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Abstract

Here we present generalised fractional Hermite-Hadamard type in-
equalities involving m-convexity and (s;m)-convexity. These inequalities
are with respect to generalised Riemann-Liouville fractional integrals. Our
work is motivated by and expands [7] to the greatest generality and all
possible directions.
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1 Background

We use a lot here the following generalised fractional integrals.

De�nition 1 (see also [3, p. 99]) The left and right fractional integrals, respec-
tively, of a function f with respect to given function g are de�ned as follows:
Let a; b 2 R, a < b, � > 0. Here g 2 AC ([a; b]) (absolutely continuous

functions) and is strictly increasing, f 2 L1 ([a; b]). We set�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) f (t) dt; x � a; (1)

clearly
�
I�a+;gf

�
(a) = 0,

and �
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) f (t) dt; x � b; (2)
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clearly
�
I�b�;gf

�
(b) = 0:

When g is the identity function id, we get that I�a+;id = I
�
a+ and I

�
b�;id = I

�
b�

the ordinary left and right Riemann-Liouville fractional integrals, where

�
I�a+f

�
(x) =

1

� (�)

Z x

a

(x� t)��1 f (t) dt, x � a; (3)

�
I�a+f

�
(a) = 0, and

�
I�b�f

�
(x) =

1

� (�)

Z b

x

(t� x)��1 f (t) dt, x � b; (4)

�
I�b�f

�
(b) = 0:

Remark 2 (see also [1]) We observe that

�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1
�
f � g�1

�
(g (t)) g0 (t) dt =

(by change of variable for Lebesgue integrals)

1

� (�)

Z g(x)

g(a)

(g (x)� z)��1
�
f � g�1

�
(z) dz =

�
I�g(a)+

�
f � g�1

��
(g (x)) ; x � a;

(5)
equivalently g (x) � g (a) :
That is in the terms and assumptions of De�nition 1 we get�

I�a+;gf
�
(x) =

�
I�g(a)+

�
f � g�1

��
(g (x)) ; for x � a: (6)

Similarly we observe that

�
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1
�
f � g�1

�
(g (t)) g0 (t) dt

=
1

� (�)

Z g(b)

g(x)

(z � g (x))��1
�
f � g�1

�
(z) dz =

�
I�g(b)�

�
f � g�1

��
(g (x)) ; (7)

for x � b:
That is �

I�b�;gf
�
(x) =

�
I�g(b)�

�
f � g�1

��
(g (x)) ; for x � b: (8)

So by (6) and (8) we have reduced the general fractional integrals to the ordinary
left and right Riemann-Liouville fractional integrals.

When g (x) = ex, x 2 [a; b] we have the application
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De�nition 3 The left and right fractional exponential integrals are de�ned as
follows: Let a; b 2 R, a < b, � > 0, f 2 L1 ([a; b]). We set�

I�a+;exf
�
(x) =

1

� (�)

Z x

a

�
ex � et

���1
etf (t) dt; x � a; (9)

and �
I�b�;exf

�
(x) =

1

� (�)

Z b

x

�
et � ex

���1
etf (t) dt; x � b: (10)

Note 4 We see that�
I�a+;exf

�
(x) =

�
I�ea+ (f � ln)

�
(ex) , x � a; (11)

and �
I�b�;exf

�
(x) =

�
I�eb� (f � ln)

�
(ex) , x � b: (12)

Another example follows:

De�nition 5 Let a; b 2 R, a < b, � > 0, f 2 L1 ([a; b]) ; A > 1. We introduce
the fractional integrals:�

I�a+;Axf
�
(x) =

lnA

� (�)

Z x

a

�
Ax �At

���1
Atf (t) dt; x � a; (13)

and �
I�b�;Axf

�
(x) =

lnA

� (�)

Z b

x

�
At �Ax

���1
Atf (t) dt; x � b: (14)

We are motivated by

Theorem 6 (1881, Hermite-Hadamard inequality, [4]) Let f : I � R ! R be
a convex function on the interval I of real numbers, and a; b 2 I, with a < b.
Then

f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
: (15)

Additionally to the classical convex functions, Toader [6], Hudzik and Ma-
ligranda [2] and Pinheiro [5] generalized the concepts of classical convex func-
tions to the concepts of m-convex function and (s;m)-convex function.

