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Abstract
Here we present generalised fractional Hermite-Hadamard type in-
equalities involving m-convexity and (s, m)-convexity. These inequalities
are with respect to generalised Riemann-Liouville fractional integrals. Our
work is motivated by and expands [7] to the greatest generality and all
possible directions.
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1 Background

We use a lot here the following generalised fractional integrals.

Definition 1 (see also [3, p. 99]) The left and right fractional integrals, respec-
tively, of a function f with respect to given function g are defined as follows:

Let a,b € R, a < b, @« > 0. Here g € AC ([a,b]) (absolutely continuous
functions) and is strictly increasing, f € Lo ([a,b]). We set

(Ig+;gf) (z) = ﬁ

clearly (Igj_;gf) (a) =0,
and
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clearly (Ig‘_;gf) (b) =0.
When g is the identity function id, we get that Iy e =10y and Iy = I
the ordinary left and right Riemann-Liouville fractional integrals, where

« _ 1 * a—1
(12:0) @) =51 [ @=0" " F @i w2 )
(12, f) (a) =0, and
N 1 ae
(I f) (z) = TO&)A (t—2)* ' f(t)dt, x<b, (4)

(Ilfif) (b) = 0.
Remark 2 (see also [1]) We observe that

(I:+;gf) (z) = %

a)

[ 6@ =-g@)" (rog) (g @) @de =

(by change of variable for Lebesgue integrals)

1 g(x) ol B § »
F(Oé)/g(a) (g(@)—2)"" (fog ') (2)dz= (Ig(a)+ (fog )) (¢(z)), =>a,

()
equivalently g (x) > g (a).
That is in the terms and assumptions of Definition 1 we get
(12100) @) = (Iiays (Fo97) (9(@),  fore>a. (6)

Similarly we observe that

(50) @) = 0 | @) =g @) (Fog ) (9o ()
rmel T Ty ), YT 9 )®)g
1 g(b) o B X »
:w/g(m) (=g @) (fos™) (2 dz = (I (Fog™)) 9@), ()
for x <b.
That is

(1)) (@) = (Igy- (Fog™)) (9 (@), forz<b. (8)

So by (6) and (8) we have reduced the general fractional integrals to the ordinary
left and right Riemann-Liouville fractional integrals.

When g (z) = e, z € [a, b] we have the application



Definition 3 The left and right fractional exponential integrals are defined as
follows: Let a,b € R, a <b, a >0, f € L ([a,b]). We set

« _ 1 N T no—1 4
(I f) (x)—m/a (" —e")" e f(t)dt, z>a, 9)
and X ,
a _ t soe—1 ¢
(Ib,;ewf) (z) = F(a)/gg (e"—€")" e f(t)ydt, z<b. (10)
Note 4 We see that
(124 f) (@) = (I8, (Fo) (), @ >a, (1)
and
(I e ) (@) = (IS (f o) (%), @ <. (12)

Another example follows:

Definition 5 Let a,b € R, a<b, a >0, f € Ly ([a,b]), A > 1. We introduce
the fractional integrals:

(Iga-f) (2) = lln(;j) /m (A* — AN At F(ydt, w>a,  (13)
and A
(I ax f) (z) = ﬁ/ (A'— A7) ThAtF(ydt, @ <b. (14)

We are motivated by

Theorem 6 (1881, Hermite-Hadamard inequality, [4]) Let f : I C R — R be
a convex function on the interval I of real numbers, and a,b € I, with a < b.

Then
f(““’)s ! /bf(t)dtsf(aHf(b). (15)

2 b—a 2

Additionally to the classical convex functions, Toader [6], Hudzik and Ma-
ligranda [2] and Pinheiro [5] generalized the concepts of classical convex func-
tions to the concepts of m-convex function and (s, m)-convex function.

