Generalised fractional Hermite-Hadamard Inequalities involving m-convexity and (s, m)-convexity

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present generalised fractional Hermite-Hadamard type inequalities involving m-convexity and (s, m)-convexity. These inequalities are with respect to generalised Riemann-Liouville fractional integrals. Our work is motivated by and expands [7] to the greatest generality and all possible directions.

2010 AMS Subject Classification : 26A33, 26D10, 26D15.
Keywords and Phrases: fractional Hermite-Hadamard inequality, generalised fractional Riemann-Liouville integral, m-convexity, (s, m)-convexity.

1 Background

We use a lot here the following generalised fractional integrals
Definition 1 (see also [3, p. 99]) The left and right fractional integrals, respectively, of a function f with respect to given function g are defined as follows:

Let $a, b \in \mathbb{R}, a<b, \alpha>0$. Here $g \in A C([a, b])$ (absolutely continuous functions) and is strictly increasing, $f \in L_{\infty}([a, b])$. We set

$$
\begin{equation*}
\left(I_{a+; g}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(g(x)-g(t))^{\alpha-1} g^{\prime}(t) f(t) d t, \quad x \geq a, \tag{1}
\end{equation*}
$$

clearly $\left(I_{a+; g}^{\alpha} f\right)(a)=0$,
and

$$
\begin{equation*}
\left(I_{b-; g}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(g(t)-g(x))^{\alpha-1} g^{\prime}(t) f(t) d t, \quad x \leq b \tag{2}
\end{equation*}
$$

clearly $\left(I_{b-; g}^{\alpha} f\right)(b)=0$.
When g is the identity function id, we get that $I_{a+; i d}^{\alpha}=I_{a+}^{\alpha}$ and $I_{b-; i d}^{\alpha}=I_{b-}^{\alpha}$ the ordinary left and right Riemann-Liouville fractional integrals, where

$$
\begin{equation*}
\left(I_{a+}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x \geq a \tag{3}
\end{equation*}
$$

$\left(I_{a+}^{\alpha} f\right)(a)=0$, and

$$
\begin{equation*}
\left(I_{b-}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, \quad x \leq b \tag{4}
\end{equation*}
$$

$\left(I_{b-}^{\alpha} f\right)(b)=0$.
Remark 2 (see also [1]) We observe that

$$
\left(I_{a+; g}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(g(x)-g(t))^{\alpha-1}\left(f \circ g^{-1}\right)(g(t)) g^{\prime}(t) d t=
$$

(by change of variable for Lebesgue integrals)
$\frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x)}(g(x)-z)^{\alpha-1}\left(f \circ g^{-1}\right)(z) d z=\left(I_{g(a)+}^{\alpha}\left(f \circ g^{-1}\right)\right)(g(x)), \quad x \geq a$,
equivalently $g(x) \geq g(a)$.
That is in the terms and assumptions of Definition 1 we get

$$
\begin{equation*}
\left(I_{a+; g}^{\alpha} f\right)(x)=\left(I_{g(a)+}^{\alpha}\left(f \circ g^{-1}\right)\right)(g(x)), \quad \text { for } x \geq a \tag{6}
\end{equation*}
$$

Similarly we observe that

$$
\begin{gather*}
\left(I_{b-; g}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(g(t)-g(x))^{\alpha-1}\left(f \circ g^{-1}\right)(g(t)) g^{\prime}(t) d t \\
=\frac{1}{\Gamma(\alpha)} \int_{g(x)}^{g(b)}(z-g(x))^{\alpha-1}\left(f \circ g^{-1}\right)(z) d z=\left(I_{g(b)-}^{\alpha}\left(f \circ g^{-1}\right)\right)(g(x)), \tag{7}
\end{gather*}
$$

for $x \leq b$.
That is

$$
\begin{equation*}
\left(I_{b-; g}^{\alpha} f\right)(x)=\left(I_{g(b)-}^{\alpha}\left(f \circ g^{-1}\right)\right)(g(x)), \quad \text { for } x \leq b \tag{8}
\end{equation*}
$$

So by (6) and (8) we have reduced the general fractional integrals to the ordinary left and right Riemann-Liouville fractional integrals.

When $g(x)=e^{x}, x \in[a, b]$ we have the application

Definition 3 The left and right fractional exponential integrals are defined as follows: Let $a, b \in \mathbb{R}, a<b, \alpha>0, f \in L_{\infty}([a, b])$. We set

$$
\begin{equation*}
\left(I_{a+; e^{x}}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(e^{x}-e^{t}\right)^{\alpha-1} e^{t} f(t) d t, \quad x \geq a \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{b-; e^{x}}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}\left(e^{t}-e^{x}\right)^{\alpha-1} e^{t} f(t) d t, \quad x \leq b \tag{10}
\end{equation*}
$$

Note 4 We see that

$$
\begin{equation*}
\left(I_{a+; e^{x}}^{\alpha} f\right)(x)=\left(I_{e^{a}+}^{\alpha}(f \circ \ln)\right)\left(e^{x}\right), \quad x \geq a \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{b-; e^{x}}^{\alpha} f\right)(x)=\left(I_{e^{b}-}^{\alpha}(f \circ \ln)\right)\left(e^{x}\right), \quad x \leq b \tag{12}
\end{equation*}
$$

Another example follows:
Definition 5 Let $a, b \in \mathbb{R}, a<b, \alpha>0, f \in L_{\infty}([a, b]), A>1$. We introduce the fractional integrals:

$$
\begin{equation*}
\left(I_{a+; A^{x}}^{\alpha} f\right)(x)=\frac{\ln A}{\Gamma(\alpha)} \int_{a}^{x}\left(A^{x}-A^{t}\right)^{\alpha-1} A^{t} f(t) d t, \quad x \geq a \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{b-; A^{x}}^{\alpha} f\right)(x)=\frac{\ln A}{\Gamma(\alpha)} \int_{x}^{b}\left(A^{t}-A^{x}\right)^{\alpha-1} A^{t} f(t) d t, \quad x \leq b \tag{14}
\end{equation*}
$$

We are motivated by
Theorem 6 (1881, Hermite-Hadamard inequality, [4]) Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval I of real numbers, and $a, b \in I$, with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2} \tag{15}
\end{equation*}
$$

Additionally to the classical convex functions, Toader [6], Hudzik and Maligranda [2] and Pinheiro [5] generalized the concepts of classical convex functions to the concepts of m-convex function and (s, m)-convex function.

