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Abstract

Here we establish a series of various fractional Polya type integral in-
equalities with the help of generalised right and left fractional derivatives.
We give application to complex valued functions defined on the unit circle.
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1 Introduction

We mention the following famous Polya’s integral inequality, see [12], [13, p,
62], [14] and [15, p. 83].

Theorem 1 Let f (z) be differentiable and not identically a constant on [a,b]
with f (a) = f(b) = 0. Then the exists at least one point £ € [a,b] such that
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In [16], Feng Qi presents the following very interesting Polya type integral
inequality (2), which generalizes (1).
Theorem 2 Let f (x) be differentiable and not identically constant on [a, b] with
fla)=f(®b)=0and M = sup |f' (z)|. Then
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where =~ in (2) is the best constant.
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The above motivate the current paper.

In this article we present univariate fractional Polya type integral inequalities
in various cases, similar to (2).

For the last we need the following fractional calculus background.

Let «a >0, m=1[a],B=a—-m,0< 8 <1, feC(ab]), a,bd C R,
a € [a,b]. The gamma function I' is given by I' (o) = [~ e~*¢t*~'dt. We define
the left Riemann-Liouville integral

(T2 f) (@) = ﬁ / S0 (1 dr, 3)
a < 2 < b. We define the subspace Cg, ([a.b]) of C™ ([a,b]):

Cay ([a,b]) = {f € C™ ([a,b) : JiZ, £ € C* ([a,0]) } (4)

For f € C3, ([a,b]), we define the left generalized a-fractional derivative of
f over [a,b] as
a at+ r(m) '
Da+f = (Jl_ﬂf ) 9 (5)

see [1], p. 24. Canavati first in [5], introduced the above over [0, 1].

Notice that D3 f € C ([a,b]).

We need the following left fractional Taylor’s formula, see [1], pp. 8-10, and
in [5] the same over [0, 1] that appeared first.

Theorem 3 Let f € C¢, ([a,b]).
(i) If « > 1, then

F@)=F @+ 7 @@= a)+ 1 @ TG et 1 (@ e (6)
1 ot
+m/a (x — 1) 1(DaJr )(t)dt, allx € la,b].
(i1) If 0 < a < 1, we have
1 ¢ a—1
f(z)= m/ (x —1t) (D3+f) (t)dt, allx € [a,b]. (7

Furthermore we need:
Let again o > 0, m = [a], 8 = a—m, f € C([a,b]), call the right Riemann-
Liouville fractional integral operator by

1 b a—1
T / (t—2)™ £ (1) dt, (®)

x € [a,b], see also [2], [8], [9], [10], [17]. Define the subspace of functions

(5= f) (z) =

Cir(fa,b]) = {f € C™ ([a,4)) : 1,27 £ € € ([a,B]) } (9)



Define the right generalized a-fractional derivative of f over [a, b] as

I
Dy f = (0" (B2 (10)
see [2]. We set DY_f = f. Notice that D¢ f € C ([a,b]).
From [2], we need the following right Taylor fractional formula.
Theorem 4 Let f € Cf ([a,b]), « >0, m:= [a]. Then
(i) If « > 1, we get
m—1 (k) b
f@):E:fkf)@FWf+%LﬁDﬁfﬂ@, all z € [a,b].  (11)
k=0 ’
(1) If 0 < a < 1, we get
I o1 /1
flx)=J"Dy f(z) = m/ (t—a)*! (Dp_f) (t)dt, allx € [a,b].
(12)

We need from [3]

Definition 5 Let f € C([a,b]), = € [a,b], & > 0, m = [a]. Assume that
f ey ([‘IT'H’,I)D and f € Cg, ([a7 “T*'b]) We define the balanced Canavati
type fractional derivative by

D¢ f(z), for “E <<,

Def (@) :{Dg+f(x), fora§x<%+b. (13)

In [4] we proved the following fractional Polya type integral inequality without
any boundary conditions.

Theorem 6 Let 0 < a < 1, f € C([a,b]). Assume f € C% ([a,*E]) and
fece ([42,5]). Set

My () = max {5l ooy 108 oo} (09)

/abf(:c)d:r

(198 ooy + 108 pose 1) 76—
I'(a+2) ( 2

Then ,
< / 1 ()] da < (15)

a+1 a+1
(b—a)
<M .
) = 1ghxa+2ma
(16)
Inequalities (15), (16) are sharp, namely they are attained by
(z—a)*, z€[a, %

T 2 ] a
ﬂ()_{@—M? xeﬁ#ﬁ]}’0< <L (17)

Clearly here non zero constant functions f are excluded.