De�nition 7 The function f : [0; b�] ! R is said to be m-convex, where m 2
[0; 1] and b� > 0 if for every x; y 2 [0; b�] and t 2 [0; 1] ; we have

f (tx+m (1� t) y) � tf (x) +m (1� t) f (y) : (16)

De�nition 8 The function f : [0; b�] ! R is said to be (s;m)-convex, where
(s;m) 2 [0; 1]2 and b� > 0; if for every x; y 2 [0; b�] and t 2 [0; 1], we have

f (tx+m (1� t) y) � tsf (x) +m (1� ts) f (y) : (17)
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We need the following list of Lemmas and Theorems from [7].

Lemma 9 Let � > 0, f : [a; b]! R be a twice di¤erentiable mapping on (a; b)
with a < b. If f 00 2 L1 ([a; b]), then

� (�+ 1)

2 (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�
� f

�
a+ b

2

�
=

(b� a)2

2

Z 1

0

m (t) f 00 (ta+ (1� t) b) dt; (18)

where

m (t) =

(
t� 1�(1�t)�+1�t�+1

�+1 , t 2
�
0; 12
�
;

1� t� 1�(1�t)�+1�t�+1
�+1 , t 2

�
1
2 ; 1
�
:

(19)

Lemma 10 Let � > 0, f : [a; b]! R be a twice di¤erentiable mapping on (a; b)
with a < b. If f 00 2 L1 ([a; b]), r > 0, then

f (a) + f (b)

r (r + 1)
+

2

r + 1
f

�
a+ b

2

�
� � (�+ 1)

r (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�
=

(b� a)2
Z 1

0

k (t) f 00 (ta+ (1� t) b) dt; (20)

where

k (t) =

(
1�(1�t)�+1�t�+1

r(�+1) � t
r+1 , t 2

�
0; 12
�
;

1�(1�t)�+1�t�+1
r(�+1) � 1�t

r+1 , t 2
�
1
2 ; 1
�
:

(21)

Lemma 11 Let � > 0, f : [a; b]! R be a twice di¤erentiable mapping on (a; b)
with a < mb � b. If f 00 2 L1 ([a; b]), r > 0, then

f (a) + f (mb)

r (r + 1)
+

2

r + 1
f

�
a+mb

2

�
� � (�+ 1)

r (mb� a)�
�
I�a+f (mb) + I

�
mb�f (a)

�
=

(mb� a)2
Z 1

0

k (t) f 00 (ta+m (1� t) b) dt; (22)

where k (t) is de�ned in (21).

The following fractional m-convex Hermite-Hadamard type inequalities also
come from [7].

Theorem 12 Let f : [0; b�]! R be a twice di¤erentiable mapping with b� > 0,
� > 0. If jf 00jq is measurable and m-convex on

�
a; bm

�
for some �xed q � 1,

0 � a < b and m 2 (0; 1] with b
m � b�, r > 0, then

Hm (f) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1
f

�
a+ b

2

�
� � (�+ 1)

r (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�����
4



� (b� a)2
�

�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�
�

 
jf 00 (a)jq +m

��f 00 � bm���q
2

! 1
q

=: Rm1 (f) : (23)

Theorem 13 Let f : [0; b�]! R be a twice di¤erentiable mapping with b� > 0,
� > 0. If jf 00jq is measurable and m-convex on

�
a; bm

�
for some �xed q > 1,

0 � a < b and m 2 (0; 1] with b
m � b�, r > 0, then

Hm (f) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1
f

�
a+ b

2

�
� � (�+ 1)

r (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�����
� (b� a)2

r (�+ 1)

�
1� 2

p (�+ 1) + 1

� 1
p

 
jf 00 (a)jq +m

��f 00 � bm���q
2

! 1
q

=: Rm2 (f);

(24)
where 1

p +
1
q = 1:

Theorem 14 Let f : [0; b�]! R be a twice di¤erentiable mapping with b� > 0,
� > 0. If jf 00jq is measurable and m-convex on

�
a; bm

�
for some �xed q > 1,

0 � a < b and m 2 (0; 1] with b
m � b�, r > 0, then

Hm (f) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1
f

�
a+ b

2

�
� � (�+ 1)

r (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�����
� (b� a)2

r (�+ 1)

�
q (�+ 1)� 1
q (�+ 1) + 1

� 1
q

 
jf 00 (a)jq +m

��f 00 � bm���q
2

! 1
q

=: Rm3 (f) : (25)

Theorem 15 Let f : [0; b�]! R be a twice di¤erentiable mapping with b� > 0,
� > 0. If jf 00jq is measurable and m-convex on

�
a; bm

�
for some �xed q > 1,

0 � a < b and m 2 (0; 1] with b
m � b�, r > 0, then

Hm (f) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1
f

�
a+ b

2

�
� � (�+ 1)

r (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�����
�
�

2

p+ 1

� 1
p (b� a)2

r + 1

"�
1

2
+

r + 1

r (�+ 1)