Definition 7 The function f : [0,b*] — R is said to be m-convez, where m €
[0,1] and b* > 0 if for every z,y € [0,b*] and t € [0,1], we have

flr+m A —t)y) <tf(x)+m(1—1t)f(y). (16)

Definition 8 The function f : [0,0*] — R is said to be (s, m)-convex, where
(s,m) € [0,1]* and b* > 0, if for every z,y € [0,b*] and t € [0,1], we have

fltz+m 1 =t)y) <t°f () +m (1 —-1°) f(y). (17)



We need the following list of Lemmas and Theorems from [7].

Lemma 9 Let a >0, f:[a,b] — R be a twice differentiable mapping on (a,b)
with a < b. If "' € Ly ([a,b]), then

T(a+1 b
M (I f )+ I f (a)] — f (“; ) =
2 1
(b—2a) /m(t)f”(ta+(1—t)b)dt, (18)
0
where 1 (1—p)o+t 1
R e O
m(t)—{l_t_l—u—g:—t““, te s 1). 19

Lemma 10 Leta >0, f: [a,b] — R be a twice differentiable mapping on (a,b)
with a < b. If "' € Ly ([a,b]), r > 0, then

f(a)+f(b)+ 2 f<a+b) ~ T(a+1)

(12 f (0) + I f (a)] =

r(r+1) r+1 2 r(b—a)®
1
(b—a)? / k() £ (ta+ (1—£)b) dt, (20)
0
where (1oget N
1o (1—p)at1_gatl ' 1
L T (A
o) = { e, e ) o
r(a+1) T orf1e te [5’ 1) .

Lemma 11 Leta >0, f: [a,b] — R be a twice differentiable mapping on (a,b)
with a <mb < b. If f" € Ly ([a,b]), r > 0, then

f(a)+ f(mb) 2 a+ mb I'a+1)
r(r+1) +T+1< 2 )r(mb—a)a

(124 f (mb) + 15, f (a)] =

(mb — a)z/lk(t) F" (ta +m (1 —t)b)dt, (22)
0
where k (t) is defined in (21).

The following fractional m-convex Hermite-Hadamard type inequalities also
come from [7].

Theorem 12 Let f:[0,b*] — R be a twice differentiable mapping with b* > 0,
a > 0. If |f"|? is measurable and m-convex on [a, %} for some fized ¢ > 1,
0<a<bandme (0,1] with%ﬁb*,r>0, then

fla)+ (), 2

H™(f) = r(r+1) +7’+1f(

) S 0+ 55 @)



2 @ 1
<(b-a) (T(a+1)(a+2)+4(r+1))'

@I +m|f (BN
( : = R (f). (23)

Theorem 13 Let f:[0,b*] — R be a twice differentiable mapping with b* > 0,
o > 0. If |[f"|* is measurable and m-conver on |a, %} for some fized q > 1,
0<a<bandme (0,1] with £ <b*, r >0, then

()= [FOLED 2 (U5 - B s w4 1 @)

r+1 2 r(b—a)”
(b — o)’ > NP (1@ ml @
<rin (o) ( 2 B

1,1 _
where;—kg—l.

Theorem 14 Let f:[0,b*] — R be a twice differentiable mapping with b* > 0,
o > 0. If |[f"|* is measurable and m-conver on |a, %} for some fized q¢ > 1,
0<a<bandme (0,1] with £ <b*, r >0, then

()= (PO LT 2 (450 - T D s 0+ 1 s )

(b-a? (qa+) -1\ (17 @ +m]f (D) _ .
S7~(OHL1) (q(a+1)+1> ( 2 = B (J).(25)

Theorem 15 Let f:[0,b*] — R be a twice differentiable mapping with b* > 0,
o > 0. If |[f"|" is measurable and m-convez on |a, %} for some fixed q > 1,
0<a<bandme (0,1] with%ﬁb*,r>0, then

H77L(f)::'f£a()riﬁ§b)+ 2 f(a+b>_F(a+1) [Ig+f(b)+fl§*f(a)}’

r+1 2 (b —a)”
2 \r-a [(1 r+1 NN/ ra1 K
<<p—|—1> r+1 (2+r(a—|—1)> (T(a+1)>
e+ m | £ (2|9 a

1,1 _
whereg—i—a—l.



