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Abstract

Here we establish a fractional Polya type integral inequality with the
help of generalised right and left fractional derivatives. The amazing fact
here is that we do not need any boundary conditions as the classical Polya
integral inequality requires.
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1 Introduction

We mention the following famous Polya�s integral inequality, see [7], [8, p, 62],
[9] and [10, p. 83].

Theorem 1 Let f (x) be di¤erentiable and not identically a constant on [a; b]
with f (a) = f (b) = 0. Then the exists at least one point � 2 [a; b] such that

jf 0 (�)j > 4

(b� a)2
Z b

a

f (x) dx: (1)

In [11], Feng Qi presents the following very interesting Polya type integral
inequality (2), which generalizes (1).

Theorem 2 Let f (x) be di¤erentiable and not identically constant on [a; b] with
f (a) = f (b) = 0 and M = sup

x2[a;b]
jf 0 (x)j. Then

�����
Z b

a

f (x) dx

����� � (b� a)2

4
M; (2)

where (b�a)2
4 in (2) is the best constant.
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In this short note we present a fractional Polya type integral inequality,
similar to (2), without the boundary conditions f (a) = f (b) = 0.
For the last we need the following fractional calculus background.
Let � > 0, m = [�] ; � = � � m; 0 < � < 1; f 2 C ([a; b]), [a; b] � R,

x 2 [a; b]. The gamma function � is given by � (�) =
R1
0
e�tt��1dt. We de�ne

the left Riemann-Liouville integral�
Ja+� f

�
(x) =

1

� (�)

Z x

a

(x� t)��1 f (t) dt; (3)

a � x � b. We de�ne the subspace C�a+ ([a:b]) of Cm ([a; b]):

C�a+ ([a; b]) =
n
f 2 Cm ([a; b]) : Ja+1��f

(m) 2 C1 ([a; b])
o
: (4)

For f 2 C�a+ ([a; b]), we de�ne the left generalized �-fractional derivative of
f over [a; b] as

D�
a+f :=

�
Ja+1��f

(m)
�0
; (5)

see [1], p. 24. Canavati �rst in [3] introduced the above over [0; 1].
Notice that D�

a+f 2 C ([a; b]) :
We need the following left fractional Taylor�s formula, see [1], pp. 8-10, and

in [3] the same over [0; 1] that appeared �rst.

Theorem 3 Let f 2 C�a+ ([a; b]).
(i) If � � 1; then

f (x) = f (a)+f 0 (a) (x� a)+f 00 (a) (x� a)
2

2
+ :::+f (m�1) (a)

(x� a)m�1

(m� 1)! (6)

+
1

� (�)

Z x

a

(x� t)��1
�
D�
a+f

�
(t) dt; all x 2 [a; b] :

(ii) If 0 < � < 1; we have

f (x) =
1

� (�)

Z x

a

(x� t)��1
�
D�
a+f

�
(t) dt; all x 2 [a; b] : (7)

We will use (7).
Notice thatZ x

a

(x� t)��1
�
D�
a+f

�
(t) dt =

Z x

a

�
D�
a+f

�
(t) d

�
(x� t)�

��

�

=
�
D�
a+f

�
(�x)

(x� a)�

�
, where �x 2 [a; x] ; (8)

by �rst integral mean value theorem. Hence, when 0 < � < 1, we get

f (x) =
�
D�
a+f

�
(�x)

(x� a)�

� (�+ 1)
; all x 2 [a; b] : (9)
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Furthermore we need:
Let again � > 0, m = [�], � = ��m, f 2 C ([a; b]), call the right Riemann-

Liouville fractional integral operator by

�
J�b�f

�
(x) :=

1

� (�)

Z b

x

(t� x)��1 f (t) dt; (10)

x 2 [a; b], see also [2], [4], [5], [6], [12]. De�ne the subspace of functions

C�b� ([a; b]) :=
n
f 2 Cm ([a; b]) : J1��b� f (m) 2 C1 ([a; b])

o
: (11)

De�ne the right generalized �-fractional derivative of f over [a; b] as

D�
b�f = (�1)

m�1
�
J1��b� f (m)

�0
, (12)

see [2]. We set D0
b�f = f . Notice that D

�
b�f 2 C ([a; b]) :

From [2], we need the following right Taylor fractional formula.

Theorem 4 Let f 2 C�b� ([a; b]), � > 0, m := [�]. Then
(i) If � � 1, we get

f (x) =
m�1X
k=0

f (k) (b)

k!
(x� b)k +

�
J�b�D

�
b�f

�
(x) ; all x 2 [a; b] : (13)

(ii) If 0 < � < 1, we get

f (x) = J�b�D
�
b�f (x) =

1

� (�)

Z b

x

(t� x)��1
�
D�
b�f

�
(t) dt; all x 2 [a; b] :

(14)

We will use (14).
Notice thatZ b

x

(t� x)��1
�
D�
b�f

�
(t) dt =

Z b

x

�
D�
b�f

�
(t) d

�
(t� x)�

�

�

=
�
D�
b�f

�
(�x)

(b� x)�

�
, where �x 2 [x; b] ; (15)

by �rst integral mean value theorem. Hence, when 0 < � < 1, we obtain

f (x) =
�
D�
b�f

�
(�x)

(b� x)�

� (�+ 1)
; all x 2 [a; b] : (16)
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2 Main Result

We present the following fractional Polya type integral inequality without any
boundary conditions.

