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Abstract

Here we study generalised fractional integrals and fractional deriva-
tives. We present the reduction method of Fractional Calculus and we
reduce them to basic fractional integrals and fractional derivatives. We
give a series of generalised Ostrowski type fractional inequalities involving
s—convexity. We apply all of the above to Hadamard and Erdélyi-Kober
fractional integrals and fractional derivatives. We produce also important
generalised fractional Taylor formulae.
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1 The Reduction Method in Fractional Calculus

We use a lot here the following generalised fractional integrals.

Definition 1 (see also [8, p. 99]) The left and right fractional integrals, respec-
tively, of a function f with respect to given function g are defined as follows:

Let a,b € R, a < b, « > 0. Here g € AC ([a,b]) (absolutely continuous
functions) and is strictly increasing, f € Lo ([a,b]). We set

(I20) @) = 775

a)

[ w@-sordwrma s2a

clearly (I3, f) (a) =0,
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and
1

(5= g ) (2) = m/ (9 —g@)* g O f@dt, z<b,  (2)

clearly (I{j‘_;gf) (b)y =0.
When g is the identity function id, we get that I7', ., =I5, and I, = Ij"
the ordinary left and right Riemann-Liouville fractional integrals, where

(12, f) (2) = ﬁ / Ceo T Wdt 3> a, 3)

(12, f) (a) =0, and

b
(5 f) (@) = = / t—2) ) d, w<b @)

T (a)
(I f) (b) = 0.
We need

Lemma 2 Let g € AC ([a,b]) which is strictly increasing and f € Ly ([a,b]).
Then
[ oo a0) = ||f°971||oo,[g(a>,g(b>w ®)
ie. (fog™) € Loo(lg(a),g(b)]).
If additionally g=* € AC ([g (a),g (b)]) then
oot = 17 © 87 o gy ot ©

Proof. Here m stands for the Lebesgue measure. By definition we have
1l oy = €55 sup | (1)

=inf {M:m{t:|(fog ") (g@)|>M}=m{t:|f(t)>M}=0}. (7)

Furthermore we have
| f Of]il”oo,[g(a),g(b)] =inf{L:m{g(t):|(fog ") (g®)|>L}=0}. (8)

Because ¢ is absolutely continuous and strictly increasing function on [a, b], by
[9, p. 108] exercise 14, we get that

m{g(®):|(fog™) (g@)]>M}=m(g({t:[(fog™) (g(®)] >M})) =0,
(9)
given that m {¢: |(fog™) (g (t))| > M} =0.
Therefore each M of (7) fulfills M € {L:m {g(t): ’(f og7Y) (g (t))| >L}=0}.
The last implies (5). Similarly arguing reverse we derive (6). m
We use (5) in the next



Remark 3 We observe that

1

Lral) ) = 555 / (9(@) —g @) (Fog™) (9(0) g ()t =

(by change of variable for Lebesgue integrals)

1 9(x) o B N B
fy |, 0@ (Fea ) @z = (s (Foo™)) @), w2
(11)
equivalently g (x) > g (a).
That is in the terms and assumtions of Definition 1 we get
(1240) @) = (s (Fog™) (9(2)), forz>a. (12)

Similarly we observe that

1 b 1
(U0 @) = 51 / (9() =g @) (fog™) (g(0) g ()t

g(b)
i [ Ga@) T (Feg ) @) de = (I (Fog™)) (@),

I'(a) Jga)
(13)
for x <b.
That is
(15 f) @) = (Ia)- (Fog™)) (9(@),  forz <b. (14)

So by (12) and (14) we have reduced the general fractional integrals to the ordi-
nary left and right Riemann-Liouville fractional integrals.

‘We need

Definition 4 (/7]) Let 0 < a < b < 0o, o > 0. The left and right Hadamard
fractional integrals of order a are given by

T x a—1
(J;Erf) (z) = ﬁ/@ <1n y) fz(j/)dy, T > a, (15)
and ) , B
U0 @ = iy [ (02)" a2z, (16)
respectively.

Here we take f € Ly ([a,b]).