Definition 7 The function $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ is said to be m-convex, where $m \in$ $[0,1]$ and $b^{*}>0$ if for every $x, y \in\left[0, b^{*}\right]$ and $t \in[0,1]$, we have

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y) . \tag{16}
\end{equation*}
$$

Definition 8 The function $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ is said to be (s, m)-convex, where $(s, m) \in[0,1]^{2}$ and $b^{*}>0$, if for every $x, y \in\left[0, b^{*}\right]$ and $t \in[0,1]$, we have

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t^{s} f(x)+m\left(1-t^{s}\right) f(y) \tag{17}
\end{equation*}
$$

We need the following list of Lemmas and Theorems from [7].
Lemma 9 Let $\alpha>0, f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b) with $a<b$. If $f^{\prime \prime} \in L_{1}([a, b])$, then

$$
\begin{gather*}
\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)= \\
\frac{(b-a)^{2}}{2} \int_{0}^{1} m(t) f^{\prime \prime}(t a+(1-t) b) d t \tag{18}
\end{gather*}
$$

where

$$
m(t)=\left\{\begin{array}{l}
t-\frac{1-(1-t)^{\alpha+1}-t^{\alpha+1}}{\alpha+1}, \quad t \in\left[0, \frac{1}{2}\right) \tag{19}\\
1-t-\frac{1-(1-t)^{\alpha+1}-t^{\alpha+1}}{\alpha+1}, \quad t \in\left[\frac{1}{2}, 1\right) .
\end{array}\right.
$$

Lemma 10 Let $\alpha>0, f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b) with $a<b$. If $f^{\prime \prime} \in L_{1}([a, b]), r>0$, then

$$
\begin{gather*}
\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]= \\
 \tag{20}\\
(b-a)^{2} \int_{0}^{1} k(t) f^{\prime \prime}(t a+(1-t) b) d t
\end{gather*}
$$

where

$$
k(t)= \begin{cases}\frac{1-(1-t)^{\alpha+1}-t^{\alpha+1}}{r(\alpha+1)}-\frac{t}{r+1}, & t \in\left[0, \frac{1}{2}\right) \tag{21}\\ \frac{1-(1-t)^{\alpha+1}-t^{\alpha+1}}{r(\alpha+1)}-\frac{1-t}{r+1}, & t \in\left[\frac{1}{2}, 1\right)\end{cases}
$$

Lemma 11 Let $\alpha>0, f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b) with $a<m b \leq b$. If $f^{\prime \prime} \in L_{1}([a, b]), r>0$, then

$$
\begin{gather*}
\frac{f(a)+f(m b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+m b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(m b)+I_{m b-}^{\alpha} f(a)\right]= \\
(m b-a)^{2} \int_{0}^{1} k(t) f^{\prime \prime}(t a+m(1-t) b) d t \tag{22}
\end{gather*}
$$

where $k(t)$ is defined in (21).
The following fractional m-convex Hermite-Hadamard type inequalities also come from [7].

Theorem 12 Let $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $b^{*}>0$, $\alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[a, \frac{b}{m}\right]$ for some fixed $q \geq 1$, $0 \leq a<b$ and $m \in(0,1]$ with $\frac{b}{m} \leq b^{*}, r>0$, then
$H^{m}(f):=\left|\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]\right|$

$$
\begin{align*}
& \leq(b-a)^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right) \\
& \left(\frac{\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}=: R_{1}^{m}(f) \tag{23}
\end{align*}
$$

Theorem 13 Let $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $b^{*}>0$, $\alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[a, \frac{b}{m}\right]$ for some fixed $q>1$, $0 \leq a<b$ and $m \in(0,1]$ with $\frac{b}{m} \leq b^{*}, r>0$, then

$$
\begin{align*}
& H^{m}(f):=\left|\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]\right| \\
& \quad \leq \frac{(b-a)^{2}}{r(\alpha+1)}\left(1-\frac{2}{p(\alpha+1)+1}\right)^{\frac{1}{p}}\left(\frac{\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}=: R_{2}^{m}(f), \tag{24}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 14 Let $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $b^{*}>0$, $\alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[a, \frac{b}{m}\right]$ for some fixed $q>1$, $0 \leq a<b$ and $m \in(0,1]$ with $\frac{b}{m} \leq b^{*}, r>0$, then

$$
\begin{align*}
& H^{m}(f):=\left|\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]\right| \\
& \quad \leq \frac{(b-a)^{2}}{r(\alpha+1)}\left(\frac{q(\alpha+1)-1}{q(\alpha+1)+1}\right)^{\frac{1}{q}}\left(\frac{\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}=: R_{3}^{m}(f) . \tag{25}
\end{align*}
$$

Theorem 15 Let $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $b^{*}>0$, $\alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[a, \frac{b}{m}\right]$ for some fixed $q>1$, $0 \leq a<b$ and $m \in(0,1]$ with $\frac{b}{m} \leq b^{*}, r>0$, then

$$
\begin{gather*}
H^{m}(f):=\left|\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]\right| \\
\leq\left(\frac{2}{p+1}\right)^{\frac{1}{p}} \frac{(b-a)^{2}}{r+1}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{p+1}-\left(\frac{r+1}{r(\alpha+1)}\right)^{p+1}\right]^{\frac{1}{p}} \\
\left(\frac{\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}=: R_{4}^{m}(f) \tag{26}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.