Theorem 16 Let f:[0,b*] — R be a twice differentiable mapping with b* > 0,
o > 0. If |f"|* is measurable and m-convezr on |a, %} for some fized q¢ > 1,
0<a<bandme (0,1] with%ﬁb*,r>0, then

()= [HO L0 2 (00 Tt D 0+ 1 g @)

r+1 2 r(b—a)
2 \i(b—a)? (1 r1 "M ri1 ™7
(1) 5T |Gresn) - Garn) ] |
e+ m | £ (2|9 v
(If (a)] +2 " (5)] ) = RI"(f). (27)

The following fractional (s, m)-convex Hermite-Hadamard type inequalities
also come from [7].

Theorem 17 Let f:[0,b] — R be a twice differentiable mapping with 0 < a <
mb < b, a>0. If | f"|? is measurable and (s, m)-convex on [a,b] for some fived
q>1 and (s,m) € (0,1]%, r > 0, then

HT (f) =
f(a) + f (mb) 2 a+mb T(a+1) o o
’ r(r+1) + r+1 < 2 ) o (mb—a)” (& £ (mb) +I’mb_f(a)]‘
2 (0% 1 1_5
< (mb—a) <r(a+1)(a+2)+4(r+1)> ’ (28)

W%@WIwﬂﬂww(Ma+§m+m+4wimIﬂ34 ).

where 1 1
I= — B(s+1l,aa+2
r(s+1)(s+a+2) r(a+1) ( )

1 1 s+1
I DG )61 (1_ (2) )

Theorem 18 Let f:[0,b] — R be a twice differentiable mapping with 0 < a <
mb < b, a>0. If | f"|? is measurable and (s, m)-convex on [a,b] for some fived
q>1 and (s,m) € (0,112 r > 0, then

H (f) =

O N ey




(mb—a)2 2 % 1 " q ms " AN
= r(o+1) (1_p(a+1)+1) (s+1|f (o)l +s+71|f <b)) (29)
=: R3;(f),

1,1 _
where;—l—afl.

Theorem 19 Let f:[0,b] — R be a twice differentiable mapping with 0 < a <
mb <b, a>0. If |f"|* is measurable and (s, m)-convex on [a,b] for some fived
q>1 and (s,m) € (0,1)%, r > 0, then

H (f) =
f(a) + f (mb) 2 a+mb Lla+1) (o, o
’ r(r+1) +7"+1 < 2 )_T(mba)a [I‘H'f(mb)—i_lmb_ (a)]‘
(mb—a)2 " q 1 1
S latl) {If (a)] (S+1—q(8+1)+8+1—B(s+1,q(a+1)+1()20)
s 2 1

+m 1" b Q( _ +
770l s+1 gqa+1)+1 qla+1)+s+1
+B(s+1Lq(a+1)+1))] = Ry (f).
Theorem 20 Let f:[0,b] — R be a twice differentiable mapping with 0 < a <

mb < b, a> 0. If |f”|* is measurable and (s, m)-convex on [a,b] for some fived
q>1 and (s,m) € (0,1]%, r > 0, then

HI" (f) =
’f(i)(:ﬁ;nb) Tilf <a+2mb) - T?ﬂ(;:;a (12, f (mb) +If,§bf(a)]‘
) ) )]
<si1 7@+ 21 (b>|q); = R} (f), (31)

1,1 _
where;—ka—l.