�p+1
�
�

r + 1

r (�+ 1)

�p+1# 1
p

�

 
jf 00 (a)jq +m

��f 00 � bm���q
2

! 1
q

=: Rm4 (f) ; (26)

where 1
p +

1
q = 1.
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Theorem 16 Let f : [0; b�]! R be a twice di¤erentiable mapping with b� > 0,
� > 0. If jf 00jq is measurable and m-convex on

�
a; bm

�
for some �xed q > 1,

0 � a < b and m 2 (0; 1] with b
m � b�, r > 0, then

Hm (f) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1
f

�
a+ b

2

�
� � (�+ 1)

r (b� a)�
�
I�a+f (b) + I

�
b�f (a)

�����
�
�

2

q + 1

� 1
q (b� a)2

r + 1

"�
1

2
+

r + 1

r (�+ 1)

�q+1
�
�

r + 1

r (�+ 1)

�q+1# 1
q

�

 
jf 00 (a)jq +m

��f 00 � bm���q
2

! 1
q

=: Rm5 (f) : (27)

The following fractional (s;m)-convex Hermite-Hadamard type inequalities
also come from [7].

Theorem 17 Let f : [0; b]! R be a twice di¤erentiable mapping with 0 � a <
mb � b, � > 0. If jf 00jq is measurable and (s;m)-convex on [a; b] for some �xed
q � 1 and (s;m) 2 (0; 1]2, r > 0, then

Hm
s (f) :=����f (a) + f (mb)r (r + 1)

+
2

r + 1
f

�
a+mb

2

�
� � (�+ 1)

r (mb� a)�
�
I�a+f (mb) + I

�
mb�f (a)

�����
� (mb� a)2

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�1� 1
q

� (28)

�
jf 00 (a)jq I +m jf 00 (b)jq

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)
� I
�� 1

q

=: Rm1s (f) ;

where
I =

1

r (s+ 1) (s+ �+ 2)
� 1

r (�+ 1)
B (s+ 1; �+ 2)

+
1

(r + 1) (s+ 1) (s+ 2)

 
1�

�
1

2

�s+1!
:

Theorem 18 Let f : [0; b]! R be a twice di¤erentiable mapping with 0 � a <
mb � b; � > 0. If jf 00jq is measurable and (s;m)-convex on [a; b] for some �xed
q > 1 and (s;m) 2 (0; 1]2 r > 0, then

Hm
s (f) :=����f (a) + f (mb)r (r + 1)

+
2

r + 1
f

�
a+mb

2

�
� � (�+ 1)

r (mb� a)�
�
I�a+f (mb) + I

�
mb�f (a)

�����
6



� (mb� a)2

r (�+ 1)

�
1� 2

p (�+ 1) + 1

� 1
p
�

1

s+ 1
jf 00 (a)jq + ms

s+ 1
jf 00 (b)jq

� 1
q

(29)

=: Rm2s(f);

where 1
p +

1
q = 1:

Theorem 19 Let f : [0; b]! R be a twice di¤erentiable mapping with 0 � a <
mb � b, � > 0. If jf 00jq is measurable and (s;m)-convex on [a; b] for some �xed
q > 1 and (s;m) 2 (0; 1]2, r > 0, then

Hm
s (f) :=����f (a) + f (mb)r (r + 1)

+
2

r + 1
f

�
a+mb

2

�
� � (�+ 1)

r (mb� a)�
�
I�a+f (mb) + I

�
mb�f (a)

�����
� (mb� a)2

r (�+ 1)

�
jf 00 (a)jq

�
1

s+ 1
� 1

q (s+ 1) + s+ 1
�B (s+ 1; q (�+ 1) + 1)

�
(30)

+m jf 00 (b)jq
�

s

s+ 1
� 2

q (�+ 1) + 1
+

1

q (�+ 1) + s+ 1

+B (s+ 1; q (�+ 1) + 1))] =: Rm3s (f) :

Theorem 20 Let f : [0; b]! R be a twice di¤erentiable mapping with 0 � a <
mb � b, � > 0. If jf 00jq is measurable and (s;m)-convex on [a; b] for some �xed
q > 1 and (s;m) 2 (0; 1]2, r > 0, then

Hm
s (f) :=����f (a) + f (mb)r (r + 1)

+
2

r + 1
f

�
a+mb

2

�
� � (�+ 1)

r (mb� a)�
�
I�a+f (mb) + I

�
mb�f (a)

�����
� (mb� a)2

r + 1

�
2

p+ 1

� 1
p

"�
1

2
+

r + 1

r (�+ 1)

�p+1
�
�

r + 1

r (�+ 1)

�p+1# 1
p

�

�
1

s+ 1
jf 00 (a)jq + ms

s+ 1
jf 00 (b)jq

� 1
q

=: Rm4s (f) ; (31)

where 1
p +

1
q = 1.