Theorem 5 Let 0 < � < 1, f 2 C ([a; b]). Assume f 2 C�a+
��
a; a+b2

��
and

f 2 C�b�
��
a+b
2 ; b

��
. Set

M (f) = max
nD�

a+f

1;[a; a+b2 ]

;
D�

b�f

1;[ a+b2 ;b]

o
: (17)

Then �����
Z b

a

f (x) dx

����� �
Z b

a

jf (x)j dx �M (f)
(b� a)�+1

� (�+ 2) 2�
: (18)

Inequality (18) is sharp, namely it is attained by

f� (x) =

�
(x� a)� ; x 2

�
a; a+b2

�
(b� x)� , x 2

�
a+b
2 ; b

� � ; 0 < � < 1: (19)

Clearly here non zero constant functions f are excluded.

Proof. By (9) we get

jf (x)j �
D�

a+f

1;[a; a+b2 ]

(x� a)�

� (�+ 1)
; for any x 2

�
a;
a+ b

2

�
: (20)

By (16) we derive

jf (x)j �
D�

b�f

1;[ a+b2 ;b]

(b� x)�

� (�+ 1)
; for any x 2

�
a+ b

2
; b

�
: (21)

Hence we get Z b

a

jf (x)j dx =
Z a+b

2

a

jf (x)j dx+
Z b

a+b
2

jf (x)j dx

(by (20), (21))

�

D�
a+f


1;[a; a+b2 ]

� (�+ 1)

Z a+b
2

a

(x� a)� dx+

D�
b�f


1;[ a+b2 ;b]

� (�+ 1)

Z b

a+b
2

(b� x)� dx

(22)

=

D�
a+f


1;[a; a+b2 ]

(� (�+ 1)) (�+ 1)

�
b� a
2

��+1
+

D�
b�f


1;[ a+b2 ;b]

(� (�+ 1)) (�+ 1)

�
b� a
2

��+1

=

�D�
a+f


1;[a; a+b2 ]

+
D�

b�f

1;[ a+b2 ;b]

�
� (�+ 2)

�
b� a
2

��+1
: (23)
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So we have proved thatZ b

a

jf (x)j dx � max
nD�

a+f

1;[a; a+b2 ]

;
D�

b�f

1;[ a+b2 ;b]

o (b� a)�+1

� (�+ 2) 2�
; (24)

proving (18).
Notice that

f�

 �
a+ b

2

�
�

!
= f�

 �
a+ b

2

�
+

!
=

�
b� a
2

��
;

so that f� 2 C ([a; b]) :
Here m = 0. We see that�

J�+1�� (� � a)
�
�
(x) =

�
Ja+1�� (� � a)

��
(x) =

1

� (1� �)

Z x

a

(x� t)�� (t� a)� dt =

1

� (1� �)

Z x

a

(x� t)(1��)�1 (t� a)(�+1)�1 dt =

(by [13], p. 256)

1

� (1� �)
� (1� �) � (�+ 1)

� (2)
(x� a) = � (�+ 1) (x� a) :

Hence

D�
a+ (x� a)

�
= � (�+ 1) ; for all x 2

�
a;
a+ b

2

�
: (25)

Therefore D�
a+ (x� a)

�
1;[a; a+b2 ]

= � (a+ 1) : (26)

Furthermore we have

�
J1��b� (b� �)�

�
(x) =

1

� (1� �)

Z b

x

(t� x)�� (b� t)� dt =

1

� (1� �)

Z b

x

(b� t)(�+1)�1 (t� x)(1��)�1 dt =

(by [13], p. 256)

1

� (1� �)
� (�+ 1)� (1� �)

� (2)
(b� x) = � (�+ 1) (b� x) :

Therefore

D�
b� (b� x)

�
= � (�+ 1) ; for all x 2

�
a+ b

2
; b

�
; (27)
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and D�
b� (b� x)

�
1;[ a+b2 ;b] = � (a+ 1) : (28)

Consequently we �nd that

M (f�) = � (�+ 1) : (29)

Applying f� into (18) we obtain:

R.H.S.(18) for f� = � (�+ 1)
(b� a)�+1

� (�+ 2) 2�
=
(b� a)�+1

(�+ 1) 2�
; (30)

while we get the same result from

L.H.S. (18) for f� =

�����
Z b

a

f� (x) dx

����� =
Z a+b

2

a

(x� a)� dx+
Z b

a+b
2

(b� x)� dx = (b� a)�+1

(�+ 1) 2�
; (31)

proving sharpness of (18).
We make

Remark 6 When � � 1, thus m = [�] � 1, and by assuming that f (k) (a) =
f (k) (b) = 0, k = 0; 1; :::;m�1, we can prove the same statements as in Theorem
5. If we set there � = 1 we derive exactly Theorem 2. So we generalize Theorem
2. Again here f (m) cannot be a constant di¤erent than zero, equivalently, f
cannot be a non-trivial polynomial of degree m.
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