The last result also motivates this work.

Remark 7 (see [4]) When a > 1, thus m = [o] > 1, and by assuming that
f® (a) = f® (b)) =0, k= 0,1,...,m — 1, we can prove the same statements
(15), (16), (17) as in Theorem 6. If we set there o = 1 we derive exactly
Theorem 2. So we have generalized Theorem 2. Again here f(™) cannot be a
constant different than zero, equivalently, f cannot be a non-trivial polynomial
of degree m.

We continue here with other interesting univariate fractional Polya type
inequalities.

2 Main Results

We present our first main result.

Theorem 8 Let a > 1, m = [a], f € C([a,b]). Assume f € C%, ([a, %))
and f € Cpt ([“T'H’,b]), such that f®) (a) = (k) (b)=0,k=0,1,....m—1. Set
Ma () = max { [ D2l o ooy 105, ooy - (19
Then
1 b—a a M2 (f) «a
< < e (p—
15T+ < 2 ) D%y aon = Fiaz1)201 0= @)
(20)
Here f cannot be a non-trivial polynomial of degree m.
Proof. By assumption and Theorem 3 we have
1 “ a+b
= — — D¢ 1 21
@)=t [ @0 D5 @d alae o 50, @)

also it holds, by assumtion and Theorem 4, that

. /: (t—2)* " (Dg_f) (t)dt, allze [a;b b] (22)

POl < g [ @07 (D) 0] a
(.73 — a)a—l ofd o a+b
< W/a |(Da+ ) (t)’dt, all z € {a, 5 } . (23)



By (22) we derive

1 ’ a—1 a
|f(x)SFa)/z (t — )" |(Dgf) (1)| dt
Y .
< (br(i) GO [;’bb] (24)

a+b
2

a

|f(x)| dr < %) </a i (:C - a)a71 dm) HD f||L1 a+b]) (25)

:F(a1—|—1) (bg ) 1D 12 252])

and

b b
/m If (@)l dw < % </+b (b—2) 1d$> | Dy fHL1 ) (26)

b_
o (552) 18 Al ey
(25) and (26) that

[ s < s (550 195

1 b—a\" .
=F(a+1>< %) 1Dl <

b—a)®
VI8 Ay e )} T 2)

Therefore we obtain by adding (25

) D5 Al g b])}

masc { | D, £, (o,

proving the claim. m
We continue with

Theorem 9 Let p,g>1: - + +=1a> 5, m = la], f € C(a,b]). Assume
fecd (la ,%b]) and f e ca ([#£2,0]), such that f*) (a) = f®) (b) = 0,
k=0,1,....m—1. When % ; <a< 1, the last boundary conditions are void.

Set

My (f) = max {[| D&y £, (0,0

Dg“_fHLq([aTﬂ,’bD}. (29)

Then

b 1 b—a\*r
/a|f($)dmgr(a)(p(a1)+1)3:(a+117)< 2 > B
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125l gy + 108 2] <

Ms (f)
T(a)(pla=-1)+1)7 (a+i)27s

Again here f cannot be a non-trivial polynomial of degree m.

(b—a)®*s (31)

Proof. By Theorem 3 we have

P02 iy [ @07 (02) 0]
<rm ([ —t)““‘”dt)’l’ ([ oz <t>\th)é
Sula) g(;“_)w 108l o ogeyy o Forall e e [a““’] (32)
That is
PO (;fa)l) . || oy forattze o 5]
Similarly from Theorem 4 we get &
|f (@)] < Fla)/b (t—2)* H[(Dg_f) (t)| dt
gr(la</:(t— (a= ”dt) (/ (D f) ( ]”dt) (34)
< F(la) (;b(;i‘)(:) ;H 1D5fl (ege ) foralloe [“;rbb} . (35)
That is
1012 j 951 ooy forae [20]
(36)

Consequently we obtain by (33) that

a+b

| @l

a+b

: 2 zfaa_H_%dl‘ D¢ atb]y =
T (a)(p(a—1)+1)7 (/ (z-a) >|| S (22
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1 b—a aty o
F(a)(p(a—1)+1)% (a—|—11))( 2 ) ||Da+fHLq([a,aT+b]). (37)

Similarly it holds by (36) that

b
[ @<

2

1 b it ) .
T b—x v dx | ||DY ey =
I')pa—1)+1)7 (/l;b ( ) [e28 fHLq([T,b])

1 b—a aty o
I' (@) (p(a—l)-q—l)% (a—|—1l?) ( 2 ) ||Db7f||Lq([a;b,b])' (38)

Adding (37) and (38) we have

b 1 b—a\*"r
/af(w)ldxﬁr(a)(p(a_l)+l); (a+;)< 2 ) (39)

(IDE A o gy + 1Dl ey ] <

max {105 7, g2z 1257 |, oo}
K@) (pa—1)+ 17 (at3)205

(b—a)*ts

proving the claim. m
Combining Theorem 6, Remark 7, Theorem 8 and Theorem 9, we obtain

Theorem 10 Let any p,q > 1: %—i— % =1L a>1,m=]la], f€C(a,b]). As-
sume f € C2, ([a, “E2]) and f € C5- ([“E2,b]), such that f) (a) = f*) (b) =
0, k=0,1,....m—1.

