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Abstract

Here we present Lp, p > 1, fractional Opial type inequalities subject to
high order boundary conditions. They involve the right and left Canavati
type generalised fractional derivatives. These derivatives are mixed to-
gether into the balanced Canavati type generalised fractional derivative.
This balanced fractional derivative is introduced and activated here for
the �rst time.
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1 Introduction

This article is inspired by the famous theorem of Z. Opial [10], 1960, which
follows

Theorem 1 Let x (t) 2 C1 ([0; h]) be such that x (0) = x (h) = 0, and x (t) > 0
in (0; h) : Then Z h

0

jx (t)x0 (t)j dt � h

4

Z h

0

(x0 (t))
2
dt: (1)

In (1), the constant h
4 is the best possible. Inequality (1) holds as equality for

the optimal function

x (t) =

�
ct; 0 � t � h

2 ;

c (h� t) ; h
2 � t � h;
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where c > 0 is an arbitrary constant.

To prove easier Theorem 1, Beesack [4] proved the following well-known
Opial type inequality which is used very commonly.
This is another insiration to our work.

Theorem 2 Let x (t) be absolutely continuous in [0; a], and x (0) = 0. ThenZ a

0

jx (t)x0 (t)j dt � a

2

Z a

0

(x0 (t))
2
dt: (2)

Inequality (2) is sharp, it is attained by x (t) = ct, c > 0 is an arbitrary constant.

Opial type inequalities are used a lot in proving uniqueness of solutions to
di¤erential equations, also to give upper bounds to their solutions.
By themselves have made a great subject of intensive research and there

exists a great literature about them.
Typical and great sources on them are the monographs [1], [2].
We de�ne here the balanced Canavati type fractional derivative and we prove

related Opial type inequalities subject to boundary conditions.
These have smaller constants than in other Opial inequalities when using

traditional fractional derivatives.

2 Background

Let � > 0, n := [�] (integral part of �), and � := ��n (0 < � < 1). The gamma
function � is given by � (�) =

R1
0
e�tt��1dt. Here [a; b] � R, x; x0 2 [a; b] such

that x � x0, where x0 is �xed. Let f 2 C ([a; b]) and de�ne the left Riemann-
Liouville integral

(Jx0� f) (x) :=
1

� (�)

Z x

x0

(x� t)��1 f (t) dt; (3)

x0 � x � b. We de�ne the subspace C�x0 ([a:b]) of C
n ([a; b]):

C�x0 ([a; b]) :=
n
f 2 Cn ([a; b]) : Jx01��f (n) 2 C1 ([x0; b])

o
: (4)

For f 2 C�x0 ([a; b]), we de�ne the left generalized �-fractional derivative of
f over [x0; b] as

D�
x0f :=

�
Jx01��f

(n)
�0
; (5)

see [2], p. 24, and Canavati derivative in [5].
Notice that D�

x0f 2 C ([x0; b]) :
We need the following generalization of Taylor�s formula at the fractional

level, see [2], pp. 8-10, and [5].
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Theorem 3 Let f 2 C�x0 ([a; b]), x0 2 [a; b] �xed.
(i) If � � 1 then

f (x) = f (x0)+f
0 (x0) (x� x0)+f 00 (x0)

(x� x0)2

2
+:::+f (n�1) (x0)

(x� x0)n�1

(n� 1)!
(6)

+
�
Jx0� D

�
x0f
�
(x) ; all x 2 [a; b] : x � x0:

(ii) If 0 < � < 1 we get

f (x) =
�
Jx0� D

�
x0f
�
(x) ; all x 2 [a; b] : x � x0 (7)

We will use (6) and (7).
Furthermore we need:
Let � > 0, m = [�], � = � � m, 0 < � < 1, f 2 C ([a; b]), call the right

Riemann-Liouville fractional integral operator by�
J�b�f

�
(x) :=

1

� (�)

Z b

x

(J � x)��1 f (J) dJ; (8)

x 2 [a; b], see also [3], [6], [7], [8], [11]. De�ne the subspace of functions

C�b� ([a; b]) :=
n
f 2 Cm ([a; b]) : J1��b� f (m) 2 C1 ([a; b])

o
: (9)

De�ne the right generalized �-fractional derivative of f over [a; b] as

D�
b�f := (�1)

m�1
�
J1��b� f (m)

�0
, (10)

see [3]. We set D0
b�f = f . Notice that D

�
b�f 2 C ([a; b]) :

From [3], we need the following Taylor fractional formula.

