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Abstract

Here we study generalised fractional integrals and fractional deriva-
tives. We present the reduction method of Fractional Calculus and we
reduce them to basic fractional integrals and fractional derivatives. We
give a series of generalised Ostrowski type fractional inequalities involving
s�convexity. We apply all of the above to Hadamard and Erdélyi-Kober
fractional integrals and fractional derivatives. We produce also important
generalised fractional Taylor formulae.
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1 The Reduction Method in Fractional Calculus

We use a lot here the following generalised fractional integrals.

De�nition 1 (see also [8, p. 99]) The left and right fractional integrals, respec-
tively, of a function f with respect to given function g are de�ned as follows:
Let a; b 2 R, a < b, � > 0. Here g 2 AC ([a; b]) (absolutely continuous

functions) and is strictly increasing, f 2 L1 ([a; b]). We set�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) f (t) dt; x � a; (1)

clearly
�
I�a+;gf

�
(a) = 0,
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and �
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) f (t) dt; x � b; (2)

clearly
�
I�b�;gf

�
(b) = 0:

When g is the identity function id, we get that I�a+;id = I
�
a+ and I

�
b�;id = I

�
b�

the ordinary left and right Riemann-Liouville fractional integrals, where�
I�a+f

�
(x) =

1

� (�)

Z x

a

(x� t)��1 f (t) dt, x � a; (3)

�
I�a+f

�
(a) = 0, and

�
I�b�f

�
(x) =

1

� (�)

Z b

x

(t� x)��1 f (t) dt, x � b; (4)

�
I�b�f

�
(b) = 0:

We need

Lemma 2 Let g 2 AC ([a; b]) which is strictly increasing and f 2 L1 ([a; b]).
Then

kfk1;[a;b] �


f � g�1

1;[g(a);g(b)]

; (5)

i.e.
�
f � g�1

�
2 L1 ([g (a) ; g (b)]) :

If additionally g�1 2 AC ([g (a) ; g (b)]) then

kfk1;[a;b] =


f � g�1

1;[g(a);g(b)]

: (6)

Proof. Here m stands for the Lebesgue measure. By de�nition we have

kfk1;[a;b] = ess sup jf (t)j

= inf
�
M : m

�
t :
���f � g�1� (g (t))�� > M	 = m ft : jf (t)j > Mg = 0	 : (7)

Furthermore we have

f � g�1

1;[g(a);g(b)]
= inf

�
L : m

�
g (t) :

���f � g�1� (g (t))�� > L	 = 0	 : (8)

Because g is absolutely continuous and strictly increasing function on [a; b], by
[9, p. 108] exercise 14, we get that

m
�
g (t) :

���f � g�1� (g (t))�� > M	 = m �g ��t : ���f � g�1� (g (t))�� > M	�� = 0;
(9)

given that m
�
t :
���f � g�1� (g (t))�� > M	 = 0:

Therefore eachM of (7) ful�llsM 2
�
L : m

�
g (t) :

���f � g�1� (g (t))�� > L	 = 0	 :
The last implies (5). Similarly arguing reverse we derive (6).
We use (5) in the next
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Remark 3 We observe that�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1
�
f � g�1

�
(g (t)) g0 (t) dt =

(by change of variable for Lebesgue integrals)

1

� (�)

Z g(x)

g(a)

(g (x)� z)��1
�
f � g�1

�
(z) dz =

�
I�g(a)+

�
f � g�1

��
(g (x)) ; x � a;

(11)
equivalently g (x) � g (a) :
That is in the terms and assumtions of De�nition 1 we get�

I�a+;gf
�
(x) =

�
I�g(a)+

�
f � g�1

��
(g (x)) ; for x � a: (12)

Similarly we observe that

�
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1
�
f � g�1

�
(g (t)) g0 (t) dt

=
1

� (�)

Z g(b)

g(x)

(z � g (x))��1
�
f � g�1

�
(z) dz =

�
I�g(b)�

�
f � g�1

��
(g (x)) ;

(13)
for x � b:
That is �

I�b�;gf
�
(x) =

�
I�g(b)�

�
f � g�1

��
(g (x)) ; for x � b: (14)

So by (12) and (14) we have reduced the general fractional integrals to the ordi-
nary left and right Riemann-Liouville fractional integrals.