Theorem 21 Let f : [0; b]! R be a twice di¤erentiable mapping with 0 � a <
mb � b, � > 0. If jf 00jq is measurable and (s;m)-convex on [a; b] for some �xed
q > 1 and (s;m) 2 (0; 1]2, r > 0, then

Hm
s (f) :=����f (a) + f (mb)r (r + 1)

+
2

r + 1
f

�
a+mb

2

�
� � (�+ 1)

r (mb� a)�
�
I�a+f (mb) + I

�
mb�f (a)

�����
7



� (mb� a)2

r + 1

"
jf 00 (a)jqH +m jf 00 (b)jq

 
2

q + 1

�
1

2
+

r + 1

r (�+ 1)

�q+1

� 2

q + 1

�
r + 1

r (�+ 1)

�q+1
�H

!#
=: Rm5s (f) ; (32)

where

H =

Z 1
2

0

�
r + 1

r (�+ 1)
+ t

�q
tsdt+

Z 1

1
2

�
r + 1

r (�+ 1)
+ 1� t

�q
tsdt: (33)

The aim of this article is to extend the results of [7] to generalized frac-
tional integrals (1) and (2), in particular to fractional exponential integrals (9),
(10) and to fractional trigonometric integrals (60), (61). That is to produce
very general fractional m-convex and (s;m)-convex Hermite-Hadamard type
inequalities.

2 Main Results

Combining Theorems 12-16 we get the following m-convex Hermite-Hadamard
type inequality.

Theorem 22 Let f : [0; b�]! R be a twice di¤erentiable mapping with b� > 0,
� > 0. If jf 00jq is measurable and m-convex on

�
a; bm

�
for some �xed q > 1,

0 � a < b and m 2 (0; 1] with b
m � b�, r > 0, then

Hm (f) � min fRm1 (f) ; Rm2 (f) ; Rm3 (f) ; Rm4 (f) ; Rm5 (f)g : (34)

Combining Theorems 17-21 we obtain the following (s;m)-convex Hermite-
Hadamard type inequality.

Theorem 23 Let f : [0; b]! R be a twice di¤erentiable mapping with 0 � a <
mb � b, � > 0. If jf 00jq is measurable and (s;m)-convex on [a; b] for some �xed
q > 1 and (s;m) 2 (0; 1]2, r > 0, then

Hm
s (f) � min fRm1s (f) ; Rm2s (f) ; Rm3s (f) ; Rm4s (f) ; Rm5s (f)g : (35)

Next we generalize Lemmas 9-11.

Lemma 24 Let � > 0, a < b, f 2 C ([a; b]), g 2 C1 ([a; b]), g strictly in-
creasing on [a; b],

�
f � g�1

�
is twice di¤erentiable function on (g (a) ; g (b)) with�

f � g�1
�00 2 L1 ([g (a) ; g (b)]). Then
� (�+ 1)

2 (g (b)� g (a))�
�
I�a+;gf (b) + I

�
b�;gf (a)

�
�
�
f � g�1

��g (a) + g (b)
2

�
=

8



(g (b)� g (a))2

2

Z 1

0

m (t)
�
f � g�1

�00
(tg (a) + (1� t) g (b)) dt; (36)

where m (t) as in (19).

Lemma 25 Let all as in Lemma 24, r > 0. Then

f (a) + f (b)

r (r + 1)
+

2

r + 1

�
f � g�1

��g (a) + g (b)
2

�

� � (�+ 1)

r (g (b)� g (a))�
�
I�a+;gf (b) + I

�
b�;gf (a)

�
= (g (b)� g (a))2

Z 1

0

k (t)
�
f � g�1

�00
(tg (a) + (1� t) g (b)) dt; (37)

where k (t) as in (21).

Lemma 26 Let all as Lemma 25, with g (a) < mg (b) � g (b). Then

f (a) +
�
f � g�1

�
(mg (b))

r (r + 1)
+

2

r + 1

�
f � g�1

��g (a) +mg (b)
2

�

� � (�+ 1)

r (mg (b)� g (a))�
h
I�g(a)+

�
f � g�1

�
(mg (b)) + I�mg(b)�

�
f � g�1

�
(g (a))

i
= (mg (b)� g (a))2

Z 1

0

k (t)
�
f � g�1

�00
(tg (a) +m (1� t) g (b)) dt; (38)

where k (t) as in (21).