Theorem 21 Let f:]0,b] — R be a twice differentiable mapping with 0 < a <
mb < b, a> 0. If | f"|? is measurable and (s, m)-convex on [a,b] for some fived
q>1and (s,m) € (0,1]%, r > 0, then

HI (f) =

f(a)+ f(mb) 2 a+mb I'(a+1)
r(r+1) +r+1f< 2 )_r(mb—a)

« (L0 f (mb) + I, f (a)]



r+1 qg+1 r(a+1

2 q+1
2 (7‘+1> _ 5
g+1\r(a+1)
where

r+1 e Yor+1 a
H= : ———— +1—t] t°dt.
/ ( a1 D) t) tdt+/% (T(a+1)+ t) t°dt (33)

The aim of this article is to extend the results of [7] to generalized frac-

(mb—a)* | 0 w2 (L, _r+l \"
< [f (@' 1+ mf (b)( (347555

= Ry (f), (32)

tional integrals (1) and (2), in particular to fractional exponential integrals (9),
(10) and to fractional trigonometric integrals (60), (61). That is to produce
very general fractional m-convex and (s, m)-convex Hermite-Hadamard type
inequalities.

2 Main Results

Combining Theorems 12-16 we get the following m-convex Hermite-Hadamard
type inequality.

Theorem 22 Let f:[0,b*] — R be a twice differentiable mapping with b* > 0,
o > 0. If |[f"|" is measurable and m-convez on [a, %} for some fized q > 1,
0<a<bandme (0,1] with%ﬁb*,r>0, then

H™ (f) <min{R" (f), Ry (f), B3" (f), Ry (f), Rg" (f)} - (34)

Combining Theorems 17-21 we obtain the following (s, m)-convex Hermite-
Hadamard type inequality.

Theorem 23 Let f:[0,b] — R be a twice differentiable mapping with 0 < a <
mb < b, a>0. If | f|? is measurable and (s, m)-convex on [a,b] for some fived
q>1 and (s,m) € (0,1)%, r > 0, then

HE (f) <min{ RS (f), Ry (f) , R (f), Ris () Bgs ()} (35)
Next we generalize Lemmas 9-11.

Lemma 24 Let « > 0, a < b, f € C([a,b]), g € C*([a,b]), g strictly in-
creasing on |a, b, (f o g~1) is twice differentiable function on (g (a),g (b)) with
(fog)" € Li(lg (@), 9 (). Then

g )"
I'(a+1)
2(g(b) —g(a)”

(1040 f O+ Iy f (@)] — (Fog™) (9<>2+9<b>>



M/lm(t)(fog1)”(tg<a>+<1—t>g<b>>dt7 (36)
2 0

where m (t) as in (19).
Lemma 25 Let all as in Lemma 24, r > 0. Then

fla)+]®) 2 (fogl)<g(a)+g(b)>

—— T e F )+ I f ()]

1
=(9(0) —g(a))’ / B (Fog™) (tg(a) + (1= g®)dt,  (37)
where k (t) as in (21).
Lemma 26 Let all as Lemma 25, with g (a) < mg (b) < g(b). Then

f(a)+ (fog™) (mg (b)) 2 _1y ((9(a) + mg (b)
r(r+1) T+1(fog )<2>

I'a+1) N . . )
r(myg (b) — g (a))” {Ig(a)Jr (fog™) (mg (b)) + L gy — (fog™") (g (a))}

= (mg (b) — g (a))’ / k() (Fog™)" (tg(a) +mA—t)g(b)dt,  (38)
where k (t) as in (21).

€T

We apply Lemmas 24-26 to g (z) = e*.

Lemma 27 Let « > 0, a < b, f € C([a,b]), (foln) is twice differentiable
function on (e“, eb) with (f o ln)” €l ([e“7 eb]). Then

« e® + el
S e f O o f @] = (o) (S35 ) =
eb — @ 2 1 y
( 5 ) /Om(t)(foln) (te + (1 —t) e’) dt, (39)

where m (t) as in (19).
Lemma 28 Let all as in Lemma 27, r > 0. Then

fla)+ f(b) 2 e + e I'la+1)
r(r+1) +r—|—1(f01n)< 2 >_r(eb—e‘1)a

= (e’ - e“)2/0 k(t) (foln)” (te* + (1 —t)€’) dt, (40)
where k (t) as in (21).