We need

De�nition 4 ([7]) Let 0 < a < b < 1, � > 0. The left and right Hadamard
fractional integrals of order � are given by

�
J�a+f

�
(x) =

1

� (�)

Z x

a

�
ln
x

y

���1
f (y)

y
dy; x � a; (15)

and �
J�b�f

�
(x) =

1

� (�)

Z b

x

�
ln
y

x

���1 f (y)
y
dy; x � b; (16)

respectively.
Here we take f 2 L1 ([a; b]) :
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Comparing to De�nition 1 we have g (x) = lnx on [a; b], 0 < a < b < 1:
Comparing to (12) and (14) we get�

J�a+f
�
(x) =

�
I�(ln a)+ (f � exp)

�
(lnx) ; for x � a; (17)

and �
J�b�f

�
(x) =

�
I�(ln b)� (f � exp)

�
(lnx) ; for x � b: (18)

We also consider

De�nition 5 Let 0 < a < b < 1; �; � > 0 and � > �1. Let f 2 L1 ([a; b]).
We mention here the left and right Erdélyi-Kober type fractional integrals, re-
spectively: as in [10] we de�ne

�
I�a+;�;�f

�
(x) =

�x��(�+�)

� (�)

Z x

a

(x� � t�)��1 t�(�+1)�1f (t) dt; x � a; (19)

and similarly we also de�ne

�
I�b�;�;�f

�
(x) =

�x��(�+�)

� (�)

Z b

x

(t� � x�)��1 t�(�+1)�1f (t) dt; x � b: (20)

Remark 6 (following De�nition 5) The above give rise to the following gener-
alised weighted left and right fractional integrals.
We set �

K�
a+;�;�f

�
(x) = x�(�+�)

�
I�a+;�;�f

�
(x) = (21)

�

� (�)

Z x

a

(x� � t�)��1 t�(�+1)�1f (t) dt =

1

� (�)

Z x

a

(x� � t�)��1 (t��f (t))�t��1dt =

1

� (�)

Z x

a

(x� � t�)��1 (t��f (t)) dt� =

(setting z = t�)

1

� (�)

Z x�

a�
(x� � z)��1

�
z�f

�
z
1
�

��
dz =

�
I�a�+

�
z�f

�
z
1
�

���
(x�) , x � a;

(22)
that is �

K�
a+;�;�f

�
(x) =

�
I�a�+

�
z�f

�
z
1
�

���
(x�) , x � a: (23)

Similarly we put �
K�
b�;�;�f

�
(x) = x�(�+�)

�
I�b�;�;�f

�
(x) =
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1

� (�)

Z b�

x�
(z � x�)��1

�
z�f

�
z
1
�

��
dz =

�
I�b��

�
z�f

�
z
1
�

���
(x�) , x � b;

(24)
that is �

K�
b�;�;�f

�
(x) =

�
I�b��

�
z�f

�
z
1
�

���
(x�) , x � b: (25)

Comparing to De�nition 1 here, we have that g (x) = x� 2 C1 ([a; b]), thus
x� 2 AC ([a; b]) and it is strictly increasing. Clearly g�1 (z) = z 1

� , z 2 [a�; b�].
We set F (t) = t��f (t), t 2 [a; b]. Clearly we have F 2 L1 ([a; b]). Notice that
F � g�1 = F � (id)

1
� , and F (t) =

�
F � g�1

�
(g (t)) =

�
F � g�1

�
(z) = z�f

�
z
1
�

�
.

Thus a formal description of (23) and (25) follows.
We have �

K�
a+;�;�f

�
(x) =

�
I�a�+

�
F � (id)

1
�

��
(x�) , x � a; (26)

and �
K�
b�;�;�f

�
(x) =

�
I�b��

�
F � (id)

1
�

��
(x�) , x � b; (27)

where F (x) = x��f (x), x 2 [a; b].

We introduce

De�nition 7 Let � > 0, m = [�], � = � � m, 0 < � < 1, f 2 C ([a; b]),
[a; b] � R; g 2 AC ([a; b]), g is strictly increasing. We de�ne the subspace
C�a+;g ([a; b]) of C

m ([a; b]):

C�a+;g ([a; b]) =
n
f 2 Cm ([a; b]) :

�
I1��a+;gf

(m)
�
2 C1 ([a; b])

o
: (28)

Denote C�a+ = C
�
a+;id:

For f 2 C�a+;g ([a; b]), we de�ne the left g-generalised �-fractional derivative
of f over [a; b] as

D�
a+;g (f) =

�
I1��a+;gf

(m)
�0
: (29)

When g = id, we denote

D�
a+f =

�
I1��a+ f (m)

�0
; (30)

called the left generalized �-fractional derivative of f over [a; b], see [4], [2], p.
24.

We also introduce

De�nition 8 Let � > 0, m = [�], � = � � m, f 2 C ([a; b]), [a; b] � R;
g 2 AC ([a; b]), g is strictly increasing. We de�ne the subspace C�b�;g ([a; b]) of
Cm ([a; b]):

C�b�;g ([a; b]) =
n
f 2 Cm ([a; b]) :

�
I1��b�;gf

(m)
�
2 C1 ([a; b])

o
: (31)
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Denote C�b� = C
�
b�;id:

For f 2 C�b�;g ([a; b]), we de�ne the right g-generalised �-fractional derivative
of f over [a; b] as

D�
b�;g (f) = (�1)

m�1
�
I1��b�;gf

(m)
�0
: (32)

When g = id, we denote

D�
b�f = (�1)

m�1
�
I1��b� f (m)

�0
; (33)

called the right generalized �-fractional derivative of f over [a; b], see [3].