Comparing to Definition 1 we have g () = Inz on [a,b], 0 < a < b < .
Comparing to (12) and (14) we get

(J(f‘+f) (x) = (Iﬁna)_‘_ (fo exp)) (Inz), forx > a, (17)

and
(Je_f) (z) = (Iﬁnb% (fo exp)) (Inz), forax <b. (18)

We also consider

Definition 5 Let 0 < a < b < 00; a,0 > 0 and n > —1. Let f € Ly ([a,b]).
We mention here the left and right Erdélyi-Kober type fractional integrals, re-
spectively: as in [10] we define

ga—olatn)

(I(?-‘r o 7/f) (Z‘) = W

/(a:"—t")a_lt"("*l)’lf(t)dt, s>a, (19)

and similarly we also define

oz~ (at+n)

(Il?f;o,nf) (.TJ) = T (OZ)

/ (7 —z2)* LDy de, oz <b. (20)

Remark 6 (following Definition 5) The above give rise to the following gener-
alised weighted left and right fractional integrals.

We set
(K3+ o) () =27 (18 f) (z) = (21)
/ THe DL E (1) dE =
7 / — ) @ f (1) ot At =

*/xw—t )7 (1) i =

(setting z = t7)

s [ o (01 ()b = (1 (21 (+4))) 7). 2

that s
(Keiond) @) = (Lo (77 (%)) @) 20 (23)

Stmilarly we put

(K§ gy f) (@) = 2@t (1 f) (2) =



b
w21 () = (o (21 () @, 2
(24)
that s
(K5 o) @) = (- (271 (27))) @), w <. (25)
Comparing to Definition 1 here, we have that g (z) = z° € C'([a,b]), thus
27 € AC ([a,b]) and it is strictly increasing. Clearly g~ (2) = z7, z € [a%,b°].
We set F (t) =t°"f (t), t € [a,b]. Clearly we have F € Ly ([a,b]). Notice that
Fogl=Fo(id)?, and F(t) = (Fog ) (g(t)) = (Fog™1) (2) = 2"f (z’)
Thus a formal description of (23) and (25) follows.
We have

(K2, f) (@) = (Ig; . (F o (id)%)) (%), z>a, (26)

and

Q=

(Klt)l—;a,nf) (ZE) = (Igg_ (FO (Zd)
where F (z) = 2" f (2), = € [a,D].

)@, w<b (27)

We introduce

Definition 7 Let « > 0, m = [a], B =a—-m, 0 < 8 < 1, f € C([a,}]),
[a,b] C R; g € AC ([a,b]), g is strictly increasing. We define the subspace

Cityg ([a,8]) of €™ ([a,b]):
Covy (at) = {f € C™ (lab]) : (LG ) € C (lab) ). (28)
Denote Cgy = CFy -

For f € O34, ([a,b]), we define the left g-generalised a-fractional derivative
of f over la,b] as

!/

Diy (F) = (Lazif ™) - (29)

When g = id, we denote
!
Dy f = (L7 r™) (30)
called the left generalized a-fractional derivative of f over [a,b], see [4], [2], p.
24.

We also introduce

Definition 8 Let « > 0, m = [a], 8 = a—m, f € C([a,b]), [a,b] C R;
g € AC ([a,b]), g is strictly increasing. We define the subspace Cy* . ([a,b]) of
™ (la, 0]):

Cfy (fab) = {F € O™ (b s (BZ5F) €€ (b} (31
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Denote Cy* = C’g‘_;id.
For f € Cy_, ([a,b]), we define the right g-generalised a-fractional derivative
of f over la,b] as

!

Diy () = (1" (125 7)) (32)
When g = id, we denote
D = ()" (B2 (33)

called the right generalized a-fractional derivative of f over [a,b], see [3].

Regarding fractional derivatives in this article from now on we consider only
O<a<l,iee. m=0and g8 =a.
So in this case we get

(Peal) @) = primmts | @@ -s@) g O f @@ G0
(D21 @) = =y as |, @= 07" Fo (35)

and
() @) = e [ GO -9 OO0 @9
(1) @)=~ [ - s (37)

for any x € [a,b].
We mention the following fractional Taylor formulae.

