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LOREDANA CIURDARIU

Abstract. In this paper several inequalities will be given using as method the

power series method and then some integral forms for them will be given. Also
the integral forms of several classical inequalities and of Radon’s inequality
were presented.

1. Introduction

It is necessary to recall the inequality of J. Radon which was published in [9].
For every real numbers p > 0, xk ≥ 0, ak > 0 for 1 ≤ k ≤ n, we have the

following inequality:
n∑

k=1

xp+1
k

apk
≥

(
∑n

k=1)
p+1

(
∑n

k=1 ak)
p
, p > 0.

According to [4], the reverse of previous inequality is true in case p ∈ (−1, 0),
see for example [9]:

n∑
k=1

xp+1
k

apk
≤

(
∑n

k=1 xk)
p+1

(
∑n

k=1 ak)
p

, p ∈ (−1, 0).

In [10], the authors consider two n-tuples a = (a1, a2, ..., an) and b = (b1, b1, ..., bn)
where ab = (a1b1, a2b2, ..., anbn) and am = (am1 , am2 , ..., amn ), for any real number m.
Then a > 0 and b > 0 if ai > 0 and bi > 0 for every 1 < i < n. They consider the
expression:

(1.1) ∆[p]
n (a; b) :=

n∑
i=1

api
bp−1
i

−
(
∑n

i=1 ai)
p

(
∑n

i=1 bi)
p−1

,

for real number p > 1 and for n-tuples a ≥ 0 and b > 0. Radon proved in [9] that

∆[p]
n (a; b) ≥ 0.

We study the sign of this expression for real number p ∈ (0, 1) and for n-tuples
a ≥ 0 and b > 0.

Then the well-known Radon’s inequality can be written as:

∆[p]
n (a; b) ≤ 0

for real number p ∈ (0, 1), n ≥ 2 and for n-tuples a ≥ 0 and b > 0.
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It is necessary to recall the following two results which were established by [6]
and [1] when the number p > 0.

Theorem 1. ([6]) For ak, xk > 0, p ≥ 1, k ∈ {1, 2, ..., n}, n ∈ N and n ≥ 2 the
inequality takes place,

n∑
k=1

xp+1
k

apk
≥

(
∑n

k=1 xk)
p+1

(
∑n

k=1 ak)
p

+ max
1≤i<j≤n

(
xp+1
i

api
+

xp+1
j

apj
− (xi + xj)

p+1

(ai + aj)p

)
with equality if and only if x1

a1
= x2

a2
= ... = xn

an
.

Theorem 2. ([1]) If n ∈ N, xk ≥ 0, yk > 0, k ∈ {1, 2, ..., n} and m ≥ p ≥ 0,

xm+1
1

yp1
+

xm+1
2

yp2
+ ...+

xm+1
n

ypn
≥ np−m (x1 + x2 + ...+ xn)

m+1

(y1 + y2 + ...+ yn)p

with equality if and only if x1 = x2 = ... = xn and y1 = y2 = ... = yn.

In the case when p ≥ 0 the integral form of the inequality from Theorem 2.4, see
[1] was given by Theorem 2.5.

Theorem 3. ([1])
Ifa, b ∈ R with a < b, m ≥ p ≥ 0, f, g : f, g : [a, b] → [0,∞) are integrable

functions on [a, b] with g(x) > 0, (∀) x ∈ [a, b] then we have:∫ b

a

(f(x))m+1

(g(x))p
dx ≥ (b− a)p−m (

∫ b

a
f(x)dx)m+1

(
∫ b

a
g(x)dx)p

.

2. The results

When p ∈ (−1, 0) the inequality of Radon can be also written as, below:

Theorem 4. For ak, xk > 0, k ∈ {1, 2, ..., n} and n ≥ 2 the following inequality
takes place:

n∑
k=1

xp+1
k

apk
≤

(
∑n

k=1 xk)
p+1

(
∑n

k=1 ak)
p

+ min
1≤i<j≤n

(
xp+1
i

api
+

xp+1
j

apj
− (xi + xj)

p+1

(ai + aj)p

)
.

Proof. As in the proof of a theorem from [6] because d1 = 0, remains significant
the inequality dn ≤ d2, (∀)n ∈ N, n ≥ 2, where

dn =
xp+1
1

ap1
+

xp+1
2

ap2
+ ...+

xp+1
n

apn
− (x1 + x2 + ...+ xn)

p+1

(a1 + a2 + ...+ an)p
.

Using the expression of d2 we have:

dn ≤ xp+1
1

ap1
+

xp+1
2

ap2
− (x1 + x2)

p+1

(a1 + a2)p

and by symmetry relatively to ai and xj when i, j ∈ {1, 2, ..., n} we obtain

dn ≤ xp+1
i

api
+

xp+1
j

apj
− (xi + xj)

p+1

(ai + aj)p
, (∀)n ∈ N, n ≥ 2, (∀)i, j ∈ {1, 2, ..., n}.
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Remark 1. If p ∈ (−1, 0) and we take xk = 1 and ak will be replaced by xk then
for every natural number n ≥ 2 and x1, x2, ..., xn > 0 we have:

1

xp
1

+
1

xp
2

+ ...+
1

xp
n
≤ np+1

(x1 + x2 + ...+ xn)p
+ min

1≤i<j≤n

(
1

xp
i

+
1

xp
j

− 2p+1

(xi + xj)p

)
.

We give the reverse of an inequality presented in Theorem 2.4, from [1] when
p ≥ 0.