Then

b
[ 1s@lds <
| {(me[a,a;b] 1Dl o) (M)w

i T (a+2) 2

1 b—a\”
D~ 41
ot D) ( 5 ) 1D Fll Ly fat)) » (41)

125 A o g2 + 108 et (5 a)aﬁ <
P (0) (pla— 1)+ 1)7 (a+ 1) 2 =
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(b—a)**! M, (f)
IM(a+2)22" T (a+1)201

where My (f) as in (14), Mo (f) as in (18) and M3 (f) as in (29).
Here f cannot be a non-trivial polynomial of degree m.

(b_a)av

min {Ml )

Ms (f
[ (a)(p(a—1)+1)

~—

3=

Corollary 11 Here all as in Theorem 10. Then

b
bia/ f(x)dz

(19l o, 253] + 1P5S e .07)
T (O( 4 2) 9a+1

b
sﬁ/ f (@) do <

(b—a)”, (43)

min
1
20T (e + 1)

[z A (25 e
T (a)(p(a—1)+1)» (a + %) gati

a—1 o
(b—a) D fHLl([a,b]) )

. a)aJr%*l S

(b—a)* M; (f)

min{M1 (f) IM(a+2)22" T (a+1)2071 (b—a)* ",
Ms (J:) - — (b - a)a+%71 ‘ (44)
[(a)(p(a—1)+1)" <o¢+§)2w .

In 1938, A. Ostrowski [11] proved the following important inequality:

Theorem 12 Let f : [a,b] — R be continuous on [a,b] and differentiable on
(a,b) whose derivative f' : (a,b) — R is bounded on (a,b), i.e., ||f'| =
sup |f'(t)| < +o0. Then

te(a,b)

a+b

H ()] -0, @5)

< =2
B (b—a)

b
7 | Fwa- 1@

for any x € [a,b]. The constant i is the best possible.



In (45) for z = 2£° we get

b_lafabf(wdt—f(“;b)

We have proved the following

< (T (46)

Theorem 13 Let f € C' ([a,b]), with f (“52) = 0. Then

/bm)dt <O

—a ,
- , 47
7 (47)

where the constant i s the best possible.

So we reproved (2) with only one initial condition.

3 Application

Inequalities for complex valued functions defined on the unit circle were studied
extensively by S. Dragomir, see [6], [7].

We give here our version for these functions involved in a Polya type inequal-
ity, by applying a result of this article.

Let t € [a,b] C [0,27), the unit circle arc A = {z €cC:z=¢" te [a,b]},
and f : A — C be a continuous function. Clearly here there exist functions
u,v : A — R continuous, the real and the complex part of f, respectively, such
that

f(e") =u(e") +iv (). (48)
So that f is continuous, iff u, v are continuous.

Call g(t) = f(€), Iy (t) = u(e™), lo(t) = v (e™), t € [a,b]; so that g :
[a,b] — C and Iy,15 : [a,b] — R are continuous functions in ¢.

If g has a derivative with respect to ¢, then [y, [ have also derivatives with
respect to t. In that case

f (eit) = uy (eit) + vy (eit) , (49)
(i.e. ¢’ (t) =1 () +1l5(¢)), which means
fi (cost +isint) = uy (cost + isint) + ivg (cost + isint) . (50)
Let us call z = cost, y = sint. Then
uy (€") = wy (cost +isint) = u, (z + iy) = w (x,y) =

ouds | Dudy _ ou(e")
dr ot  oyot Oz

. ou (™)
(—sint) + ; cost. (51)



Similarly we find that

v (e') (—sint) + ov (e')

v (e) = o 9 cost. (52)

Since g is continuous on [a, b], then fab f (&™) dt exists. Furthermore it holds
b . b . b .
/ F (e dt = / w (e dt 4 / o () dt. (53)
a a a
We have here that

Tt dt

/\f )| dt < (54)

b
/|u it) |dt+/ v ()] dt = /|z1 |dt+/ b ®)ldt.  (55)

We give the following application of Theorem 10.