Theorem 4 Let f 2 C�b� ([a; b]), � > 0, m := [�]. Then
1) If � � 1, we get

f (x) =
m�1X
k=0

f (k) (b�)

k!
(x� b)k +

�
J�b�D

�
b�f

�
(x) ; 8 x 2 [a; b] : (11)

2) If 0 < � < 1, we get

f (x) = J�b�D
�
b�f (x) ; 8 x 2 [a; b] : (12)

We will use (11) and (12).
We introduce a new concept

De�nition 5 Let f 2 C ([a; b]), x 2 [a; b], � > 0, m := [�]. Assume that
f 2 C�b�

��
a+b
2 ; b

��
and f 2 C�a

��
a; �+b2

��
. We de�ne the balanced Canavati

type fractional derivative by

D�f (x) :=

�
D�
b�f (x) , for a+b

2 � x � b;
D�
a f (x) , for a � x < a+b

2 :
(13)
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3 Main Result

We give our main result

Theorem 6 Let f 2 C ([a; b]), � > 0, m := [�]. Assume that f 2 C�b�
��
a+b
2 ; b

��
and f 2 C�a

��
a; a+b2

��
. Assume further that

f (k) (a) = f (k) (b) = 0, k = 0; 1; :::;m� 1; (14)

p; q > 1 :
1

p
+
1

q
= 1, and � >

1

q
:

(i) Case of 1 < q � 2. ThenZ b

a

jf (!)j jD�f (!)j d! � (15)

2�(�+
1
p ) (b� a)(

p(��1)+2
p )

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z b

a

jD�f (!)jq d!
! 2

q

:

(ii) Case of q > 2. ThenZ b

a

jf (!)j jD�f (!)j d! � (16)

2�(�+
1
q ) (b� a)(

p(��1)+2
p )

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z b

a

jD�f (!)jq d!
! 2

q

:

(iii) When p = q = 2, � > 1
2 , thenZ b

a

jf (!)j jD�f (!)j d! � (17)

2�(�+
1
2 ) (b� a)�

� (�)
hp
2� (2�� 1)

i  Z b

a

jD�f (!)j2 d!
!
:

Remark 7 Let us say that � = 1, then by (17) we obtainZ b

a

jf (!)j jf 0 (!)j d! � (b� a)
4

 Z b

a

(f 0 (!))
2
d!

!
; (18)

that is reproving and recovering Opial�s inequality (1), see [10], see also Olech�s
result [9].
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Proof. of Theorem 6. Let x 2
�
a; a+b2

�
, we have by assumption f (k) (a) =

0, k = 0; 1; :::;m� 1 and Theorem 3 that

f (x) =
1

� (�)

Z x

a

(x� �)��1D�
a f (�) d� : (19)

Let x 2
�
a+b
2 ; b

�
; we have by assumption f (k) (b) = 0, k = 0; 1; :::;m � 1 and

Theorem 4 that

f (x) =
1

� (�)

Z b

x

(� � x)��1D�
b�f (�) d� : (20)

Using Hölder�s inequality on (19) we get

jf (x)j � 1

� (�)

Z x

a

(x� �)��1 jD�
a f (�)j d� �

1

� (�)

�Z x

a

�
(x� �)��1

�p
d�

� 1
p
�Z x

a

jD�
a f (�)j

q
d�

� 1
q

=

1

� (�)

(x� a)
p(��1)+1

p

(p (�� 1) + 1)
1
p

�Z x

a

jD�
a f (�)j

q
d�

� 1
q

: (21)

Set

z (x) :=

Z x

a

jD�
a f (�)j

q
d� ; (z (a) = 0).

Then
z0 (x) = jD�

a f (x)j
q
;

and

jD�
a f (x)j = (z0 (x))

1
q , all a � x � a+ b

2
:

Therefore by (21) we have

jf (!)j jD�
a f (!)j �

1

� (�)

(! � a)
p(��1)+1

p

(p (�� 1) + 1)
1
p

(z (!) z0 (!))
1
q ; (22)

all a � ! � x � a+b
2 :

Next working similarly with (20) we obtain

jf (x)j � 1

� (�)

Z b

x

(� � x)��1
��D�

b�f (�)
�� d� �

1

� (�)

 Z b

x

�
(� � x)��1

�p
d�

! 1
p
 Z b

x

��D�
b�f (�)

��q d�! 1
q

=
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1

� (�)

(b� x)
p(��1)+1

p

(p (�� 1) + 1)
1
p

 Z b

x

��D�
b�f (�)

��q d�! 1
q

: (23)

Set

� (x) :=

Z b

x

��D�
b�f (�)

��q d� = �Z x

b

��D�
b�f (�)

��q d� ; (� (b) = 0).