Theorem 9 1) (see [2], pp. 8-10, [{]) Let f € Cg, ([a,b]), 0 < a < 1. Then

f(m):ﬁ/(; (z —t)* (DS, f) (t) dt = (I, (DXL f)) (), xe[a,b](:.ﬁ)

2) (see [3]) Let f € Cf ([a,b]), 0 < a < 1. Then

ma [ e T DR W dt = (1 (D) @), @€ b,
' (39)



Remark 10 Here 0 < a < 1 and g € C* ([a,b]), g is strictly increasing. Fur-
thermore we assume that (D;‘((LH_ (fo g*1)> (g9 (z)) exists. By (12) we have

(o) @ = (15, (Fog™) (9(2), =€ lab). (40)

Hence there exists
(D2 (1) (@) = (12550) (@) 2 (155, (Fog™) (9(@) g ()

= (D5ays (o)) (@) g (@), € lab]. (41)
We have established that there exists
(Deg (1) @) = (Dgays (fog7™)) (9(@) g (@), @€ la,b], f€C(lab]).
(42)
Next we assume that there exists (D;"(b)_ (f og*1)> (9 (z)). By (14) we get

(B=5r) @ = (LG (Fog™)) (9@), =€ lab]. (43)

Hence there exists
(D5 () () = = (175 ) () 2 = (1255 (fo g‘l))/ (9(2) g (@)

= (D(;(b)f (f 09_1)> (g(x)g (), =x€]a,b]. (44)
We have proved that there exists

D5y (1) @) = (D3 (Fog™)) (92 ¢ (2), w€fat], feC(lab).

Next we apply (42) and (45).
We make

Remark 11 (all as in Definition 4) We introduce the following Hadamard type
fractional derivatives, see (46), (47). Here f € C([a,b]). Let 0 < o < 1, and
that (Dﬁna)+ (fo exp)) (Inz) exists for x € [a,b], a > 0.

Then by (42), we get

(Df{l{1 o)+ (fo exp)) (Inz)

(D((J,l+;ln (f)) (Z‘) = - 5 x e [a, b] . (46)

Assume next that (Dan p— (fo exp)) (Inx) ewxists for z € [a, b].
Then by (45), we find

(Dan b)— (fo exp)) (Inx)

(D0 (1) (@) = . L aefob. (D)




‘We make

Remark 12 (refer to Definition 5, Remark 6) Let 0 < o < 1. By (26) we get

(KL%, f) (@) = (Ig:f (F o (id)%)) (z°), z€lab]. (48)
And by (27)
(Kl}:;ﬁ:,n ) (z) = (Il}gf (F o (z'd)%)) (z°), € la,b]. (49)

Above F (x) = z°"f (z), x € [a,]].
Assume that

d (i (F ;;jd)UD (=7) (50)
and
a (- (Fdx@d))) (@) -
exist and are continuous in z° € [a®,b°], f € C([a,b]).
Then
QK5 ) @) 4 (Fo (id)7 )) (z°) »
i _ (22 ( — ) oz, (52)
and
d (Kl}jf;m ) () d (I;;f (Fo (id)%)) (m”)mg_17 (53)

dz N dx°
exist and are continuous in x € [a,b].

So we introduce the modified Erdélyi-Kober type left and right fractional
derivatives of f € C ([a,b]), as follows:

11— T
(D) ) = Lz} () (54

and

(1 2,9) @

(Diio ) (2) = = = : (55)
x € a,b], 0 <a<l1.
That s, it holds
(D24 f) (@) = (D;&, . (F o (z‘d)%)) (%) oz° 1, (56)
and
(Dgy 0 f) () = (Dgi,, (F o (z‘d)%>) (%) 02", (57)

x €la,b,0<a<l,a>0.



‘We make

Remark 13 (continuation of Remark 11) Hence f € C ([a,b]). By (46) we get

(D(()in a)+ (f o eXp)) (ln {E) = (Dg+;ln (f)) ((E) = elnw (D3+;ln (f)) (elnz) )

(58)
z € [a,b].
Hence by (38) we obtain
@) =F (") = <[5na>+ (Dﬁnaw (foeXP))) (Inz) = (59)
(I(Ofna)+ (e" (D21 (1) <€t))> (Inz) =
1 Inz ol g . .
T'(a) /1 (Inz — )" e (D () () dt, (60)

z € [a,b].
By (47) we have

(Danb)f (f o eXp)) (lnm) =T (Dl?:;ln (f)) (.’E) = eln$ (Dl?:;ln (f)) (elnw) ’ (61)

z € [a,b].
Hence by (39) we obtain

@) = £ (@) = (Igan- (D (foexp)) ) (na) =

(Zun- (€ (D500 (1)) (1)) () =

1 Inb et X t
I (o) /lm (t—Inz)*" e (Dy_y, () (") dt, (62)

x € [a,b].
We have proved the following Taylor Hadamard type fractional formulae.