Regarding fractional derivatives in this article from now on we consider only
0 < � < 1, i.e. m = 0 and � = �.
So in this case we get

�
D�
a+;gf

�
(x) =

1

� (1� �)
d

dx

Z x

a

(g (x)� g (t))�� g0 (t) f (t) dt; (34)

�
D�
a+f

�
(x) =

1

� (1� �)
d

dx

Z x

a

(x� t)�� f (t) dt; (35)

and

�
D�
b�;gf

�
(x) = � 1

� (1� �)
d

dx

Z b

x

(g (t)� g (x))�� g0 (t) f (t) dt; (36)

�
D�
b�f

�
(x) = � 1

� (1� �)
d

dx

Z b

x

(t� x)�� f (t) dt; (37)

for any x 2 [a; b] :
We mention the following fractional Taylor formulae.

Theorem 9 1) (see [2], pp. 8-10, [4]) Let f 2 C�a+ ([a; b]), 0 < � < 1. Then

f (x) =
1

� (�)

Z x

a

(x� t)��1
�
D�
a+f

�
(t) dt =

�
I�a+

�
D�
a+f

��
(x) , x 2 [a; b] :

(38)
2) (see [3]) Let f 2 C�b� ([a; b]), 0 < � < 1. Then

f (x) =
1

� (�)

Z b

x

(t� x)��1
�
D�
b�f

�
(t) dt =

�
I�b�

�
D�
b�f

��
(x) , x 2 [a; b] :

(39)

We make
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Remark 10 Here 0 < � < 1 and g 2 C1 ([a; b]), g is strictly increasing. Fur-
thermore we assume that

�
D�
g(a)+

�
f � g�1

��
(g (x)) exists. By (12) we have�

I1��a+;gf
�
(x) =

�
I1��g(a)+

�
f � g�1

��
(g (x)) ; x 2 [a; b] : (40)

Hence there exists�
D�
a+;g (f)

�
(x) =

�
I1��a+;gf

�0
(x)

(40)
=
�
I1��g(a)+

�
f � g�1

��0
(g (x)) g0 (x)

=
�
D�
g(a)+

�
f � g�1

��
(g (x)) g0 (x) ; x 2 [a; b] : (41)

We have established that there exists�
D�
a+;g (f)

�
(x) =

�
D�
g(a)+

�
f � g�1

��
(g (x)) g0 (x) ; x 2 [a; b] ; f 2 C ([a; b]) :

(42)

Next we assume that there exists
�
D�
g(b)�

�
f � g�1

��
(g (x)). By (14) we get�

I1��b�;gf
�
(x) =

�
I1��g(b)�

�
f � g�1

��
(g (x)) ; x 2 [a; b] : (43)

Hence there exists�
D�
b�;g (f)

�
(x) = �

�
I1��b�;gf

�0
(x)

(43)
= �

�
I1��g(b)�

�
f � g�1

��0
(g (x)) g0 (x)

=
�
D�
g(b)�

�
f � g�1

��
(g (x)) g0 (x) ; x 2 [a; b] : (44)

We have proved that there exists�
D�
b�;g (f)

�
(x) =

�
D�
g(b)�

�
f � g�1

��
(g (x)) g0 (x) ; x 2 [a; b] ; f 2 C ([a; b]) :

(45)

Next we apply (42) and (45).
We make

Remark 11 (all as in De�nition 4) We introduce the following Hadamard type
fractional derivatives, see (46), (47). Here f 2 C ([a; b]). Let 0 < � < 1, and

that
�
D�
(ln a)+ (f � exp)

�
(lnx) exists for x 2 [a; b], a > 0.

Then by (42), we get

�
D�
a+;ln (f)

�
(x) =

�
D�
(ln a)+ (f � exp)

�
(lnx)

x
; x 2 [a; b] : (46)

Assume next that
�
D�
(ln b)� (f � exp)

�
(lnx) exists for x 2 [a; b].

Then by (45), we �nd

�
D�
b�;ln (f)

�
(x) =

�
D�
(ln b)� (f � exp)

�
(lnx)

x
; x 2 [a; b] : (47)
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We make

Remark 12 (refer to De�nition 5, Remark 6) Let 0 < � < 1. By (26) we get�
K1��
a+;�;�f

�
(x) =

�
I1��a�+

�
F � (id)

1
�

��
(x�) ; x 2 [a; b] : (48)

And by (27)�
K1��
b�;�;�f

�
(x) =

�
I1��b��

�
F � (id)

1
�

��
(x�) ; x 2 [a; b] : (49)

Above F (x) = x��f (x), x 2 [a; b].
Assume that

d
�
I1��a�+

�
F � (id)

1
�

��
(x�)

dx�
(50)

and
d
�
I1��b��

�
F � (id)