Theorem 16 Let $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $b^{*}>0$, $\alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[a, \frac{b}{m}\right]$ for some fixed $q>1$, $0 \leq a<b$ and $m \in(0,1]$ with $\frac{b}{m} \leq b^{*}, r>0$, then

$$
\begin{gather*}
H^{m}(f):=\left|\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(b)+I_{b-}^{\alpha} f(a)\right]\right| \\
\leq\left(\frac{2}{q+1}\right)^{\frac{1}{q}} \frac{(b-a)^{2}}{r+1}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{q+1}-\left(\frac{r+1}{r(\alpha+1)}\right)^{q+1}\right]^{\frac{1}{q}} \\
\left(\frac{\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}=: R_{5}^{m}(f) \tag{27}
\end{gather*}
$$

The following fractional (s, m)-convex Hermite-Hadamard type inequalities also come from [7].

Theorem 17 Let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $0 \leq a<$ $m b \leq b, \alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[a, b]$ for some fixed $q \geq 1$ and $(s, m) \in(0,1]^{2}, r>0$, then

$$
\begin{gather*}
H_{s}^{m}(f):= \\
\left|\frac{f(a)+f(m b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+m b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(m b)+I_{m b-}^{\alpha} f(a)\right]\right| \\
\leq(m b-a)^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right)^{1-\frac{1}{q}} \tag{28}\\
{\left[\left|f^{\prime \prime}(a)\right|^{q} I+m\left|f^{\prime \prime}(b)\right|^{q}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}-I\right)\right]^{\frac{1}{q}}=: R_{1 s}^{m}(f),}
\end{gather*}
$$

where

$$
\begin{aligned}
I= & \frac{1}{r(s+1)(s+\alpha+2)}-\frac{1}{r(\alpha+1)} B(s+1, \alpha+2) \\
& +\frac{1}{(r+1)(s+1)(s+2)}\left(1-\left(\frac{1}{2}\right)^{s+1}\right) .
\end{aligned}
$$

Theorem 18 Let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $0 \leq a<$ $m b \leq b, \alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[a, b]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2} r>0$, then

$$
\begin{gathered}
H_{s}^{m}(f):= \\
\left|\frac{f(a)+f(m b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+m b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(m b)+I_{m b-}^{\alpha} f(a)\right]\right|
\end{gathered}
$$

$$
\begin{gather*}
\leq \frac{(m b-a)^{2}}{r(\alpha+1)}\left(1-\frac{2}{p(\alpha+1)+1}\right)^{\frac{1}{p}}\left(\frac{1}{s+1}\left|f^{\prime \prime}(a)\right|^{q}+\frac{m s}{s+1}\left|f^{\prime \prime}(b)\right|^{q}\right)^{\frac{1}{q}} \tag{29}\\
=: R_{2 s}^{m}(f)
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 19 Let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $0 \leq a<$ $m b \leq b, \alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[a, b]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2}, r>0$, then

$$
\begin{gather*}
H_{s}^{m}(f):= \\
\left|\frac{f(a)+f(m b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+m b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(m b)+I_{m b-}^{\alpha} f(a)\right]\right| \\
\leq \frac{(m b-a)^{2}}{r(\alpha+1)}\left[\left|f^{\prime \prime}(a)\right|^{q}\left(\frac{1}{s+1}-\frac{1}{q(s+1)+s+1}-B(s+1, q(\alpha+1)+1)\right)\right. \\
+m\left|f^{\prime \prime}(b)\right|^{q}\left(\frac{s}{s+1}-\frac{2}{q(\alpha+1)+1}+\frac{1}{q(\alpha+1)+s+1}\right. \tag{30}\\
+B(s+1, q(\alpha+1)+1))]=: R_{3 s}^{m}(f) .
\end{gather*}
$$

Theorem 20 Let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $0 \leq a<$ $m b \leq b, \alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[a, b]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2}, r>0$, then

$$
\begin{gather*}
H_{s}^{m}(f):= \\
\left|\frac{f(a)+f(m b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+m b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(m b)+I_{m b-}^{\alpha} f(a)\right]\right| \\
\leq \frac{(m b-a)^{2}}{r+1}\left(\frac{2}{p+1}\right)^{\frac{1}{p}}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{p+1}-\left(\frac{r+1}{r(\alpha+1)}\right)^{p+1}\right]^{\frac{1}{p}} . \\
\left(\frac{1}{s+1}\left|f^{\prime \prime}(a)\right|^{q}+\frac{m s}{s+1}\left|f^{\prime \prime}(b)\right|^{q}\right)^{\frac{1}{q}}=: R_{4 s}^{m}(f), \tag{31}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 21 Let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $0 \leq a<$ $m b \leq b, \alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[a, b]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2}, r>0$, then

$$
\begin{gathered}
H_{s}^{m}(f):= \\
\left|\frac{f(a)+f(m b)}{r(r+1)}+\frac{2}{r+1} f\left(\frac{a+m b}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m b-a)^{\alpha}}\left[I_{a+}^{\alpha} f(m b)+I_{m b-}^{\alpha} f(a)\right]\right|
\end{gathered}
$$

$$
\begin{align*}
& \leq \frac{(m b-a)^{2}}{r+1}\left[\left|f^{\prime \prime}(a)\right|^{q} H+m\left|f^{\prime \prime}(b)\right|^{q}\left(\frac{2}{q+1}\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{q+1}\right.\right. \\
&\left.\left.-\frac{2}{q+1}\left(\frac{r+1}{r(\alpha+1)}\right)^{q+1}-H\right)\right]=: R_{5 s}^{m}(f) \tag{32}
\end{align*}
$$

where

$$
\begin{equation*}
H=\int_{0}^{\frac{1}{2}}\left(\frac{r+1}{r(\alpha+1)}+t\right)^{q} t^{s} d t+\int_{\frac{1}{2}}^{1}\left(\frac{r+1}{r(\alpha+1)}+1-t\right)^{q} t^{s} d t \tag{33}
\end{equation*}
$$

The aim of this article is to extend the results of [7] to generalized fractional integrals (1) and (2), in particular to fractional exponential integrals (9), (10) and to fractional trigonometric integrals (60), (61). That is to produce very general fractional m-convex and (s, m)-convex Hermite-Hadamard type inequalities.