Theorem 14 Let 0 < a < 1, and all as in Definition 4, f € C ([a,b]), a > 0.
1) Assume that (Dana)Jr (foexp)) (Inx) exists and it is continuous, x €
[a,b]. Then
J (@) = (Iways (¢ (D2 () (1)) (nz) =

1 Inz it § t
I (o) /lna (Inz — )" " e (Dg . (f)) (¢') dt, (63)

x € [a,b].



2) Assume that (Dan b)— (foexp)> (Inx) exists and it is continuous, x €
[a,b]. Then
1 @) = (Tan- (¢ (D_aa (D) (¢")) ) ()

- ri/n (¢t = Ina)* e (D, (£)) (') dt, (64)

(Oé) Inx
€ [a,b].
‘We make

Remark 15 (continuation of Remark 12) By (56) and (57) we get

xlfa

(Dsrs (Foi)?)) 07) = “— (Do f) (@)

@)

= (Dg ) (@0)7)) (65)
and
(05— (Po@?)) @) = = (Df 00 ) @)
_ (xa)((j,l) (Dl?—;a',nf) ((xa)%>’ (66)

€ [a,b], 0 <a<l, feC(a,b]). Above assume (Dga”r (Fo (zd)%)> (z7),

(Dgﬁ,_ Fo (id)% (%) exist and are continuous in z° € [a”,b7].

Hence, by (38) it holds
o7 f (@) = (Fo(id)7) (7 (L;u (D2 é)))

(ro
e @ e @)er

o

_ 1 ’ o _ pya—l (771 N
- / @ (Dg, ) (8 a, (68)
Similarly, by (39) we derive

2f (@) = (Fo(id)7) (@) = (In- (Df (Fo(id)?))) =) (69)
=L (6 000 () 0
1

—ar(a)/:(t_f””)a S (D) (1) d e lat]. (70)

We give the following Taylor Erdélyi-Kober type fractional formulae.
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Theorem 16 Let 0 < « < 1, all as in Definition 5, (21), (24), (54), (59),
fel(ad]), a>0; F(x)=z"f(z), z € [a,b].

1) Assume that ( Dgs (F o (id)% (x7) exists and it is continuous in x° €
[a®,b%]. Then

f@) = (1 (07 (D200 f) (1)) @)

— /(:0 (7 — )" +H(3-1) (Do f) (t%) dt, x¢la,b. (71)

9=

2) Assume that (Dg‘c,_ (F o (id)
[a®,b%]. Then

)) (%) exists and it is continuous in x° €

x N

@)= (15 (1) (05,0 (7)) @)

x N

== @ /: (t—azo)* ! H(3-1) (Dl‘;‘_;amf) (ﬁ) dt, x¢lab]. (72)

2 Fractional Ostrowski type Inequalities
We need the following

Lemma 17 ([11]) Let f : [a,b] — R be a differentiable mapping on (a,b) with
a<b. If f' € L1 ([a,b]), then for all z € [a,b] and o > 0 we have:

(x —a)® + (b—2)" F(a+1)
(=)o

(- )t [ (b— )t 1

— /Oto‘f'(t:rJr(lft)a)dtf — /Ot“f’(tx+(1t)b)(ciz)

(I3 f (@) + I3 f (b)] =

By (73), (12), (14), we obtain

Lemma 18 Let f € C([a,b]), g € C*([a,b]), g strictly increasing on [a,b],

fog! differentiable on (g(a),g (b)) with (fog™)" € Li(lg(a),g (b)), = €
[a,b], a < b, a,b € R, a > 0. Then

11



(9 (b) — g (a))
_ l‘ a+1 1
SO [ (o) tg @)+ -0 g0
We apply (74) for g (z) =Inz, z € [a,b].