1
�

��
(x�)

dx�
(51)

exist and are continuous in x� 2 [a�; b�], f 2 C ([a; b]).
Then

d
�
K1��
a+;�;�f

�
(x)

dx
=
d
�
I1��a�+

�
F � (id)

1
�

��
(x�)

dx�
�x��1; (52)

and
d
�
K1��
b�;�;�f

�
(x)

dx
=
d
�
I1��b��

�
F � (id)

1
�

��
(x�)

dx�
�x��1; (53)

exist and are continuous in x 2 [a; b] :
So we introduce the modi�ed Erdélyi-Kober type left and right fractional

derivatives of f 2 C ([a; b]), as follows:

�
D�
a+:�;�f

�
(x) =

d
�
K1��
a+;�;�f

�
(x)

dx
; (54)

and �
D�
b�:�;�f

�
(x) = �

d
�
K1��
b�;�;�f

�
(x)

dx
; (55)

x 2 [a; b], 0 < � < 1:
That is, it holds�

D�
a+:�;�f

�
(x) =

�
D�
a�+

�
F � (id)

1
�

��
(x�)�x��1; (56)

and �
D�
b�:�;�f

�
(x) =

�
D�
b��

�
F � (id)

1
�

��
(x�)�x��1; (57)

x 2 [a; b], 0 < � < 1, a > 0.
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We make

Remark 13 (continuation of Remark 11) Hence f 2 C ([a; b]). By (46) we get�
D�
(ln a)+ (f � exp)

�
(lnx) = x

�
D�
a+;ln (f)

�
(x) = eln x

�
D�
a+;ln (f)

� �
eln x

�
;

(58)
x 2 [a; b] :
Hence by (38) we obtain

f (x) = f
�
eln x

�
=
�
I�(ln a)+

�
D�
(ln a)+ (f � exp)

��
(lnx) = (59)�

I�(ln a)+
�
et
�
D�
a+;ln (f)

� �
et
���

(lnx) =

1

� (�)

Z ln x

ln a

(lnx� t)��1 et
�
D�
a+;ln (f)

� �
et
�
dt; (60)

x 2 [a; b] :
By (47) we have�
D�
(ln b)� (f � exp)

�
(lnx) = x

�
D�
b�;ln (f)

�
(x) = eln x

�
D�
b�;ln (f)

� �
eln x

�
; (61)

x 2 [a; b] :
Hence by (39) we obtain

f (x) = f
�
eln x

�
=
�
I�(ln b)�

�
D�
(ln b)� (f � exp)

��
(lnx) =�

I�(ln b)�
�
et
�
D�
b�;ln (f)

� �
et
���

(lnx) =

1

� (�)

Z ln b

ln x

(t� lnx)��1 et
�
D�
b�;ln (f)

� �
et
�
dt; (62)

x 2 [a; b] :

We have proved the following Taylor Hadamard type fractional formulae.

Theorem 14 Let 0 < � < 1, and all as in De�nition 4, f 2 C ([a; b]), a > 0.
1) Assume that

�
D�
(ln a)+ (f � exp)

�
(lnx) exists and it is continuous, x 2

[a; b]. Then

f (x) =
�
I�(ln a)+

�
et
�
D�
a+;ln (f)

� �
et
���

(lnx) =

1

� (�)

Z ln x

ln a

(lnx� t)��1 et
�
D�
a+;ln (f)

� �
et
�
dt; (63)

x 2 [a; b] :
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2) Assume that
�
D�
(ln b)� (f � exp)

�
(lnx) exists and it is continuous, x 2

[a; b]. Then

f (x) =
�
I�(ln b)�

�
et
�
D�
b�;ln (f)

� �
et
���

(lnx)

=
1

� (�)

Z ln b

ln x

(t� lnx)��1 et
�
D�
b�;ln (f)

� �
et
�
dt; (64)

x 2 [a; b] :

We make

Remark 15 (continuation of Remark 12) By (56) and (57) we get�
D�
a�+

�
F � (id)

1
�

��
(x�) =

x1��

�

�
D�
a+;�;�f

�
(x)

=
(x�)(

1
��1)

�

�
D�
a+;�;�f

� �
(x�)

1
�

�
; (65)

and �
D�
b��

�
F � (id)

1
�

��
(x�) =

x1��

�

�
D�
b�;�;�f

�
(x)

=
(x�)(

1
��1)

�

�
D�
b�;�;�f

� �
(x�)

1
�

�
; (66)

x 2 [a; b], 0 < � < 1; f 2 C ([a; b]). Above assume
�
D�
a�+

�
F � (id)

1
�

��
(x�),�

D�
b��

�
F � (id)

1
�

��
(x�) exist and are continuous in x� 2 [a�; b�].