We apply Lemmas 24-26 to g (x) = ex:

Lemma 27 Let � > 0, a < b, f 2 C ([a; b]), (f � ln) is twice di¤erentiable
function on

�
ea; eb

�
with (f � ln)00 2 L1

��
ea; eb

��
. Then

� (�+ 1)

2 (eb � ea)�
�
I�a+;exf (b) + I

�
b�;exf (a)

�
� (f � ln)

�
ea + eb

2

�
=

�
eb � ea

�2
2

Z 1

0

m (t) (f � ln)00
�
tea + (1� t) eb

�
dt; (39)

where m (t) as in (19).

Lemma 28 Let all as in Lemma 27, r > 0. Then

f (a) + f (b)

r (r + 1)
+

2

r + 1
(f � ln)

�
ea + eb

2

�
� � (�+ 1)

r (eb � ea)�
�
I�a+;exf (b) + I

�
b�;exf (a)

�
=
�
eb � ea

�2 Z 1

0

k (t) (f � ln)00
�
tea + (1� t) eb

�
dt; (40)

where k (t) as in (21).
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Lemma 29 Let all as in Lemma 28, with ea < meb � eb. Then

f (a) + (f � ln)
�
meb

�
r (r + 1)

+
2

r + 1
(f � ln)

�
ea +meb

2

�

� � (�+ 1)

r (meb � ea)�
�
I�ea+ (f � ln)

�
meb

�
+ I�meb� (f � ln) (e

a)
�

=
�
meb � ea

�2 Z 1

0

k (t) (f � ln)00
�
tea + (1� t) eb

�
dt; (41)

where k (t) as in (21).

We need

Notation 30 We denote by

Hm (f; g) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1

�
f � g�1

��g (a) + g (b)
2

�
�

� (�+ 1)

r (g (b)� g (a))�
�
I�a+;gf (b) + I

�
b�;gf (a)

����� ; (42)

Rm1 (f; g) := (g (b)� g (a))
2

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�
�

0@
����f � g�1�00 (g (a))���q +m ����f � g�1�00 � g(b)m ����q

2

1A
1
q

; (43)

Rm2 (f; g) :=
(g (b)� g (a))2

r (�+ 1)

�
1� 2

p (�+ 1) + 1

� 1
p

�

0@
����f � g�1�00 (g (a))���q +m ����f � g�1�00 � g(b)m ����q

2

1A
1
q

; (44)

where 1
p +

1
q = 1,

Rm3 (f; g) :=
(g (b)� g (a))2

r (�+ 1)

�
q (�+ 1)� 1
q (�+ 1) + 1

� 1
q

�

0@
����f � g�1�00 (g (a))���q +m ����f � g�1�00 � g(b)m ����q

2

1A
1
q

; (45)

Rm4 (f; g) :=

�
2

p+ 1

� 1
p (g (b)� g (a))2

r + 1

"�
1

2
+

r + 1

r (�+ 1)

�p+1
�

10



�
�

r + 1

r (�+ 1)

�p+1# 1
p

0@
����f � g�1�00 (g (a))���q +m ����f � g�1�00 � g(b)m ����q

2

1A
1
q

;

(46)
where 1

p +
1
q = 1;

and

Rm5 (f; g) :=

�
2

q + 1

� 1
q (g (b)� g (a))2

r + 1

"�
1

2
+

r + 1

r (�+ 1)

�q+1
�

�
r + 1

r (�+ 1)

�q+1# 1
q

0@
����f � g�1�00 (g (a))���q +m ����f � g�1�00 � g(b)m ����q

2

1A
1
q

: (47)

We present the following fractional generalisedm-convex Hermite-Hadamard
type inequality.

Theorem 31 Let all as in Notation 30. Here � > 0, b� > 0, f 2 C ([0; b�]),
g 2 C1 ([0; b�]), g is strictly increasing on [0; b�] with g (0) = 0. Assume that

f � g�1 : [0; g (b�)] ! R is twice di¤erentiable mapping. If
����f � g�1�00���q is

measurable and m-convex on
h
g (a) ; g(b)m

i
for some �xed q > 1, 0 � a < b � b�

and m 2 (0; 1] with g(b)
m � g (b�), r > 0, then

Hm (f; g) � min fRm1 (f; g) ; Rm2 (f; g) ; Rm3 (f; g) ; Rm4 (f; g) ; Rm5 (f; g)g :
(48)