Lemma 19 Let 0 < a < b < 00, @ > 0. Let f € C([a,b]), (foexp) is
differentiable on (Ina,Inb) with (f oexp)’ € Ly ([Ina,Inb]), = € [a,b]. Then

nz)® n )¢ o
CIJ +0x)>ﬂm_r<+n

lng In (2)

[(Je_f) (@) + (J2, ) (B)] =

z a+1 1
(hla)/ ta(foexp)/(tlnm+(1—t)lna)dt
n 0

—

—

=

8 o

~— Q=
ol

+

=

1
N / t*(foexp) (tlnz + (1 —t)Inbd)dt, (75)
. 0

where JZy f are the left and right Hadamard fractional integrals of order o an-

chored at © € [a,b], see (15), (16).
We apply (74) for g (z) =27, 0 >0, z € [a,}].

Lemma 20 Let 0 < a < b < 00, a >0, f € C([a,b]). Assume (Fo (id)%)

i
is differentiable on (a”,b”) with (Fo (id)%) € Ly ([a?,b°)), © € [a,b]. Here
F(x) =z"f (x), x € [a,b], n > —1. Then

((x“ —a?)" 4+ (b7 —27)"”

bo’iaa

)i @) -

m I:(Kg*;a',nf) (a’) + (Kxa+;o',nf) (b)} =
o /Ot (Fotid)?) (2 + (1~ t)a”) at

T xC a+1 1 N
(b(bff—a)a)/o ¢ (Fo(id)") (tz® + (1 —t) b%) dt, (76)
where (K$y, ,f) as in (26), (27).

‘We need

12



Definition 21 (/6]) A function f : [0,00) — R is said to be s-convex in the
second sense if

FOz+1=Ny) <Nf(2)+ 1= f(y), (77)

for all z,y € [0,00), A € [0,1] and for some fized s € (0, 1].
This class of s-convex functions is denoted by K?2.
When s = 1, s-convexity reduces to ordinary convezity.
If 7>7 holds in (77), we talk about s-concavity in the second sense.

In our proofs it is used a lot and it is built in the following

Theorem 22 ([5]) Suppose that f : [0,00) — [0,00) is an s-convex function in
the second sense, where s € (0,1], and let a,b € [0,00), a < b. If f' € L1 ([a, b)),
then it holds

b
o (5) <yt [ s < KO, (79)

where the constant ?11 18 the best possible in the second inequality.
We are also motivated by the following Ostrowski type inequality in

Theorem 23 ([1]) Let f : I C [0,00) — R be a differentiable mapping on I1°
such that f' € Ly ([a,b]), where a,b € I, a <b. If |f'| is s-convex in the second
sense on [a,b] for some fized s € (0,1] and |f' (z)] < M, for all x € [a,b], then

bia/abf(t)dt < b]\_/[a [(za)QJr(b:c)Q]’ -

|f(x) s+1

for each x € [a,b].
We need

Theorem 24 ([11]) Let f : [a,b] C [0,00) — R, be a differentiable mapping
on (a,b) with a < b, such that f' € Ly ([a,b]). If |f'| is s-convex in the second
sense on |a,b] for some fized s € (0,1] and |f' ()| < M, = € [a,b], a > 0, then

ae )= | () p - B

(12 f (a) + 1% £ ()] \

(b—a)
M T(a+D)T(s+1)\ |(z—a)*™ + (b —z)*
<ba<1+ I'la+s+1) )l a+s+1 ] (80)

We give the following general fractional Ostrowski type inequality. The proof
comes by Lemma 18 and Theorem 24.

13



Theorem 25 Let f € C([a,b]), g € C'([a,b]), g strictly increasing on [a,b],
fog™t differentiable on (g(a),g(®) with (fog~") € L (g(a),g ®)), o €
[a,b], a < b, a,b e R, a>0. Assume ’(f o gfl)/‘ is s-convez in the second sense

on [g(a),g(b)] C [0,00) for some fized s € (0,1] and ‘(fog’l)/(g (x))‘ <M,
x € [a,b]. Then

_|(le@ —g@)* +g®) —g @)Y,
Bo (/) _'< g (b) —g(a) >f( )
_Lle+l) roa 2 (1o
S, @ 2,0 o)

T(a+DT(s+1)\
(g(b)—g(a»(” Tlatst1) >

[(g () —g(a) ™ + (g (b) - g(w))““l .