Hence, by (38) it holds

x��f (x) =
�
F � (id)

1
�

�
(x�) =

�
I�a�+

�
D�
a�+

�
F � (id)

1
�

���
(x�)

=
1

�

�
I�a�+

�
t(

1
��1)

�
D�
a+;�;�f

� �
t
1
�

���
(x�) (67)

=
1

�� (�)

Z x�

a�
(x� � t)��1 t( 1��1)

�
D�
a+;�;�f

� �
t
1
�

�
dt; x 2 [a; b] : (68)

Similarly, by (39) we derive

x��f (x) =
�
F � (id)

1
�

�
(x�) =

�
I�b��

�
D�
b��

�
F � (id)

1
�

���
(x�) (69)

=
1

�

�
I�b��

�
t(

1
��1)

�
D�
b�;�;�f

� �
t
1
�

���
(x�)

=
1

�� (�)

Z b�

x�
(t� x�)��1 t( 1��1)

�
D�
b�;�;�f

� �
t
1
�

�
dt; x 2 [a; b] : (70)

We give the following Taylor Erdélyi-Kober type fractional formulae.
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Theorem 16 Let 0 < � < 1, all as in De�nition 5, (21), (24), (54), (55),
f 2 C ([a; b]), a > 0; F (x) = x��f (x), x 2 [a; b] :
1) Assume that

�
D�
a�+

�
F � (id)

1
�

��
(x�) exists and it is continuous in x� 2

[a�; b�]. Then

f (x) =
x���

�

�
I�a�+

�
t(

1
��1)

�
D�
a+;�;�f

� �
t
1
�

���
(x�)

=
x���

�� (�)

Z x�

a�
(x� � t)��1 t( 1��1)

�
D�
a+;�;�f

� �
t
1
�

�
dt; x 2 [a; b] : (71)

2) Assume that
�
D�
b��

�
F � (id)

1
�

��
(x�) exists and it is continuous in x� 2

[a�; b�]. Then

f (x) =
x���

�

�
I�b��

�
t(

1
��1)

�
D�
b�;�;�f

� �
t
1
�

���
(x�)

=
x���

�� (�)

Z b�

x�
(t� x�)��1 t( 1��1)

�
D�
b�;�;�f

� �
t
1
�

�
dt; x 2 [a; b] : (72)

2 Fractional Ostrowski type Inequalities

We need the following

Lemma 17 ([11]) Let f : [a; b] ! R be a di¤erentiable mapping on (a; b) with
a < b. If f 0 2 L1 ([a; b]), then for all x 2 [a; b] and � > 0 we have:�

(x� a)� + (b� x)�

b� a

�
f (x)� � (�+ 1)

(b� a)
�
I�x�f (a) + I

�
x+f (b)

�
=

(x� a)�+1

b� a

Z 1

0

t�f 0 (tx+ (1� t) a) dt� (b� x)
�+1

b� a

Z 1

0

t�f 0 (tx+ (1� t) b) dt:
(73)

By (73), (12), (14), we obtain

Lemma 18 Let f 2 C ([a; b]), g 2 C1 ([a; b]), g strictly increasing on [a; b],
f � g�1 di¤erentiable on (g (a) ; g (b)) with

�
f � g�1

�0 2 L1 ([g (a) ; g (b)]), x 2
[a; b], a < b, a; b 2 R, � > 0. Then�

(g (x)� g (a))� + (g (b)� g (x))�

g (b)� g (a)

�
f (x)�

� (�+ 1)

(g (b)� g (a))
��
I�x�;gf

�
(a) +

�
I�x+;gf

�
(b)
�
=

11



(g (x)� g (a))�+1

(g (b)� g (a))

Z 1

0

t�
�
f � g�1

�0
(tg (x) + (1� t) g (a)) dt (74)

� (g (b)� g (x))
�+1

(g (b)� g (a))

Z 1

0

t�
�
f � g�1

�0
(tg (x) + (1� t) g (b)) dt:

We apply (74) for g (x) = lnx, x 2 [a; b].

Lemma 19 Let 0 < a < b < 1, � > 0. Let f 2 C ([a; b]), (f � exp) is
di¤erentiable on (ln a; ln b) with (f � exp)0 2 L1 ([ln a; ln b]), x 2 [a; b]. Then �

ln xa
��
+
�
ln b

x

��
ln b

a

!
f (x)� � (�+ 1)

ln
�
b
a

� ��
J�x�f

�
(a) +

�
J�x+f

�
(b)
�
=

�
ln xa

��+1
ln b

a

Z 1

0

t� (f � exp)0 (t lnx+ (1� t) ln a) dt

�
�
ln b

x

��+1
ln b

a

Z 1

0

t� (f � exp)0 (t lnx+ (1� t) ln b) dt; (75)

where J�x�f are the left and right Hadamard fractional integrals of order � an-
chored at x 2 [a; b], see (15), (16).