[I((Lx+;e’ff (b) + Il;xf;eff (a)]



Lemma 29 Let all as in Lemma 28, with e* < me® < eb. Then

f(a) + (f oln) (me®) 2 e® + me?
r(r+1) +r+1(f01n)< 2 )

5 [l
= (meb —e) / k(t)(foln)" (te® + (1 —t) eb) dt,
0
where k (t) as in (21).
We need

Notation 30 We denote by

H™ (f?g) =

r(r+1) r+1 2

I'(a+1)

T —g (@) Lavied O+ Ty f (@)]],

Ry (7.9) = (00) ~ s @) (; (a+1§“a+2 =
(\(fog—l)”(g(a))\ +m|(fog7") )é
2

S ()

(\(fogl)’%g(a))\ tm(fog)" (1) )

2

_(g)—g ()’ (q<a+1>—1)3.
gla+1)+1

2

(WOQI)” @) +m|(ro0™)" (C’fﬁ’)q);

2 r(a+1)

r+1

10

fla)+f@) 2 (fog™) (g(a)+g(b)>_

2 >é(g(b)g(a))2 l(l r+1 )”“



) <7““>”T (\(fow)” )] +m(rosm)” (42) )
r ) 92 )

(a+1
(46)
where%Jr%:l,
and
0 —g(a))? - a+1
r q+1% (fogfl)"(g(a))qqtm (fogfl)” % N
(r(o;;ll))](' ‘2‘ ()).(47)

We present the following fractional generalised m-convex Hermite-Hadamard
type inequality.

Theorem 31 Let all as in Notation 30. Here o > 0, b* > 0, f € C([0,b*]),
g € C([0,b%]), g is strictly increasing on [0,b*] with g (0) = 0. Assume that

q
fog ™t :[0,g(*)] — R is twice differentiable mapping. If }(fog’l)// is

measurable and m-convex on [g (a), %} for some fixed ¢ >1,0<a<b<b*
and m € (0,1] with % <g(b*), >0, then

H™ (f,9) <min{RY" (f,9), Ry (f,9), By"(f.9), Ri"(f,9), Rg' (f,9)}.
(48)

Proof. By Theorem 22. m
We need

Notation 32 We denote by

HY (f,9) = 'f(a”(“g_ Lmg O, 2y (sl ma)

r(r+1) 2
I'la+1 _ o _
sy s (o5 (ma ) + ) (7o) (0()] "
RT{; (fvg) = (mg (b) _g(a))2 (T(Oé+ 1O)é(a+2) + 4(7,1+ 1)) ’
[(Fog™) @] 1+ m|(rog)" (s 0))| (50)

(r<a+1?<a+2>+4<r1+1> ‘Iﬂq’

11



where
1 1

I::r(s+1)(s+a+2)_r(a+1)B(s+1’a+2)
1 1\
HCES ICESICES) <l_<2> > (51
 (mg(b) —g(a))’ 2 ’
R (19) = =05 < EICES) 1)

b) — g(a))’ BN (1 1
r (ot 1) {(fog ) (9(“))‘ (s+1_q(a+1)+s+l
—B(s+1,q(a+1)+1))+m (fog_l)”(g(b))‘q (sj—l _Q(a+21)+1

(53)
. 1
gla+1)+s+1

g (21 o1y

+B(s+1,q(o¢+1)+1)>],

q

<<a++11>>+1 (sl roo @l + 2

S

(Fog™)" (9 ®)

(54)
1,1 _
where st = 1,
and

q

Ry (f,9) = (fog™) " (g®)| -

(mg (b) — g (a))” {
r+1

2 /1 1\t 2 1\t
=TI L B
g+1\2 r(a+1) g+1\r(a+1)
where

r+1 Lot !
H= 4+ 1-t) tdt.
/ ( @1 D) +t> tdt+/§ (r(a+1)+ t) t*dt (56)

Next we present a fractional generalised (s,m)-convex Hermite-Hadamard

(Fog™) (9(@)| H+m

type inequality.