1
a+s+1 (81)

‘We need

Theorem 26 ([11]) All as in Theorem 24, but here |f’|? is s-convex in the
second sense on [a,b] for some fixed s € (0,1], p,qg > 1: % + % =1. Then

M 2\ [(@—a) + (b—a)t
Ay (f) < L+ pa)? (s+1> [ — ] (82)

We apply Theorem 26 and Lemma 18. We give the following fractional
Ostrowski type inequality.

q
Theorem 27 All as in Theorem 25, however here (f o g_l)/‘ 1S S-conver in

the second sense on [g(a), g (b)] C [0,00) for some fizred s € (0,1], p,g > 1 :
% + % =1. Then

% ) — a a+1 . " a1
Ay () < — <2> l(g() (@) 4 (g (b) — g (2) ]

T (1+4pa)r \s+1 g9(b) —g(a)

(83)
‘We need

Theorem 28 ([11]) All as in Theorem 24, but here |f'|? is s-convex in the
second sense on [a,b] for some fixed s € (0,1], with ¢ > 1. Then

A <M L o N ‘
()= <1+a) <a+s+1> '

Tla+ DD (G+D\7 [ (z—a)* + 06—
<1+ Fa+s+1) ) [ b—a ]

(84)

14



We give with the use of (84) the following

Theorem 29 Here all as in Theorem 27, however ¢ > 1, p is not related. Then

B (1< (1 )(1)
9(@) - 1+« a+s+1

Cla+ DI (s+ 1)\ [(g(@) =g (@)™ +(g(b) =g ()"
(+ i) l 5B~ () ] (%)

‘We need

Theorem 30 ([11]) All as in Theorem 24, but here |f'|? is s-concave in the
second sense on [a,b] for some fixed s € (0,1], p,g > 1: %} + % =1. Then

(s—1)

q

Aw(f)g 1 :
(1+pa)? (b—a)

g ()

-0y (5

Using (86) we get
714

Theorem 31 All as in Theorem 25, but here ’(f og*l) ‘
second sense on [g (a), g (b)] C [0,00) for some fixed s € (0,1], p,g > 1: %Jr%

18 s-concave in the

1. Then )
27q
Ag T (f) < 1 :
O )t (g (0) — g (a)
(9@~ g @) (rog™) (1051 (57)

(roay (225

(9(b) =g (x))*"

‘We make

Remark 32 Let 0 < a <b< oo, a>0. We have that

nz)® n )¢
Alnz(f)=‘<(1 ML) )f(fc)

Qo

15



where J2 f are the Hadamard fractional integrals, see (15), (16), and

Ago (f) = ’((xo — aozj jg:r — xa)a) 7 f (x)

Flat+1) ra a
K ) @+ (K240 1) O], (59)
where K2y, (f) as in (26), (27), the modified Erdélyi-Kober type fractional

integrals, see also (19), (20), (21), and (24), where o >0, n > —1.
Using Theorem 25 we get

Theorem 33 Let 0 < a < b < oo, a > 0. Let f € C([a,b]), (foexp) is
differentiable on (Ina,Inb) with (f oexp)’ € Ly ([Ina,Inbd]), = € [a,b]. Assume
|(fo exp)/} is s-convex in the second sense on [Ina,lnb] C [0,00) for some fized
s €(0,1] and ’(foexp)/ (Inz)| < M, z € [a,b]. Then

M F'a+1)I'(s+1)
<1+ T(a+s+1) )

T a+1 a+1
[ (hl 5) + (ln 2) ‘| ) (90)

Using Theorem 27 we derive

Theorem 34 All as in Theorem 33, but here |(f oexp)'}q s s-convex in the
second sense on [Ina,lnd] C [0,00) for some fived s € (0,1], p,g > 1: %—l—% =1.

Then i 1 -
Aus (f) < —2 ( 2 ) (ng) +b(ln5) S o)
(14 pa)r \s+1 In 2

Using Theorem 29 we derive

Theorem 35 All as in Theorem 34, however q > 1, p is not related. Then

s <ar () ()
Ine - 1+« a+s+1

1 s+l b a+1
<1+r(a+1)r(s+1))q l(lna) +(In3) ] (92)

I'a+s+1) In?