2 Main Results

Combining Theorems 12-16 we get the following m-convex Hermite-Hadamard type inequality.

Theorem 22 Let $f:\left[0, b^{*}\right] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $b^{*}>0$, $\alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[a, \frac{b}{m}\right]$ for some fixed $q>1$, $0 \leq a<b$ and $m \in(0,1]$ with $\frac{b}{m} \leq b^{*}, r>0$, then

$$
\begin{equation*}
H^{m}(f) \leq \min \left\{R_{1}^{m}(f), R_{2}^{m}(f), R_{3}^{m}(f), R_{4}^{m}(f), R_{5}^{m}(f)\right\} \tag{34}
\end{equation*}
$$

Combining Theorems 17-21 we obtain the following (s, m)-convex HermiteHadamard type inequality.

Theorem 23 Let $f:[0, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping with $0 \leq a<$ $m b \leq b, \alpha>0$. If $\left|f^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[a, b]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2}, r>0$, then

$$
\begin{equation*}
H_{s}^{m}(f) \leq \min \left\{R_{1 s}^{m}(f), R_{2 s}^{m}(f), R_{3 s}^{m}(f), R_{4 s}^{m}(f), R_{5 s}^{m}(f)\right\} \tag{35}
\end{equation*}
$$

Next we generalize Lemmas 9-11.
Lemma 24 Let $\alpha>0, a<b, f \in C([a, b]), g \in C^{1}([a, b])$, g strictly increasing on $[a, b],\left(f \circ g^{-1}\right)$ is twice differentiable function on $(g(a), g(b))$ with $\left(f \circ g^{-1}\right)^{\prime \prime} \in L_{1}([g(a), g(b)])$. Then

$$
\frac{\Gamma(\alpha+1)}{2(g(b)-g(a))^{\alpha}}\left[I_{a+; g}^{\alpha} f(b)+I_{b-; g}^{\alpha} f(a)\right]-\left(f \circ g^{-1}\right)\left(\frac{g(a)+g(b)}{2}\right)=
$$

$$
\begin{equation*}
\frac{(g(b)-g(a))^{2}}{2} \int_{0}^{1} m(t)\left(f \circ g^{-1}\right)^{\prime \prime}(t g(a)+(1-t) g(b)) d t \tag{36}
\end{equation*}
$$

where $m(t)$ as in (19).
Lemma 25 Let all as in Lemma 24, $r>0$. Then

$$
\begin{gather*}
\frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1}\left(f \circ g^{-1}\right)\left(\frac{g(a)+g(b)}{2}\right) \\
-\frac{\Gamma(\alpha+1)}{r(g(b)-g(a))^{\alpha}}\left[I_{a+; g}^{\alpha} f(b)+I_{b-; g}^{\alpha} f(a)\right] \\
=(g(b)-g(a))^{2} \int_{0}^{1} k(t)\left(f \circ g^{-1}\right)^{\prime \prime}(t g(a)+(1-t) g(b)) d t, \tag{37}
\end{gather*}
$$

where $k(t)$ as in (21).
Lemma 26 Let all as Lemma 25, with $g(a)<m g(b) \leq g(b)$. Then

$$
\begin{align*}
& \frac{f(a)+\left(f \circ g^{-1}\right)(m g(b))}{r(r+1)}+\frac{2}{r+1}\left(f \circ g^{-1}\right)\left(\frac{g(a)+m g(b)}{2}\right) \\
- & \frac{\Gamma(\alpha+1)}{r(m g(b)-g(a))^{\alpha}}\left[I_{g(a)+}^{\alpha}\left(f \circ g^{-1}\right)(m g(b))+I_{m g(b)-}^{\alpha}\left(f \circ g^{-1}\right)(g(a))\right] \\
= & (m g(b)-g(a))^{2} \int_{0}^{1} k(t)\left(f \circ g^{-1}\right)^{\prime \prime}(t g(a)+m(1-t) g(b)) d t, \tag{38}
\end{align*}
$$

where $k(t)$ as in (21).
We apply Lemmas 24-26 to $g(x)=e^{x}$.
Lemma 27 Let $\alpha>0, a<b, f \in C([a, b])$, $(f \circ \ln)$ is twice differentiable function on $\left(e^{a}, e^{b}\right)$ with $(f \circ \ln)^{\prime \prime} \in L_{1}\left(\left[e^{a}, e^{b}\right]\right)$. Then

$$
\begin{gather*}
\frac{\Gamma(\alpha+1)}{2\left(e^{b}-e^{a}\right)^{\alpha}}\left[I_{a+; e^{x}}^{\alpha} f(b)+I_{b-; e^{x}}^{\alpha} f(a)\right]-(f \circ \ln)\left(\frac{e^{a}+e^{b}}{2}\right)= \\
\frac{\left(e^{b}-e^{a}\right)^{2}}{2} \int_{0}^{1} m(t)(f \circ \ln)^{\prime \prime}\left(t e^{a}+(1-t) e^{b}\right) d t \tag{39}
\end{gather*}
$$

where $m(t)$ as in (19).
Lemma 28 Let all as in Lemma 27, $r>0$. Then

$$
\begin{align*}
\frac{f(a)+f(b)}{r(r+1)}+ & \frac{2}{r+1}(f \circ \ln)\left(\frac{e^{a}+e^{b}}{2}\right)-\frac{\Gamma(\alpha+1)}{r\left(e^{b}-e^{a}\right)^{\alpha}}\left[I_{a+; e^{x}}^{\alpha} f(b)+I_{b-; e^{x}}^{\alpha} f(a)\right] \\
& =\left(e^{b}-e^{a}\right)^{2} \int_{0}^{1} k(t)(f \circ \ln)^{\prime \prime}\left(t e^{a}+(1-t) e^{b}\right) d t \tag{40}
\end{align*}
$$

where $k(t)$ as in (21).