We apply (74) for g (x) = x�, � > 0, x 2 [a; b] :

Lemma 20 Let 0 < a < b < 1, � > 0, f 2 C ([a; b]). Assume
�
F � (id)

1
�

�
is di¤erentiable on (a�; b�) with

�
F � (id)

1
�

�0
2 L1 ([a�; b�]), x 2 [a; b]. Here

F (x) = x��f (x), x 2 [a; b], � > �1. Then�
(x� � a�)� + (b� � x�)�

b� � a�

�
x��f (x)�

� (�+ 1)

(b� � a�)
��
K�
x�;�;�f

�
(a) +

�
K�
x+;�;�f

�
(b)
�
=

(x� � a�)�+1

(b� � a�)

Z 1

0

t�
�
F � (id)

1
�

�0
(tx� + (1� t) a�) dt

� (b
� � x�)�+1

(b� � a�)

Z 1

0

t�
�
F � (id)

1
�

�0
(tx� + (1� t) b�) dt; (76)

where
�
K�
x�;�;�f

�
as in (26), (27).

We need

12



De�nition 21 ([6]) A function f : [0;1) ! R is said to be s-convex in the
second sense if

f (�x+ (1� �) y) � �sf (x) + (1� �)s f (y) ; (77)

for all x; y 2 [0;1), � 2 [0; 1] and for some �xed s 2 (0; 1]:
This class of s-convex functions is denoted by K2

s .
When s = 1, s-convexity reduces to ordinary convexity.
If ���holds in (77), we talk about s-concavity in the second sense.

In our proofs it is used a lot and it is built in the following

Theorem 22 ([5]) Suppose that f : [0;1)! [0;1) is an s-convex function in
the second sense, where s 2 (0; 1], and let a; b 2 [0;1), a < b. If f 0 2 L1 ([a; b]),
then it holds

2s�1f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

s+ 1
; (78)

where the constant 1
s+1 is the best possible in the second inequality.

We are also motivated by the following Ostrowski type inequality in

Theorem 23 ([1]) Let f : I � [0;1) ! R be a di¤erentiable mapping on I0

such that f 0 2 L1 ([a; b]), where a; b 2 I, a < b. If jf 0j is s-convex in the second
sense on [a; b] for some �xed s 2 (0; 1] and jf 0 (x)j �M , for all x 2 [a; b], then�����f (x)� 1

b� a

Z b

a

f (t) dt

����� � M

b� a

"
(x� a)2 + (b� x)2

s+ 1

#
; (79)

for each x 2 [a; b] :

We need

Theorem 24 ([11]) Let f : [a; b] � [0;1) ! R, be a di¤erentiable mapping
on (a; b) with a < b, such that f 0 2 L1 ([a; b]). If jf 0j is s-convex in the second
sense on [a; b] for some �xed s 2 (0; 1] and jf 0 (x)j �M , x 2 [a; b], � > 0, then

�x (f) :=

����� (x� a)� + (b� x)�b� a

�
f (x)� � (�+ 1)

(b� a)
�
I�x�f (a) + I

�
x+f (b)

�����
� M

b� a

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

�"
(x� a)�+1 + (b� x)�+1

�+ s+ 1

#
: (80)

We give the following general fractional Ostrowski type inequality. The proof
comes by Lemma 18 and Theorem 24.
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Theorem 25 Let f 2 C ([a; b]), g 2 C1 ([a; b]), g strictly increasing on [a; b],
f � g�1 di¤erentiable on (g (a) ; g (b)) with

�
f � g�1

�0 2 L1 ([g (a) ; g (b)]), x 2
[a; b], a < b, a; b 2 R, � > 0. Assume

����f � g�1�0��� is s-convex in the second sense
on [g (a) ; g (b)] � [0;1) for some �xed s 2 (0; 1] and

����f � g�1�0 (g (x))��� � M ,
x 2 [a; b]. Then

�g(x) (f) :=

����� (g (x)� g (a))� + (g (b)� g (x))�g (b)� g (a)

�
f (x)�

� (�+ 1)

(g (b)� g (a))
��
I�x�;gf

�
(a) +

�
I�x+;gf

�
(b)
�����

� M

(g (b)� g (a))

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

�
�"

(g (x)� g (a))�+1 + (g (b)� g (x))�+1

�+ s+ 1

#
: (81)

We need

Theorem 26 ([11]) All as in Theorem 24, but here jf 0jq is s-convex in the
second sense on [a; b] for some �xed s 2 (0; 1], p; q > 1 : 1p +

1
q = 1. Then

�x (f) �
M

(1 + p�)
1
p

�
2

s+ 1

� 1
q

"
(x� a)�+1 + (b� x)�+1

b� a

#
: (82)

We apply Theorem 26 and Lemma 18. We give the following fractional
Ostrowski type inequality.