Proof. By Theorem 22.
We need

Notation 32 We denote by

Hm
s (f; g) :=

�����f (a) +
�
f � g�1

�
(mg (b))

r (r + 1)
+

2

r + 1

�
f � g�1

��g (a) +mg (b)
2

�
�

� (�+ 1)

r (mg (b)� g (a))�
h
I�g(a)+

�
f � g�1

�
(mg (b)) + I�mg(b)�

�
f � g�1

�
(g (a))

i���� ;
(49)

Rm1s (f; g) := (mg (b)� g (a))
2

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�1� 1
q

�h����f � g�1�00 (g (a))���q I +m ����f � g�1�00 (g (b))���q � (50)�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)
� I
�� 1

q

;

11



where
I :=

1

r (s+ 1) (s+ �+ 2)
� 1

r (�+ 1)
B (s+ 1; �+ 2)

+
1

(r + 1) (s+ 1) (s+ 2)

 
1�

�
1

2

�s+1!
; (51)

Rm2s (f; g) :=
(mg (b)� g (a))2

r (�+ 1)

�
1� 2

p (�+ 1) + 1

� 1
p

�

�
1

s+ 1

����f � g�1�00 (g (a))���q + ms

s+ 1

����f � g�1�00 (g (b))���q� 1
q

; (52)

where 1
p +

1
q = 1,

Rm3s (f; g) :=
(mg (b)� g (a))2

r (�+ 1)

�����f � g�1�00 (g (a))���q � 1

s+ 1
� 1

q (�+ 1) + s+ 1

�B (s+ 1; q (�+ 1) + 1)) +m
����f � g�1�00 (g (b))���q � s

s+ 1
� 2

q (�+ 1) + 1
(53)

+
1

q (�+ 1) + s+ 1
+B (s+ 1; q (�+ 1) + 1)

��
;

Rm4s (f; g) :=
(mg (b)� g (a))2

r + 1

�
2

p+ 1

� 1
p

"�
1

2
+

r + 1

r (�+ 1)

�p+1
�

�
r + 1

r (�+ 1)

�p+1# 1
p �

1

s+ 1

����f � g�1�00 (g (a))���q + ms

s+ 1

����f � g�1�00 (g (b))���q� 1
q

;

(54)
where 1

p +
1
q = 1;

and

Rm5s (f; g) :=
(mg (b)� g (a))2

r + 1

h����f � g�1�00 (g (a))���qH +m
����f � g�1�00 (g (b))���q � 

2

q + 1

�
1

2
+

r + 1

r (�+ 1)

�q+1
� 2

q + 1

�
r + 1

r (�+ 1)

�q+1
�H

!#
; (55)

where

H =

Z 1
2

0

�
r + 1

r (�+ 1)
+ t

�q
tsdt+

Z 1

1
2

�
r + 1

r (�+ 1)
+ 1� t

�q
tsdt: (56)

Next we present a fractional generalised (s;m)-convex Hermite-Hadamard
type inequality.

12



Theorem 33 Here all as in Notation 32. Let � > 0, b > 0, f 2 C ([0; b]),
g 2 C1 ([0; b]), g is strictly increasing on [0; b] with g (0) = 0. Assume that
f �g�1 : [0; g (b)]! R is twice di¤erentiable mapping, with 0 � g (a) < mg (b) �
g (b), a 2 [0; b]. If

����f � g�1�00���q is measurable and (s;m)-convex on [g (a) ; g (b)]
for some �xed q > 1 and (s;m) 2 (0; 1]2, r > 0, then

Hm
s (f; g) � min fRm1s (f; g) ; Rm2s (f; g) ; Rm3s (f; g) ; Rm4s (f; g) ; Rm5s (f; g)g :

(57)

Proof. By Theorem 23.
The case q = 1 is met separately.

Proposition 34 Here Hm (f; g) as in (42) of Notation 30. The rest of the
assumptions as in Theorem 31 with q = 1. Then

Hm (f; g) � (g (b)� g (a))2
�

�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�
�

0@
����f � g�1�00 (g (a))���+m ����f � g�1�00 � g(b)m ����

2

1A : (58)

Proof. By Theorem 12.

Proposition 35 Here Hm
s (f; g) as in (49) of Notation 32. The rest of the

assumptions as in Theorem 33 with q = 1. Then

Hm
s (f; g) � (mg (b)� g (a))

2
h����f � g�1�00 (g (a))��� I +m ����f � g�1�00 (g (b))��� ��
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)
� I
��
; (59)

where I as in (51).