Lemma 29 Let all as in Lemma 28, with $e^{a}<m e^{b} \leq e^{b}$. Then

$$
\begin{align*}
& \frac{f(a)+(f \circ \ln)\left(m e^{b}\right)}{r(r+1)}+\frac{2}{r+1}(f \circ \ln)\left(\frac{e^{a}+m e^{b}}{2}\right) \\
- & \frac{\Gamma(\alpha+1)}{r\left(m e^{b}-e^{a}\right)^{\alpha}}\left[I_{e^{a}+}^{\alpha}(f \circ \ln)\left(m e^{b}\right)+I_{m e^{b}-}^{\alpha}(f \circ \ln)\left(e^{a}\right)\right] \\
= & \left(m e^{b}-e^{a}\right)^{2} \int_{0}^{1} k(t)(f \circ \ln)^{\prime \prime}\left(t e^{a}+(1-t) e^{b}\right) d t \tag{41}
\end{align*}
$$

where $k(t)$ as in (21).
We need
Notation 30 We denote by

$$
\begin{gather*}
H^{m}(f, g):=\left\lvert\, \frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1}\left(f \circ g^{-1}\right)\left(\frac{g(a)+g(b)}{2}\right)-\right. \\
\left.\frac{\Gamma(\alpha+1)}{r(g(b)-g(a))^{\alpha}}\left[I_{a+; g}^{\alpha} f(b)+I_{b-; g}^{\alpha} f(a)\right] \right\rvert\, \tag{42}\\
R_{1}^{m}(f, g) \\
:=(g(b)-g(a))^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right) . \tag{43}\\
\left(\frac{\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}\left(\frac{g(b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}, \\
R_{2}^{m}(f, g):=\frac{(g(b)-g(a))^{2}}{r(\alpha+1)}\left(1-\frac{2}{p(\alpha+1)+1}\right)^{\frac{1}{p}} \tag{44}\\
\left(\frac{\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}\left(\frac{g(b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{gather*}
R_{3}^{m}(f, g):=\frac{(g(b)-g(a))^{2}}{r(\alpha+1)}\left(\frac{q(\alpha+1)-1}{q(\alpha+1)+1}\right)^{\frac{1}{q}} \\
\left(\frac{\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}\left(\frac{g(b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}, \tag{45}\\
R_{4}^{m}(f, g):=\left(\frac{2}{p+1}\right)^{\frac{1}{p}} \frac{(g(b)-g(a))^{2}}{r+1}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{p+1}-\right.
\end{gather*}
$$

$$
\begin{equation*}
\left.-\left(\frac{r+1}{r(\alpha+1)}\right)^{p+1}\right]^{\frac{1}{p}}\left(\frac{\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}\left(\frac{g(b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}} \tag{46}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,
and

$$
\begin{gather*}
R_{5}^{m}(f, g):=\left(\frac{2}{q+1}\right)^{\frac{1}{q}} \frac{(g(b)-g(a))^{2}}{r+1}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{q+1}-\right. \\
\left.\left(\frac{r+1}{r(\alpha+1)}\right)^{q+1}\right]^{\frac{1}{q}}\left(\frac{\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}\left(\frac{g(b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}} . \tag{47}
\end{gather*}
$$

We present the following fractional generalised m-convex Hermite-Hadamard type inequality.

Theorem 31 Let all as in Notation 30. Here $\alpha>0, b^{*}>0, f \in C\left(\left[0, b^{*}\right]\right)$, $g \in C^{1}\left(\left[0, b^{*}\right]\right), g$ is strictly increasing on $\left[0, b^{*}\right]$ with $g(0)=0$. Assume that $f \circ g^{-1}:\left[0, g\left(b^{*}\right)\right] \rightarrow \mathbb{R}$ is twice differentiable mapping. If $\left|\left(f \circ g^{-1}\right)^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[g(a), \frac{g(b)}{m}\right]$ for some fixed $q>1,0 \leq a<b \leq b^{*}$ and $m \in(0,1]$ with $\frac{g(b)}{m} \leq g\left(b^{*}\right), r>0$, then

$$
\begin{equation*}
H^{m}(f, g) \leq \min \left\{R_{1}^{m}(f, g), R_{2}^{m}(f, g), R_{3}^{m}(f, g), R_{4}^{m}(f, g), R_{5}^{m}(f, g)\right\} . \tag{48}
\end{equation*}
$$