Theorem 27 All as in Theorem 25, however here
����f � g�1�0���q is s-convex in

the second sense on [g (a) ; g (b)] � [0;1) for some �xed s 2 (0; 1], p; q > 1 :
1
p +

1
q = 1. Then

�g(x) (f) �
M

(1 + p�)
1
p

�
2

s+ 1

� 1
q

"
(g (x)� g (a))�+1 + (g (b)� g (x))�+1

g (b)� g (a)

#
:

(83)

We need

Theorem 28 ([11]) All as in Theorem 24, but here jf 0jq is s-convex in the
second sense on [a; b] for some �xed s 2 (0; 1], with q � 1. Then

�x (f) �M
�

1

1 + �

�1� 1
q
�

1

�+ s+ 1

� 1
q

�

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

� 1
q

"
(x� a)�+1 + (b� x)�+1

b� a

#
: (84)
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We give with the use of (84) the following

Theorem 29 Here all as in Theorem 27, however q � 1, p is not related. Then

�g(x) (f) �M
�

1

1 + �

�1� 1
q
�

1

�+ s+ 1

� 1
q

�

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

� 1
q

"
(g (x)� g (a))�+1 + (g (b)� g (x))�+1

g (b)� g (a)

#
: (85)

We need

Theorem 30 ([11]) All as in Theorem 24, but here jf 0jq is s-concave in the
second sense on [a; b] for some �xed s 2 (0; 1], p; q > 1 : 1p +

1
q = 1. Then

�x (f) �
2
(s�1)
q

(1 + p�)
1
p (b� a)

�

�
(x� a)�+1

����f 0�x+ a2
�����+ (b� x)�+1 ����f 0�b+ x2

������ : (86)

Using (86) we get

Theorem 31 All as in Theorem 25, but here
����f � g�1�0���q is s-concave in the

second sense on [g (a) ; g (b)] � [0;1) for some �xed s 2 (0; 1], p; q > 1 : 1p+
1
q =

1. Then

�g(x) (f) �
2
(s�1)
q

(1 + p�)
1
p (g (b)� g (a))

�

�
(g (x)� g (a))�+1

�����f � g�1�0�g (x) + g (a)2

�����+ (87)

(g (b)� g (x))�+1
�����f � g�1�0�g (b) + g (x)2

������ :
We make

Remark 32 Let 0 < a < b <1, � > 0. We have that

�ln x (f) =

�����
 �
ln xa

��
+
�
ln b

x

��
ln b

a

!
f (x)

�� (�+ 1)
ln b

a

��
J�x�f

�
(a) +

�
J�x+f

�
(b)
������ ; (88)
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where J�x�f are the Hadamard fractional integrals, see (15), (16), and

�x� (f) =

����� (x� � a�)� + (b� � x�)�b� � a�

�
x��f (x)

�� (�+ 1)
(b� � a�)

��
K�
x�;�;�f

�
(a) +

�
K�
x+;�;�f

�
(b)
����� ; (89)

where K�
x�;�;� (f) as in (26), (27), the modi�ed Erdélyi-Kober type fractional

integrals, see also (19), (20), (21), and (24), where � > 0, � > �1:

Using Theorem 25 we get

Theorem 33 Let 0 < a < b < 1, � > 0. Let f 2 C ([a; b]), (f � exp) is
di¤erentiable on (ln a; ln b) with (f � exp)0 2 L1 ([ln a; ln b]), x 2 [a; b]. Assume��(f � exp)0�� is s-convex in the second sense on [ln a; ln b] � [0;1) for some �xed
s 2 (0; 1] and

��(f � exp)0 (lnx)�� �M , x 2 [a; b]. Then
�ln x (f) �

M

ln b
a

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

�
�

"�
ln xa

��+1
+
�
ln b

x

��+1
�+ s+ 1

#
: (90)

Using Theorem 27 we derive

Theorem 34 All as in Theorem 33, but here
��(f � exp)0��q is s-convex in the

second sense on [ln a; ln b] � [0;1) for some �xed s 2 (0; 1], p; q > 1 : 1p+
1
q = 1.

Then

�ln x (f) �
M

(1 + p�)
1
p

�
2

s+ 1

� 1
q

"�
ln xa

��+1
+
�
ln b

x

��+1
ln b

a

#
: (91)

Using Theorem 29 we derive

Theorem 35 All as in Theorem 34, however q � 1, p is not related. Then

�ln x (f) �M
�

1

1 + �

�1� 1
q
�

1

�+ s+ 1

� 1
q

�

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

� 1
q

"�
ln xa

��+1
+
�
ln b

x

��+1
ln b

a

#
: (92)

Based on Theorem 31 we produce
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Theorem 36 All as in Theorem 33, however here
��(f � exp)0��q is s-concave in

the second sense on [ln a; ln b] � [0;1) for some �xed s 2 (0; 1], p; q > 1 :
1
p +

1
q = 1. Then

�ln x (f) �
2
(s�1)
q

(1 + p�)
1
p
�
ln b

a

� �
"�
ln
x

a

��+1 ����(f � exp)0� ln (xa)2

�����+ �ln bx
��+1 ����(f � exp)0� ln (bx)2

�����
#
: (93)