Then
�0 (x) = �

��D�
b�f (x)

��q
and ��D�

b�f (x)
�� = ���0 (x)� 1q , all

a+ b

2
� x � b:

Therefore by (23) we have

jf (!)j
��D�

b�f (!)
�� � 1

� (�)

(b� !)
p(��1)+1

p

(p (�� 1) + 1)
1
p

�
�� (!)�0 (!)

� 1
q ; (24)

all a+b2 � x � ! � b:
Next we integrate (22) over [a; x] to obtainZ x

a

jf (!)j jD�
a f (!)j d! �

1

� (�) (p (�� 1) + 1)
1
p

Z x

a

(! � a)
p(��1)+1

p (z (!) z0 (!))
1
q d! �

1

� (�) (p (�� 1) + 1)
1
p

�Z x

a

(! � a)p(��1)+1 d!
� 1

p
�Z x

a

z (!) z0 (!) d!

� 1
q

=

1

� (�) (p (�� 1) + 1)
1
p

(x� a)
p(��1)+2

p

(p (�� 1) + 2)
1
p

z (x)
2
q

2
1
q

=

2�
1
q (x� a)

p(��1)+2
p

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

�Z x

a

jD�
a f (!)j

q
d!

� 2
q

: (25)

So we have proved Z x

a

jf (!)j jD�
a f (!)j d! �

2�
1
q (x� a)

p(��1)+2
p

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

�Z x

a

jD�
a f (!)j

q
d!

� 2
q

; (26)

for all a � x � a+b
2 :

By (26) we get Z a+b
2

a

jf (!)j jD�
a f (!)j d! �
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(b� a)
(p(��1)+2)

p 2�[
p(��1)+2

p + 1
q ]

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z a+b
2

a

jD�
a f (!)j

q
d!

! 2
q

: (27)

Similarly we integrate (24) over [x; b] to obtainZ b

x

jf (!)j
��D�

b�f (!)
�� d! �

1

� (�) (p (�� 1) + 1)
1
p

Z b

x

(b� !)
p(��1)+1

p
�
�� (!)�0 (!)

� 1
q d! �

1

� (�) (p (�� 1) + 1)
1
p

 Z b

x

(b� !)p(��1)+1 d!
! 1

p
 Z b

x

�� (!)�0 (!) d!
! 1

q

=

1

� (�) (p (�� 1) + 1)
1
p

(b� x)
p(��1)+2

p

(p (�� 1) + 2)
1
p

(� (x))
2
q

2
1
q

: (28)

We have proved that Z b

x

jf (!)j
��D�

b�f (!)
�� d! �

2�
1
q (b� x)

p(��1)+2
p

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z b

x

��D�
b�f (!)

��q d!! 2
q

; (29)

for all a+b2 � x � b:
By (29) we get Z b

a+b
2

jf (!)j
��D�

b�f (!)
�� d! �

(b� a)
(p(��1)+2)

p 2�[
p(��1)+2

p + 1
q ]

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z b

a+b
2

��D�
b�f (!)

��q d!! 2
q

: (30)

Adding (27) and (30) we getZ b

a

jf (!)j jD�f (!)j d! � 2�(�+
1
p ) (b� a)(

p(��1)+2
p )

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

�

24 Z a+b
2

a

jD�
a f (!)j

q
d!

! 2
q

+

 Z b

a+b
2

��D�
b�f (!)

��q d!! 2
q

35 =: (�:) (31)

Assume 1 < q � 2, then 2
q � 1.

Therefore we get

(�) � 2�(�+
1
p ) (b� a)(

p(��1)+2
p )

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

�
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"Z a+b
2

a

jD�
a f (!)j

q
d! +

Z b

a+b
2

��D�
b�f (!)

��q d!# 2
q

= (32)

2�(�+
1
p ) (b� a)(

p(��1)+2
p )

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z b

a

jD�f (!)jq d!
! 2

q

: (33)

So for 1 < q � 2 we have proved (15).
Assume now q > 2, then 0 < 2

q < 1.
Therefore we get

(�) � 2�(�+
1
p ) (b� a)(

p(��1)+2
p ) 21�

2
q

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

�

"Z a+b
2

a

jD�
a f (!)j

q
d! +

Z b

a+b
2

��D�
b�f (!)

��q d!# 2
q

=

2�(�+
1
q ) (b� a)(

p(��1)+2
p )

� (�) [(p (�� 1) + 1) (p (�� 1) + 2)]
1
p

 Z b

a

jD�f (!)jq d!
! 2

q

: (34)

So when q > 2 we have established (16).
(iii) The case of p = q = 2, see (17), is obvious, it derives from (15) imme-

diately.
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