Proof. By Theorem 17.
We need

De�nition 36 Let a; b 2
�
0; �2

�
, a < b, � > 0, f 2 L1 ([a; b]). We consider

the left and right fractional trigonometric integrals of f with respect to sine
function denoted by sin :�

I�a+;sinf
�
(x) =

1

� (�)

Z x

a

(sinx� sin t)��1 cos tf (t) dt; x � a; (60)

and �
I�b�;sinf

�
(x) =

1

� (�)

Z b

x

(sin t� sinx)��1 cos tf (t) dt; x � b: (61)

13



We need

Notation 37 We denote by

Hm
� (f; sin) :=

����f (a) + f (b)r (r + 1)
+

2

r + 1

�
f � sin�1

�� sin (a) + sin (b)
2

�
�

� (�+ 1)

r (sin (b)� sin (a))�
�
I�a+;sinf (b) + I

�
b�;sinf (a)

����� ; (62)

Rm1� (f; sin) := (sin (b)� sin (a))
2

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�
�

0@
����f � sin�1�00 (sin (a))���q +m ����f � sin�1�00 � sin(b)m

����q
2

1A
1
q

; (63)

Rm2� (f; sin) :=
(sin (b)� sin (a))2

r (�+ 1)

�
1� 2

p (�+ 1) + 1

� 1
p

�

0@
����f � sin�1�00 (sin (a))���q +m ����f � sin�1�00 � sin(b)m

����q
2

1A
1
q

; (64)

where 1
p +

1
q = 1,

Rm3� (f; sin) :=
(sin (b)� sin (a))2

r (�+ 1)

�
q (�+ 1)� 1
q (�+ 1) + 1

� 1
q

�

0@
����f � sin�1�00 (sin (a))���q +m ����f � sin�1�00 � sin(b)m

����q
2

1A
1
q

; (65)

Rm4� (f; sin) :=

�
2

p+ 1

� 1
p (sin (b)� sin (a))2

r + 1

"�
1

2
+

r + 1

r (�+ 1)

�p+1
�

�
r + 1

r (�+ 1)

�p+1# 1
p

0@
����f � sin�1�00 (sin (a))���q +m ����f � sin�1�00 � sin(b)m

����q
2

1A
1
q

;

(66)
where 1

p +
1
q = 1;

and

Rm5� (f; sin) :=

�
2

q + 1

� 1
q (sin (b)� sin (a))2

r + 1

"�
1

2
+

r + 1

r (�+ 1)

�q+1
�

14



�
r + 1

r (�+ 1)

�q+1# 1
q

0@
����f � sin�1�00 (sin (a))���q +m ����f � sin�1�00 � sin(b)m

����q
2

1A
1
q

:

(67)

We present the following fractional generalisedm-convex Hermite-Hadamard
type inequality for sin function. So here g (x) = sin (x), x 2

�
0; �2

�
:

Theorem 38 Let all as in Notation 37. Here � > 0, f 2 C
��
0; �2

��
. Assume

that f � sin�1 : [0; 1] ! R is twice di¤erentiable mapping. If
����f � sin�1�00���q is

measurable andm-convex on
h
sin (a) ; sin(b)m

i
for some �xed q > 1, 0 � a < b � �

2

and m 2 (0; 1] with sin (b) � m, r > 0, then

Hm
� (f; sin) �

min fRm1� (f; sin) ; Rm2� (f; sin) ; Rm3� (f; sin) ; Rm4� (f; sin) ; Rm5� (f; sin)g : (68)

Proof. By Theorem 31.
We need

Notation 39 We denote by

Hm
s� (f; sin) :=

�����f (a) +
�
f � sin�1

�
(m sin (b))

r (r + 1)
+

2

r + 1

�
f � sin�1

�� sin (a) +m sin (b)
2

�
� � (�+ 1)

r (m sin (b)� sin (a))� �h
I�sin(a)+

�
f � sin�1

�
(m sin (b)) + I�m sin(b)�

�
f � sin�1

�
(sin (a))

i��� ; (69)

Rm1s� (f; sin) := (m sin (b)� sin (a))
2

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�1� 1
q

�h����f � sin�1�00 (sin (a))���q I +m ����f � sin�1�00 (sin (b))���q � (70)�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)
� I
�� 1

q

;

where
I :=

1

r (s+ 1) (s+ �+ 2)
� 1

r (�+ 1)
B (s+ 1; �+ 2)

+
1

(r + 1) (s+ 1) (s+ 2)

 
1�

�
1

2

�s+1!
; (71)

15



Rm2s� (f; sin) :=
(m sin (b)� sin (a))2

r (�+ 1)

�
1� 2

p (�+ 1) + 1

� 1
p

�

�
1

s+ 1

����f � sin�1�00 (sin (a))���q + ms

s+ 1

����f � sin�1�00 (sin (b))���q� 1
q

; (72)

where 1
p +

1
q = 1,

Rm3s� (f; sin) :=

(m sin (b)� sin (a))2

r (�+ 1)