Proof. By Theorem 22.
We need
Notation 32 We denote by

$$
\begin{gather*}
H_{s}^{m}(f, g):=\left\lvert\, \frac{f(a)+\left(f \circ g^{-1}\right)(m g(b))}{r(r+1)}+\frac{2}{r+1}\left(f \circ g^{-1}\right)\left(\frac{g(a)+m g(b)}{2}\right)-\right. \\
\left.\frac{\Gamma(\alpha+1)}{r(m g(b)-g(a))^{\alpha}}\left[I_{g(a)+}^{\alpha}\left(f \circ g^{-1}\right)(m g(b))+I_{m g(b)-}^{\alpha}\left(f \circ g^{-1}\right)(g(a))\right] \right\rvert\,, \\
R_{1 s}^{m}(f, g):=(m g(b)-g(a))^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right)^{1-\frac{1}{q}} . \tag{49}\\
{\left[\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q} I+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(b))\right|^{q} .\right.} \tag{50}\\
\left.\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}-I\right)\right]^{\frac{1}{q}},
\end{gather*}
$$

where

$$
\begin{gather*}
I:=\frac{1}{r(s+1)(s+\alpha+2)}-\frac{1}{r(\alpha+1)} B(s+1, \alpha+2) \\
+\frac{1}{(r+1)(s+1)(s+2)}\left(1-\left(\frac{1}{2}\right)^{s+1}\right), \tag{51}\\
R_{2 s}^{m}(f, g):=\frac{(m g(b)-g(a))^{2}}{r(\alpha+1)}\left(1-\frac{2}{p(\alpha+1)+1}\right)^{\frac{1}{p}} . \\
\left(\left.\frac{1}{s+1}\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+\frac{m s}{s+1} \right\rvert\,\left(f \circ g^{-1}\right)^{\prime \prime}\left(\left.g(b)\right|^{q}\right)^{\frac{1}{q}},\right. \tag{52}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{gather*}
R_{3 s}^{m}(f, g):=\frac{(m g(b)-g(a))^{2}}{r(\alpha+1)}\left[| (f \circ g ^ { - 1 }) ^ { \prime \prime } (g (a)) | ^ { q } \left(\frac{1}{s+1}-\frac{1}{q(\alpha+1)+s+1}\right.\right. \\
-B(s+1, q(\alpha+1)+1))+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(b))\right|^{q}\left(\frac{s}{s+1}-\frac{2}{q(\alpha+1)+1}\right. \\
\left.\left.+\frac{1}{q(\alpha+1)+s+1}+B(s+1, q(\alpha+1)+1)\right)\right] \tag{53}\\
R_{4 s}^{m}(f, g):=\frac{(m g(b)-g(a))^{2}}{r+1}\left(\frac{2}{p+1}\right)^{\frac{1}{p}}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{p+1}-\right. \\
\left.\left(\frac{r+1}{r(\alpha+1)}\right)^{p+1}\right]^{\frac{1}{p}}\left(\left.\frac{1}{s+1}\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q}+\frac{m s}{s+1} \right\rvert\,\left(f \circ g^{-1}\right)^{\prime \prime}(g(b))^{q}\right)^{\frac{1}{q}} \tag{54}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,
\quad and

$$
\begin{align*}
& R_{5 s}^{m}(f, g):=\frac{(m g(b)-g(a))^{2}}{r+1}\left[\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|^{q} H+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(b))\right|^{q}\right. \\
&\left.\left(\frac{2}{q+1}\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{q+1}-\frac{2}{q+1}\left(\frac{r+1}{r(\alpha+1)}\right)^{q+1}-H\right)\right] \tag{55}
\end{align*}
$$

where

$$
\begin{equation*}
H=\int_{0}^{\frac{1}{2}}\left(\frac{r+1}{r(\alpha+1)}+t\right)^{q} t^{s} d t+\int_{\frac{1}{2}}^{1}\left(\frac{r+1}{r(\alpha+1)}+1-t\right)^{q} t^{s} d t \tag{56}
\end{equation*}
$$

Next we present a fractional generalised (s, m)-convex Hermite-Hadamard type inequality.

Theorem 33 Here all as in Notation 32. Let $\alpha>0, b>0, f \in C([0, b])$, $g \in C^{1}([0, b]), g$ is strictly increasing on $[0, b]$ with $g(0)=0$. Assume that $f \circ g^{-1}:[0, g(b)] \rightarrow \mathbb{R}$ is twice differentiable mapping, with $0 \leq g(a)<m g(b) \leq$ $g(b), a \in[0, b]$. If $\left|\left(f \circ g^{-1}\right)^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[g(a), g(b)]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2}, r>0$, then

$$
\begin{equation*}
H_{s}^{m}(f, g) \leq \min \left\{R_{1 s}^{m}(f, g), R_{2 s}^{m}(f, g), R_{3 s}^{m}(f, g), R_{4 s}^{m}(f, g), R_{5 s}^{m}(f, g)\right\} \tag{57}
\end{equation*}
$$

Proof. By Theorem 23.
The case $q=1$ is met separately.
Proposition 34 Here $H^{m}(f, g)$ as in (42) of Notation 30. The rest of the assumptions as in Theorem 31 with $q=1$. Then

$$
\begin{gather*}
H^{m}(f, g) \leq(g(b)-g(a))^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right) . \\
\left(\frac{\left(\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right|+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}\left(\frac{g(b)}{m}\right)\right|\right.}{2}\right) \tag{58}
\end{gather*}
$$

Proof. By Theorem 12.
Proposition 35 Here $H_{s}^{m}(f, g)$ as in (49) of Notation 32. The rest of the assumptions as in Theorem 33 with $q=1$. Then

$$
\begin{gather*}
H_{s}^{m}(f, g) \leq(m g(b)-g(a))^{2}\left[\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(a))\right| I+m\left|\left(f \circ g^{-1}\right)^{\prime \prime}(g(b))\right|\right. \\
\left.\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}-I\right)\right] \tag{59}
\end{gather*}
$$

where I as in (51).
Proof. By Theorem 17.
We need
Definition 36 Let $a, b \in\left[0, \frac{\pi}{2}\right], a<b, \alpha>0, f \in L_{\infty}([a, b])$. We consider the left and right fractional trigonometric integrals of f with respect to sine function denoted by sin :

$$
\begin{equation*}
\left(I_{a+; \sin }^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(\sin x-\sin t)^{\alpha-1} \cos t f(t) d t, \quad x \geq a \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{b-; \sin }^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(\sin t-\sin x)^{\alpha-1} \cos t f(t) d t, \quad x \leq b \tag{61}
\end{equation*}
$$