Based on Theorem 25 we give

Theorem 37 Let 0 < a < b < 1; f 2 C ([a; b]), �; � > 0, � > �1. Assume�
F � (id)

1
�

�
is di¤erentiable on (a�; b�) with

�
F � (id)

1
�

�0
2 L1 ([a�; b�]), x 2

[a; b]. Here F (x) = x��f (x), x 2 [a; b]. Assume
�����F � (id) 1� �0���� is s-convex in

the second sense on [a�; b�] for some �xed s 2 (0; 1] and
�����F � (id) 1� �0 (x�)���� �

M , x 2 [a; b]. Then

�x� (f) �
M

(b� � a�)

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

�
�

"
(x� � a�)�+1 + (b� � x�)�+1

�+ s+ 1

#
: (94)

By Theorem 27 we get

Theorem 38 All as in Theorem 37, however here

�����F � (id) 1� �0����q is s-convex
in the second sense on [a�; b�] for some �xed s 2 (0; 1], p; q > 1 : 1p +

1
q = 1.

Then

�x� (f) �
M

(1 + p�)
1
p

�
2

s+ 1

� 1
q

"
(x� � a�)�+1 + (b� � x�)�+1

b� � a�

#
: (95)

Using Theorem 29 we get

Theorem 39 Here all as in Theorem 38, however q � 1, p is not related. Then

�x� (f) �M
�

1

1 + �

�1� 1
q
�

1

�+ s+ 1

� 1
q

�

�
1 +

� (�+ 1)� (s+ 1)

� (�+ s+ 1)

� 1
q

"
(x� � a�)�+1 + (b� � x�)�+1

b� � a�

#
: (96)
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Using Theorem 31 we obtain

Theorem 40 All as in Theorem 37, however here

�����F � (id) 1� �0����q is s-concave
in the second sense on [a�; b�] for some �xed s 2 (0; 1], p; q > 1 : 1p +

1
q = 1.

Then

�x� (f) �
2
(s�1)
q

(1 + p�)
1
p (b� � a�)

�

�
(x� � a�)�+1

�����F � (id) 1� �0�x� + a�2

�����+
(b� � x�)�+1

�����F � (id) 1� �0�b� + x�2

������ : (97)

3 Addendum

We make

Remark 41 Let 0 < � < 1, f 2 C ([a; b]), g 2 C1 ([a; b]), g strictly increasing;�
D�
g(a)+

�
f � g�1

��
(g (x)),

�
D�
g(b)�

�
f � g�1

��
(g (x)) exist and are continuous

on [g (a) ; g (b)]. Also assume g0 (x) 6= 0, almost all x 2 [a; b].
Then by (42) we get�

D�
g(a)+

�
f � g�1

��
(g (x)) = (g0 (x))

�1 �
D�
a+;g (f)

�
(x) ; (98)

almost all x 2 [a; b] :
Also by (45) we get�

D�
g(b)�

�
f � g�1

��
(g (x)) = (g0 (x))

�1 �
D�
b�;g (f)

�
(x) ; (99)

almost all x 2 [a; b] :
Then by (38) and (39) we obtain

f (x) =
�
f � g�1

�
(g (x)) = I�g(a)+

�
D�
g(a)+

�
f � g�1

��
(g (x))

(98)
=

1

� (�)

Z g(x)

g(a)

(g (x)� t)��1 (g0 (t))�1
�
D�
a+;g (f)

�
(t) dt; (100)

and

f (x) =
�
f � g�1

�
(g (x)) = I�g(b)�

�
D�
g(b)�

�
f � g�1

��
(g (x))

(99)
=

1

� (�)

Z g(b)

g(x)

(t� g (x))��1 (g0 (t))�1
�
D�
b�;g (f)

�
(t) dt; (101)

for any x 2 [a; b] :
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We have proved the following generalized fractional Taylor formulae.

Theorem 42 Let 0 < � < 1, f 2 C ([a; b]), g 2 C1 ([a; b]), g strictly increasing;
each of

�
D�
g(a)+

�
f � g�1

��
(g (x)),

�
D�
g(b)�

�
f � g�1

��
(g (x)) exists and it is

continuous on [g (a) ; g (b)]. Assume that g0 (x) 6= 0, for almost all x 2 [a; b].
Then
1)

f (x) = I�g(a)+

�
D�
g(a)+

�
f � g�1

��
(g (x)) =

1

� (�)

Z g(x)

g(a)

(g (x)� t)��1 (g0 (t))�1
�
D�
a+;g (f)

�
(t) dt; (102)

and
2)

f (x) = I�g(b)�

�
D�
g(b)�

�
f � g�1

��
(g (x)) =

1

� (�)

Z g(b)

g(x)

(t� g (x))��1 (g0 (t))�1
�
D�
b�;g (f)

�
(t) dt; (103)

for any x 2 [a; b] :
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