�����f � sin�1�00 (sin (a))���q � 1

s+ 1
� 1

q (�+ 1) + s+ 1

�B (s+ 1; q (�+ 1) + 1)) +m
����f � sin�1�00 (sin (b))���q � s

s+ 1
� 2

q (�+ 1) + 1
(73)

+
1

q (�+ 1) + s+ 1
+B (s+ 1; q (�+ 1) + 1)

��
;

Rm4s� (f; sin) :=
(m sin (b)� sin (a))2

r + 1

�
2

p+ 1

� 1
p

"�
1

2
+

r + 1

r (�+ 1)

�p+1
�

�
�

r + 1

r (�+ 1)

�p+1# 1
p �

1

s+ 1

����f � sin�1�00 (sin (a))���q +
ms

s+ 1

����f � sin�1�00 (sin (b))���q� 1
q

; (74)

where 1
p +

1
q = 1;

and
Rm5s� (f; sin) :=

(m sin (b)� sin (a))2

r + 1

h����f � sin�1�00 (sin (a))���qH +m
����f � sin�1�00 (sin (b))���q � 

2

q + 1

�
1

2
+

r + 1

r (�+ 1)

�q+1
� 2

q + 1

�
r + 1

r (�+ 1)

�q+1
�H

!#
; (75)

where

H =

Z 1
2

0

�
r + 1

r (�+ 1)
+ t

�q
tsdt+

Z 1

1
2

�
r + 1

r (�+ 1)
+ 1� t

�q
tsdt: (76)

Next we present a fractional generalised (s;m)-convex Hermite-Hadamard
type inequality involving g (x) = sinx, x 2

�
0; �2

�
.
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Theorem 40 Here all as in Notation 39. Let � > 0, a; b 2
�
0; �2

�
, a < b,

f 2 C ([0; b]). Assume that f � sin�1 : [0; sin (b)] ! R is twice di¤erentiable

mapping, with 0 � sin (a) < m sin (b) � sin (b). If
����f � sin�1�00���q is measurable

and (s;m)-convex on [sin (a) ; sin (b)] for some �xed q > 1 and (s;m) 2 (0; 1]2,
r > 0, then

Hm
s� (f; sin) �

min fRm1s� (f; sin) ; Rm2s� (f; sin) ; Rm3s� (f; sin) ; Rm4s� (f; sin) ; Rm5s� (f; sin)g :
(77)

Proof. By Theorem 33.
Finally we treat the case of q = 1 when g (x) = sinx, x 2

�
0; �2

�
:

Proposition 41 Here Hm
� (f; sin) as in (62) of Notation 37. The rest of the

assumptions as in Theorem 38 with q = 1. Then

Hm
� (f; sin) � (sin (b)� sin (a))

2

�
�

r (�+ 1) (�+ 2)
+

1

4 (r + 1)

�
�

0@
����f � sin�1�00 (sin (a))���+m ����f � sin�1�00 � sin(b)m

����
2

1A : (78)

Proof. By Proposition 34.

Proposition 42 Here Hm
s� (f; sin) as in (69) of Notation 39. The rest of the

assumptions as in Theorem 40 with q = 1. Then

Hm
s� (f; sin) � (m sin (b)� sin (a))

2
h����f � sin�1�00 (sin (a))��� I+

m
����f � sin�1�00 (sin (b))��� � �

r (�+ 1) (�+ 2)
+

1

4 (r + 1)
� I
��
; (79)

where I as in (51).

Proof. By Proposition 35.

References

[1] G.A. Anastassiou, The reduction method in fractional Calculus and frac-
tional Ostrowski type inequalities, submitted 2013.

[2] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequa-
tiones Math. 48 (1994), 100-111.

17



[3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of
Fractional Di¤erential Equations, vol. 204 of North-Holland Mathematics
Studies, Elsevier, New York, NY, USA, 2006.

[4] D.S. Mitrinovíc, I.B. Lackovíc, Hermite and convexity, Aequationes Math.,
28 (1985), 229-232.

[5] M.R. Pinheiro, Exploring the concept of s-convexity, Aequat. Math., 74
(2007), 201-209.

[6] G.H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx.
Optim., (1984), 329-338.

[7] Yuruo Zhang, Jin RongWang, On some New Hermite-Hadamard inequalities
involving Riemann-Liouville Fractional Integrals, Journal of Inequalities and
Applications, 2013, 2013: 220, doi: 10.1186 / 1029-242X-2013-220.

18