We need

Notation 37 We denote by

$$
\begin{gather*}
H_{*}^{m}(f, \sin):=\left\lvert\, \frac{f(a)+f(b)}{r(r+1)}+\frac{2}{r+1}\left(f \circ \sin ^{-1}\right)\left(\frac{\sin (a)+\sin (b)}{2}\right)-\right. \\
\left.\frac{\Gamma(\alpha+1)}{r(\sin (b)-\sin (a))^{\alpha}}\left[I_{a+; \sin }^{\alpha} f(b)+I_{b-; \sin }^{\alpha} f(a)\right] \right\rvert\,, \tag{62}\\
R_{1 *}^{m}(f, \sin):=(\sin (b)-\sin (a))^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right) . \\
\left(\frac{\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q}+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\frac{\sin (b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}, \tag{63}\\
\\
R_{2 *}^{m}(f, \sin):=\frac{(\sin (b)-\sin (a))^{2}}{r(\alpha+1)}\left(1-\frac{2}{p(\alpha+1)+1}\right)^{\frac{1}{p}} \cdot \tag{64}\\
\left(\frac{\left\lvert\,\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\left.\sin (a)\right|^{q}+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\frac{\sin (b)}{m}\right)\right|^{q}\right.\right.}{2}\right)^{\frac{1}{q}},
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{gather*}
R_{3 *}^{m}(f, \sin):=\frac{(\sin (b)-\sin (a))^{2}}{r(\alpha+1)}\left(\frac{q(\alpha+1)-1}{q(\alpha+1)+1}\right)^{\frac{1}{q}} \\
\left(\frac{\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q}+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\frac{\sin (b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}, \tag{65}\\
R_{4 *}^{m}(f, \sin):=\left(\frac{2}{p+1}\right)^{\frac{1}{p}} \frac{(\sin (b)-\sin (a))^{2}}{r+1}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{p+1}-\right. \\
\left.\left(\frac{r+1}{r(\alpha+1)}\right)^{p+1}\right]^{\frac{1}{p}}\left(\frac{\left.\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q}+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\frac{\sin (b)}{m}\right)\right|^{q}\right)^{\frac{1}{q}}}{2},\right. \tag{66}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,
\quad and

$$
R_{5 *}^{m}(f, \sin):=\left(\frac{2}{q+1}\right)^{\frac{1}{q}} \frac{(\sin (b)-\sin (a))^{2}}{r+1}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{q+1}-\right.
$$

$$
\begin{equation*}
\left.\left(\frac{r+1}{r(\alpha+1)}\right)^{q+1}\right]^{\frac{1}{q}}\left(\frac{\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q}+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\frac{\sin (b)}{m}\right)\right|^{q}}{2}\right)^{\frac{1}{q}} . \tag{67}
\end{equation*}
$$

We present the following fractional generalised m-convex Hermite-Hadamard type inequality for \sin function. So here $g(x)=\sin (x), x \in\left[0, \frac{\pi}{2}\right]$.

Theorem 38 Let all as in Notation 37. Here $\alpha>0, f \in C\left(\left[0, \frac{\pi}{2}\right]\right)$. Assume that $f \circ \sin ^{-1}:[0,1] \rightarrow \mathbb{R}$ is twice differentiable mapping. If $\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\right|^{q}$ is measurable and m-convex on $\left[\sin (a), \frac{\sin (b)}{m}\right]$ for some fixed $q>1,0 \leq a<b \leq \frac{\pi}{2}$ and $m \in(0,1]$ with $\sin (b) \leq m, r>0$, then

$$
\begin{equation*}
H_{*}^{m}(f, \sin) \leq \tag{68}
\end{equation*}
$$

$\min \left\{R_{1 *}^{m}(f, \sin), R_{2 *}^{m}(f, \sin), R_{3 *}^{m}(f, \sin), R_{4 *}^{m}(f, \sin), R_{5 *}^{m}(f, \sin)\right\}$.
Proof. By Theorem 31.
We need
Notation 39 We denote by

$$
\begin{gather*}
H_{s *}^{m}(f, \sin):=\left\lvert\, \frac{f(a)+\left(f \circ \sin ^{-1}\right)(m \sin (b))}{r(r+1)}+\right. \\
\frac{2}{r+1}\left(f \circ \sin ^{-1}\right)\left(\frac{\sin (a)+m \sin (b)}{2}\right)-\frac{\Gamma(\alpha+1)}{r(m \sin (b)-\sin (a))^{\alpha}} \\
{\left[I_{\sin (a)+}^{\alpha}\left(f \circ \sin ^{-1}\right)(m \sin (b))+I_{m \sin (b)-}^{\alpha}\left(f \circ \sin ^{-1}\right)(\sin (a))\right] \mid,} \tag{69}\\
R_{1 s *}^{m}(f, \sin):=(m \sin (b)-\sin (a))^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right)^{1-\frac{1}{q}} \\
{\left[\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q} I+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (b))\right|^{q}\right.} \tag{70}\\
\left.\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}-I\right)\right]^{\frac{1}{q}}
\end{gather*}
$$

where

$$
\begin{align*}
I:= & \frac{1}{r(s+1)(s+\alpha+2)}-\frac{1}{r(\alpha+1)} B(s+1, \alpha+2) \\
& +\frac{1}{(r+1)(s+1)(s+2)}\left(1-\left(\frac{1}{2}\right)^{s+1}\right) \tag{71}
\end{align*}
$$