12



Theorem 33 Here all as in Notation 32. Let « > 0, b > 0, f € C([0,b]),
g € C1([0,0]), g is strictly increasing on [0,b] with g (0) = 0. Assume that
fog™t:]0,g(b)] — R is twice differentiable mapping, with 0 < g (a) < mg (b) <
g(b), a€0,b]. If ‘ (fo gfl)”‘q is measurable and (s, m)-convez on [g (a), g (b)]
for some fived ¢ > 1 and (s,m) € (0,1]%, r > 0, then

H (f,9) <min{RY (f,9), Ry (f,9), Ry (f,9), Ri(f,9), R (f.9)}-
(57)

Proof. By Theorem 23. m
The case ¢ = 1 is met separately.

Proposition 34 Here H™ (f,g) as in (42) of Notation 30. The rest of the
assumptions as in Theorem 31 with ¢ = 1. Then

H™(f,g) < (g(b)—g(a))Q (’r(a—&-l?(&—i—?) + 4(7”1_’_ 1>> ’

‘(f og )" (g (a))‘ + m‘(f og™1)" (g(b))‘
2

Proof. By Theorem 12. m

Proposition 35 Here HI" (f,g) as in (49) of Notation 32. The rest of the
assumptions as in Theorem 33 with ¢ = 1. Then

I (f,9) < (mg (6) = g @) [|(Fo9™)" (9 (@)| T +m |(fog7)" (9 (®)]-

"

(r(a+1?(a+2) " 4(7~1+1) _Iﬂ’ (59)
where I as in (51).

Proof. By Theorem 17. m
We need

Definition 36 Let a,b € [0,3], a < b, & >0, f € L ([a,b]). We consider
the left and right fractional trigonometric integrals of f with respect to sine

function denoted by sin :

(I sinf) () = ﬁ /1 (sinz —sint)* " costf (¢)dt, x> a, (60)

and

b
(It i f) (x) = ﬁ/z (sint —sinz)* ' costf (t)dt, x <b. (61)

13



‘We need

Notation 37 We denote by

L0, 2 (g gy ()20

H" (f,sin) :=

r(r+1) r+1 5
T (a+1) § )
r (sin (b) — sin (a))” [Ia+;sinf () + It sin S ()|, (62)
m 2 « 1
RY{% (f,sin) := (sin (b) — sin (a)) ( CEICE R )
(fo sin_l)n (sin (a))‘ +m |(f osin” (b)
2
m . L (Sin (b) — SlIl
(fosm )” (sin (a))‘ +m fosm (b) K
2
where % + % =1,
o (sin(b) —sin(a)® (q(a+1)—1Y)7
R3*(fabln) = r(a+1) (q(a+1)+1> .
(fosmil)” (sin (a))‘q-l-m (fosinfl)// (W)‘q .
( 2 ; (65)
e 2 \F(sin() —sin(a)® [[1 r+1 \P
i (fr5im) 2= <p+1> Tt [(QJW(QH)) -
r N (|osinT) sin (@) £ m (7 osinT)” ()Y T
<(Oé—|—1)> 2 ;
(66)

1,1 _
where st = 1,
and

14



(a+1

(7“-1-1>q+1] i (‘(f o sinfl)” (Sin(a))‘q +m ‘ (f o Sinfl)// (si%b)> q) 1
r ) : |
(67)

We present the following fractional generalised m-convex Hermite-Hadamard
type inequality for sin function. So here g (z) = sin (z), z € [0, 5] .
Theorem 38 Let all as in Notation 87. Here o >0, f € C ([O7 g]) Assume

q
that fosin~! : [0,1] — R is twice differentiable mapping. If ’(f o sinfl)// 18

sin(b)
m

and m € (0,1] with sin (b) < m, r > 0, then

measurable and m-convex on {sin (a), for some firedq>1,0<a <b< 5

H (f,sin) <
min {RY; (f,sin), RS, (f,sin), RE, (f,sin), Ry (f,sin), RE. (f,sin)}. (68)

Proof. By Theorem 31. m
We need

Notation 39 We denote by

f(a)+ (fosin™) (msin(b))+

HT! (f,sin) := ‘ )