Based on Theorem 31 we produce
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Theorem 36 All as in Theorem 33, however here ‘(f o exp)/}q 18 s-concave in
the second sense on [lna,Indb] C [0,00) for some fixred s € (0,1], p,qg > 1 :
1,1 _
5+, =1 Then

(s=1)

Ape (f) f ———F——
e (f) < (14 pa)? (In2)

(f oexp)’ (ln(;“))‘+ <1n 2)a+1 (f oexp)’ (ln(zba:))H_ (93)

Based on Theorem 25 we give

Theorem 37 Let 0 < a < b < oo, f € C([a,b]), a,0 >0, n > —1. Assume
!
(Fo (id)%> is differentiable on (a,b%) with (Fo (id)%) € Ly ([a%,07]), z €
!
[a,b]. Here F (z) = x°"f (z), x € [a,b]. Assume (Fo (id)%)

1S S-CONVex in

/
the second sense on [a”,b°] for some fized s € (0,1] and ‘(F o (id)%> (z7)] <
M, x € la,b]. Then
M F'a+1)T'(s+1)
Ago <— (1 .
o () = (b7 —a”) < * M'a+s+1)
o oya+1 o oya+1
l(w a®)"" 4+ (b7 —a9) (94)
a+s+1
By Theorem 27 we get
1i\/|?

Theorem 38 All as in Theorem 87, however here (F o (id);> 18 S-convex

in the second sense on [a?,b%] for some fixred s € (0,1], p,g > 1 : %—F% =1.
Then

Aue (f) < — 2 <2 )3[<xa—aa>a+l+<ba_ma)a+l

(1—|—pa)% s+1 be —a°

] . (95)

Using Theorem 29 we get

Theorem 39 Here all as in Theorem 38, however ¢ > 1, p is not related. Then

A <M L o S ‘
e (f) < (1+a> (Oz+s+1> .

% 29 — a° a+1 o o a+l
<1+F(a+1)F(s+1)) [( )™+ (b —a%)

Fla+s+1) b — a° ] (96)
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Using Theorem 31 we obtain

q
18 S-concave

1 /
(F o (id)g)
in the second sense on [a”,b°] for some fized s € (0,1], p,qg > 1 : %Jr% = 1.
Then

Theorem 40 All as in Theorem 37, however here

3 Addendum

We make

Remark 41 Let 0 < a < 1, f € C([a,b]), g € C([a,b]), g strictly increasing;

(Doys (Fog™h) (9@,

) (fo
on [g(a),g(b)]. Also assume g ( ) #0, almost all z € [a, b].
Then by (42) we get

(Dgays (Fo97™)) (9 (@) = (9 (@) (D1 () (@), (98)

almost all © € [a,b] .

Also by (45) we get

(D (Fo9™)) 0@ = (¢ @) (D, (D) (@), (99)

almost all z € [a,b].
Then by (38) and (39) we obtain

g7 ")) (9(x)) exist and are continuous

(98)

1@ = (o7 (@) = Iy (D (Fo97) (9 =

F/g (9(@) =0 (g (1) Dy () (1), (100)

and

(99)

F@) = (fog™) (9@) = I (Dguy- (fog™)) (9(@) 2

1 g(b) ) .
S GG R U G [T

T'(a)
for any x € [a,b].

18



We have proved the following generalized fractional Taylor formulae.

Theorem 42 Let0 < a <1, f € C([a,b]), g € C' ([a,b]), g strictly increasing;

each of (D;‘(a)+ (f og_1)> (g(x)), (D_‘;(b)_ (f og_1)> (g(x)) exists and it is
continuous on [g(a), g (b)]. Assume that ¢’ () # 0, for almost all x € [a,b).

Then
1)
7 (@) = Lays (Dgiays (Fo97)) (9()) =
g(z)
ey Ly G@ 0G0 (D5, ) @ (02)
and
2)
1 (@) =I5 (D (Fo97Y) (9(2)) =
1 g(b) 1 .
i / L@ @) O, (D) (0
for any x € [a,b].
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