if f,g: [a,b] = Ry
are two continuous functions on [a,b] with m = inf|, ) 1@ = SUPJq ] @) yhen

g(z)”’ g(z)
we have:
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If f,9:[a,b

= =

— R are two integrable functions on [a, b] then
b @y @)
0= [ i (7 o(x) dmpf
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Proof. Let n € N and x), = k + 2
we have

k € {0,1,...,n}. Using Theorem 2.3, see [7]

L (f@))? (Th fa)”
<2 T o o)

n’

<

Sp(i (f(zp))? B (zzzl flzk))P Zk . f($k)( J (f(z k))p:l _(ZZ:1 f(xk))p:l
k=1

() (g S glan) 2= (o

8
ol
N
N
i)
[ V]
]
>3
Ll‘
s
—
N
—

I /\

<

d >p (Tp S
; P (s g

»N”s

(M —m)(MP~! —mP~1) (Zg(wk)>,
k=1

where m < L&) < Af for k=1,..,n
g(zk)
It results that

fP (o (f, Ap,zp))?P
0=0 <9A) T 0 (g Aman)p T

(ol A r))?
(U (g’ An? xk))p_l

(U (97 Ap, xk))p_2

fp (U(f7A’n7(Ek:)p
N e =

< B(M = m) (M7 =)o (g, A, ).

<plolI

_U(f,An,Ik) fp71
o (g, DAy zp) g2

Anvxk) -

An) I‘k) -

and

We considered here o ( L+ Ay, mk) is the corresponding Riemann sum of function

q,f,: , A = (20,21, ..., T,) division, and the intermediate z; points. When n tends

to infinity, in previous inequality the limits become:

b (f(@)P (f) f(x)
o | W@ (P o) dxpl_
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The next result is the integral form of the inequality (2.19) of Theorem 2.9, from
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Theorem 6. Ifp > 1, f and g are two continuous functions f,q : [a,b] — Ry on

a, b], with m = infy, ; M7 M = sup =) then we have:
[a,0] g(z) [a,b] g(z)

P @y, U @)
Og/a (g(f))pfld f g(x dxp 1

b
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: U @) 21 (o)™
Proof. We will use the same techniques as in previous proof, choosing zp = k +
b;“, k€ {0,1,...,n}, using Theorem 2.9, Riemann sum of the corresponding func-
tions, A, = (zo, z1, ..., Zn) division, and the intermediate xj, points. Then when n

tends to infinity, the limits obtained form the inequality from theorem.

The following integral inequality results from Theorem 3.

Consequence 1. Ifp > 1, and [ and g are two continuous functions f,g : [a,b] —

R on [a,b], with g(x) > 0, where m = inf(, y %, M = supp, ) ggg then we have:

og/”éﬂ@pdx (Jy /(@)

g(z))p—t f g(z dxp 1

< {Mp—kmp— (M+m>p] /abg(m)dx,

2r—1

We will give now the integral form of the inequality (2.13), Theorem 2.5, see [7].

Theorem 7. Let f,g : [a,b] = Ry two integrabile function on [a,b] with g(z) >
0, (V) z € [a,b], p > 1 and mg(z) < f(z) < Mg(z), (V) z € [a,b]. Then we have

the inequality:
— p—2 2

" ()" x_(ﬁf(ﬂ@p
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Proof. Using the definition of double integral and taking z = k + =%, y; =
j+ b;—“, ke{0,1,...,n}, j€{0,1,...,m} we have

/b /b ((@)g) — J@)g@)? W
a Ja 9(x)g(y)

= lim f(y])g( ))2 e — o
—nkﬁw§;§; PP (0, )1 = ).
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When n = m tends to infinity

- 2n1Ln;01<Z< (f(:vi)g(!gJE
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and using Theorem 2.5, see [7],
plp — Hm?~! 3 (f(zi)g(z;) = f(xj)g(x:))* (b — a)?
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we obtain

<

that is the inequahty from theorem

If we compute the double integral from previous theorem we deduce the following
inequality:

Consequence 2. Let f,g : [a,b] — Ry two integrabile function on [a,b] with
g(x) >0, (V) z € [a,b], p > 1 and mg(x) < f(z) < Mg(z), (Y) x € [a,b]. Then we
have the inequality:

b 2 btV dr)?
p(p— 1ymP=? ( [ / <$>dx_ (fabf( )>dx) ) ;
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Using from [5], the inequality,

n__p+l n p+1
St L W ()
(Xk=1 an)?

a
k=1 Kk

which is the reverse inequality of (1), and the same techniques as in Theorem 4 we
obtain below the integral form of previous inequality:

Remark 1. Ifa,b € R, a < b, p € (—1,0), f,g : [a,b] — [0,00) are integrable
function on [a,b], g(z) # 0 for any x € [a,b], then

/a W@ = ([ gadny
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