2 o sin-1 sin (@) + msin (b) | IF'(a+1) .
r+1 (f ) ( 2 > r (msin (b) — sin (a))”

[I;‘n(a)Jr (fo sin_l) (msin (b)) + I, gine)— (fo sin_l) (sin (a))] , (69)

m an) — A 1 2 a 1 1_%
R, (f,sin) := (msin (b) — sin (a)) (r(a—i— (a2 + i+ 1)) :

[|(£osin1)" sin (a))‘q I+m(f osin™)" (sin (b))(q : (70)

<r(a+1(;(a+2)+4(r1+1) _Iﬂq’

where L L
1= - B(s+1l,a+2
rs+1)(s+a+2) r(a+1) ( )

1 1 s+1
DG D+ 2) (1_<2> ) (71
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Ry (f,sin) :=

(m sinT(a - 81? (a))* (1 2 )é .

ms
s+1

<5 i 1 ’(f o sinfl)n (sin (a))’q +

where % + é =1,
Ry (f.5in) =
(msin (b) — sin (a)) U (fo sin_l)” (sin (a))

r(a+1)

q 1 1
<s+1q(a+1)+s+1
s 2

s+1 qla+1)+1

—B(s+1,q(a+1)+1))+ m‘(f osin~1)” (sin(b))‘q (

1
+
gla+1)+s+1

m o (msin(b) —sin(a))?® [/ 2 v
R4s* (f’bln) T T+1 <p—|—1>

+B(s+1,q(o¢+1)+1)>],

Lol \
2 r(a+1)

B (JQ)W (il |(05in™")" (sim (a))| +
| (fosin™!)” (sin (1) ) g (74)

1,1 _
where st = 1,
and
R, (f,sin) :=
(msin (b) — sin (a))2
r+1

2 /1 1\ 2 1\
<+ Tt ) —(H) —H||. (@)
g+1\2 r(a+1) g+1\r(a+1)
where

H= / ( Ta++11 +t> tdt+ (
o3

q

H (fo sin_l)” (sin (a))‘q H+m ‘ (fo sin_l)” (sin (b))‘ .

q
T 1— t) todt. (76)

Next we present a fractlonal generalise )-convex Hermite-Hadamard

S,
type inequality involving g (z) = sinz, x € g]
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Theorem 40 Here all as in Notation 39. Let a > 0, a,b € [0, g], a < b,
f € C([0,b)). Assume that fosin~! : [0,sin(b)] — R is twice differentiable
mapping, with 0 < sin (a) < msin (b) < sin (b). If ’(f o sin_l)//‘q is measurable
and (s, m)-convez on [sin (a),sin (b)] for some fived ¢ > 1 and (s,m) € (0,1]?,
r >0, then

H (f,sin) <

min {RY(, (f,sin), R3, (f,sin), Rg(, (f,sin), R, (f,sin), Rg(, (f,sin)}.
(77)

Proof. By Theorem 33. m

Finally we treat the case of ¢ = 1 when g (z) =sinz, z € [0, 3].

Proposition 41 Here H™ (f,sin) as in (62) of Notation 37. The rest of the
assumptions as in Theorem 38 with ¢ = 1. Then

m . . . 2 « 1
HI™ (f,sin) < (sin (b) — sin (a)) <T(a+1>(a+2)+4(r+1)).

’(f ° Sin_l)” (sin (a))’ + m’(f o sin_l)" (%)‘
2

Proof. By Proposition 34. m

Proposition 42 Here H!} (f,sin) as in (69) of Notation 39. The rest of the
assumptions as in Theorem 40 with ¢ = 1. Then

H™ (f,sin) < (msin (b) — sin (a))? H (fo sinfl)// (sin (a))‘ I+

m‘(fosmil)ﬁ (Sin(b))‘ (r(a—i- 1(;(Oé+2) i 4(7“1+ 1) —Iﬂ ’ "
where I as in (51).

Proof. By Proposition 35. m
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