$$
\begin{gather*}
R_{2 s *}^{m}(f, \sin):=\frac{(m \sin (b)-\sin (a))^{2}}{r(\alpha+1)}\left(1-\frac{2}{p(\alpha+1)+1}\right)^{\frac{1}{p}} . \\
\left(\frac{1}{s+1}\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q}+\frac{m s}{s+1}\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (b))\right|^{q}\right)^{\frac{1}{q}}, \tag{72}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{gather*}
R_{3 s *}^{m}(f, \sin):= \\
\frac{(m \sin (b)-\sin (a))^{2}}{r(\alpha+1)}\left[| (f \circ \operatorname { s i n } ^ { - 1 }) ^ { \prime \prime } (\operatorname { s i n } (a)) | ^ { q } \left(\frac{1}{s+1}-\frac{1}{q(\alpha+1)+s+1}\right.\right. \\
-B(s+1, q(\alpha+1)+1))+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (b))\right|^{q}\left(\frac{s}{s+1}-\frac{2}{q(\alpha+1)+1}\right. \\
\left.\left.+\frac{1}{q(\alpha+1)+s+1}+B(s+1, q(\alpha+1)+1)\right)\right], \tag{73}\\
R_{4 s *}^{m}(f, \sin):=\frac{(m \sin (b)-\sin (a))^{2}}{r+1}\left(\frac{2}{p+1}\right)^{\frac{1}{p}}\left[\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{p+1}-\right. \\
\left.-\left(\frac{r+1}{r(\alpha+1)}\right)^{p+1}\right]^{\frac{1}{p}}\left(\frac{1}{s+1}\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q}+\right. \\
\left.\frac{m s}{s+1}\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (b))\right|^{q}\right)^{\frac{1}{q}}, \tag{74}
\end{gather*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$,
and

$$
\begin{gather*}
R_{5 s *}^{m}(f, \sin):= \\
\frac{(m \sin (b)-\sin (a))^{2}}{r+1}\left[\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|^{q} H+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (b))\right|^{q} .\right. \\
\left.\left(\frac{2}{q+1}\left(\frac{1}{2}+\frac{r+1}{r(\alpha+1)}\right)^{q+1}-\frac{2}{q+1}\left(\frac{r+1}{r(\alpha+1)}\right)^{q+1}-H\right)\right], \tag{75}
\end{gather*}
$$

where

$$
\begin{equation*}
H=\int_{0}^{\frac{1}{2}}\left(\frac{r+1}{r(\alpha+1)}+t\right)^{q} t^{s} d t+\int_{\frac{1}{2}}^{1}\left(\frac{r+1}{r(\alpha+1)}+1-t\right)^{q} t^{s} d t . \tag{76}
\end{equation*}
$$

Next we present a fractional generalised (s, m)-convex Hermite-Hadamard type inequality involving $g(x)=\sin x, x \in\left[0, \frac{\pi}{2}\right]$.

Theorem 40 Here all as in Notation 39. Let $\alpha>0, a, b \in\left[0, \frac{\pi}{2}\right], a<b$, $f \in C([0, b])$. Assume that $f \circ \sin ^{-1}:[0, \sin (b)] \rightarrow \mathbb{R}$ is twice differentiable mapping, with $0 \leq \sin (a)<m \sin (b) \leq \sin (b)$. If $\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\right|^{q}$ is measurable and (s, m)-convex on $[\sin (a), \sin (b)]$ for some fixed $q>1$ and $(s, m) \in(0,1]^{2}$, $r>0$, then

$$
H_{s *}^{m}(f, \sin) \leq
$$

$\min \left\{R_{1 s *}^{m}(f, \sin), R_{2 s *}^{m}(f, \sin), R_{3 s *}^{m}(f, \sin), R_{4 s *}^{m}(f, \sin), R_{5 s *}^{m}(f, \sin)\right\}$.

Proof. By Theorem 33.
Finally we treat the case of $q=1$ when $g(x)=\sin x, x \in\left[0, \frac{\pi}{2}\right]$.
Proposition 41 Here $H_{*}^{m}(f, \sin)$ as in (62) of Notation 37. The rest of the assumptions as in Theorem 38 with $q=1$. Then

$$
\begin{gather*}
H_{*}^{m}(f, \sin) \leq(\sin (b)-\sin (a))^{2}\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}\right) \\
\left(\frac{\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right|+m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}\left(\frac{\sin (b)}{m}\right)\right|}{2}\right) \tag{78}
\end{gather*}
$$

Proof. By Proposition 34.
Proposition 42 Here $H_{s *}^{m}(f, \sin)$ as in (69) of Notation 39. The rest of the assumptions as in Theorem 40 with $q=1$. Then

$$
\begin{gather*}
H_{s *}^{m}(f, \sin) \leq(m \sin (b)-\sin (a))^{2}\left[\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (a))\right| I+\right. \\
\left.m\left|\left(f \circ \sin ^{-1}\right)^{\prime \prime}(\sin (b))\right|\left(\frac{\alpha}{r(\alpha+1)(\alpha+2)}+\frac{1}{4(r+1)}-I\right)\right] \tag{79}
\end{gather*}
$$

where I as in (51).
Proof. By Proposition 35.

References

[1] G.A. Anastassiou, The reduction method in fractional Calculus and fractional Ostrowski type inequalities, submitted 2013.
[2] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111.
[3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.
[4] D.S. Mitrinović, I.B. Lacković, Hermite and convexity, Aequationes Math., 28 (1985), 229-232.
[5] M.R. Pinheiro, Exploring the concept of s-convexity, Aequat. Math., 74 (2007), 201-209.
[6] G.H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim., (1984), 329-338.
[7] Yuruo Zhang, Jin Rong Wang, On some New Hermite-Hadamard inequalities involving Riemann-Liouville Fractional Integrals, Journal of Inequalities and Applications, 2013, 2013: 220, doi: 10.1186 / 1029-242X-2013-220.