=1, a>1,

Theorem 14 Let f € C (A, C), [a,b] C [0,27); any p,q > 1%4—
b ), such that

1:
) and ly,ly € Cg ([“E2,b
0, k=0,1,....m—1. Then

)

m = [a]. Assume l1,l> € C¢, (]a,
k k k k
1 (@) =17 (a) =117 ) =157 )

b b
[ ey < [lr(en]ar<
e e L ) ST
wmin N (*5°) - o
1 b—a\® o
I‘(a—l—l) < 2 > ||D Zl||L1([a,b])7
(1Dl o 007y + D50 s o)) (b_a>a+; N
T (o )(p(a71)+1) (a+;) 2
(12402 oy + D5 e g) 7y
min T(a+t2) ( 5 ) )

1 b—a\" .
r(a+1)< 2 > D%t (0. »

128+ L2l g o) + 1Dl 252 (o)
L) (pla-1)+1)7 (a+1) 2

IN
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(b—a)*t M (Iy)
[(a+2)20" T (a+1)201

min {Ml (ll)

M (lh)
T (a)(p(a—1)+1)7 (a + %) 90y

(b—a)*™! M (Iy)
F(a+2)2“’ I'(a+1)20-1

min{M1 (lg) (bia)aa

M3 (1)
K@) (pa—1)+ 17 (at3)20s

where My (I;) as in (14), Ma (1;) as in (18) and M3 (I;) as in (29), i =1,2.
Here Iy, Iy cannot be non-trivial polynomials of degree m.

(b_ a)OH*% )

References

(b—a)®*5 & + (57)

[1] G.A. Anastassiou, Fractional Differentiation Inequalities, Research Mono-

graph, Springer, New York, 2009.

[2] G.A. Anastassiou, On Right Fractional Calculus, Chaos, Solitons and Frac-

tals, 42 (2009), 365-376.

[3] G.A. Anastassiou, Balanced Canavati type fractional Opial inequalities, to

appear, J. of Applied Functional Analysis, 2014.

[4] G.A. Anastassiou, Fractional Polya type integral inequality, submitted,

2013.

[6] J.A. Canavati, The Riemann-Liouville Integral, Nieuw Archief Voor

Wiskunde, 5 (1) (1987), 53-75.

[6] S.S. Dragomir, Ostrowski’s Type Inequalities for Complex Functions
Defined on wunit Circle with Applications for Unitary Operators in
Hilbert Spaces, article no. 6, 16" vol. 2013, RGMIA, Res. Rep. Coll.,

http://rgmia.org/v16.php.

[7] S.S. Dragomir, Generalized Trapezoidal Type Inequalities for Complex
Functions Defined on Unit Circle with Applications for Unitary Operators
in Hilbert Spaces, article no. 9, 16th vol. 2013, RGMIA, Res. Rep. Coll.,

http://rgmia.org/v16.php.

[8] A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz deriv-
atives, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006),

81-95.

11



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G.S. Frederico, D.F.M. Torres, Fractional Optimal Control in the sense of
Caputo and the fractional Noether’s theorem, International Mathematical
Forum, Vol. 3, No. 10 (2008), 479-493.

R. Gorenflo, F. Mainardi, FEssentials of Fractional Calculus, 2000, Ma-
physto Center, http://www.maphysto.dk/oldpages/events/LevyCAC2000/
MainardiNotes/fm2k0a.ps.

A. Ostrowski, Uber die Absolutabweichung einer differentiabaren Funcktion
von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.

G. Polya, Ein mittelwertsatz fiir Funktionen mehrerer Verdanderlichen, To-
hoku Math. J. 19 (1921), 1-3.

G. Polya and G. Szego, Aufgaben und Lehrsditze aus der Analysis, Volume
I, Springer-Verlag, Berlin, 1925. (German)

G. Polya and G. Szegd, Problems and Theorems in Analysis, Volume I,
Classics in Mathematics, Springer-Verlag, Berlin, 1972.

G. Polya and G Szegd, Problems and Theorems in Analysis, Volume I,
Chinese Edition, 1984.

Feng Qi, Polya type integral inequalities: origin, variants, proofs, refine-
ments, generalizations, equivalences, and applications, article no. 20, 16th
vol. 2013, RGMIA, Res. Rep. Coll., http://rgmia.org/v16.php.

S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Deriv-
atives, Theory and Applications, (Gordon and Breach, Amsterdam, 1993)
[English translation from the Russian, Integrals and Derivatives of Frac-
tional Order and Some of Their Applications (Nauka i Tekhnika, Minsk,
1987)].

12