Theorem 5. If n ∈ N, xk ≥ 0, yk > 0, k ∈ {1, 2, ..., n} and p ∈ (−1, 0), m ∈
(−1, 0) and m ≤ p then we have,

xm+1
1

yp1
+

xm+1
2

yp2
+ ...+

xm+1
n

ypn
≤ np−m (x1 + x2 + ...+ xn)

m+1

(y1 + y2 + ...+ yn)p
.

Proof. As in [1], Theorem 2.4, we denote Xn = x1 + x2 + ... + xn and Yn =
y1 + y2 + ...+ yn and write

n∑
k=1

xm+1
k

ypk
= Yn

n∑
k=1

yk
Yn

tp+1
k ,

where t =
x

m+1
p+1
k

yk
and k ∈ {1, 2, ..., n}. Then we consider the function f : (0,∞) → R

defined by f(t) = tp+1, t ∈ (0,∞) which is concave on (0,∞) when p ∈ (−1, 0) and
therefore

n∑
k=1

yk
Yn

tp+1
k ≤

(
n∑

k=1

yk
Yn

tk

)p+1

or
n∑

k=1

yk
Yn

tp+1
k ≤ 1

Y p+1
n

(
n∑

k=1

x
m+1
p+1

k

)p+1

.

Now if we consider the function, g : (0,∞) → R defined by g(x) = x
m+1
p+1 , x ∈ (0,∞)

this is concave when m < p and then

n∑
k=1

x
m+1
p+1

k ≤ n
p−m
p+1 X

m+1
p+1
n .

From here we obtain the inequality of the theorem.

As a consequence of Theorem 5 we obtain the integral form of inequality from
previous theorem and this is also the reverse of inequality from Theorem 2.5, see
[1].

Theorem 6. Let a, b ∈ R with a < b, p ∈ (−1, 0), m ∈ (−1, 0) and m ≤ p. If
f, g : [a, b] → R+ are two integrable functions on [a, b] with g(x) > 0, (∀) x ∈ [a, b]
then we have: ∫ b

a

(f(x))m+1

(g(x))p
dx ≤ (b− a)p−m (

∫ b

a
f(x)dx)m+1

(
∫ b

a
g(x)dx)p

.
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Proof. We use the same technique as in [1]. Let n ∈ N and xk = a + k b−a
n , k ∈

{0, 1, ..., n}. We will take in Theorem 5 instead of xk and yk, f(xk) and g(xk) and
then the inequality becomes:

n∑
k=1

(f(xk))
m+1

(g(xk))p
≤ np−m (

∑n
k=1 f(xk))

m+1

(
∑n

k=1 g(xk))p

where ∆n = (x1, x2, ..., xn) is a division of the interval [a, b].
Multiplying by b−a

n last inequality we obtain:

b− a

n

n∑
k=1

(f(xk))
m+1

(g(xk))p
≤ (b− a)p−m (

∑n
k=1

b−a
n f(xk))

m+1

(
∑n

k=1
b−a
n g(xk))p

.

It results that

σ

(
fm+1

gp
,∆n, xk

)
≤ (b− a)p−m (σ(f,∆n, xk))

m+1

(σ(g,∆n, xk))
p ,

where σ
(

fm+1

gp , ∆n, xk

)
is the corresponding Riemann sum of function fm+1

gp , ∆n =

(x1, x2, ..., xn) division, and the intermediate points xk.
When n tends to infinity, in previous inequality the limits become:∫ b

a

(f(x))m+1

(g(x))p
dx ≤ (b− a)p−m (

∫ b

a
f(x)dx)m+1

(
∫ b

a
g(x)dx)p

.

In the following we will use the following inequality, see [7]:

Theorem 7. ([7]) If {x1, x2, ..., xp}, xi ∈ R+ and p are real, positive numbers and
m ∈ N then we have:

p∑
i=1

xm
i − (p− 1)am ≤

(
p∑

i=1

xi − (p− 1)a

)m

.

In fact using the method of power series, see [3] in previous inequality we obtain:

Theorem 8. If {x1, x2, ..., xp}, xi ∈ R+ are p real, positive numbers with 0 < xi <
1, i ∈ {1, ..., p} and

∑p
i=1 xi < (p− 1)a+ 1 then we have:

p∑
i=1

1

1− xi
+

1− p

1− a
≤ 1

pa−
∑p

i=1 xi
.

Proof. Using the inequality,

p∑
i=1

xm
i − (p− 1)am ≤

(
p∑

i=1

xi − (p− 1)a

)m

,

and summing then like below,

m∑
k=0

(
p∑

i=1

xk
i − (p− 1)ak

)
≤

m∑
k=0

(
p∑

i=1

xi − (p− 1)a

)k
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we obtain

p∑
i=1

m∑
k=0

xk
i − (p− 1)

m∑
k=0

ak ≤
m∑

k=0

(
p∑

i=1

xi − (p− 1)a

)k

and then when m tends to infinity we have:
p∑

i=1

1

1− xi
− p− 1

1− a
≤ 1

pa−
∑p

i=1 xi
.

Using the same techniques as in previous theorem, see [1] we can give an integral
form of the inequality from Theorem 8.

Theorem 9. Let a1, b1 ∈ R with a1 < b1, f : [a1, b1] → R+ is an integrable
function on [a1, b1](or continuous function on [a1, b1]). If 0 < f(x) < 1 and∑p

i=1 f(xi) < (p−1)a+1, (∀) i ∈ {1, ..., p} and (∀) p ∈ N where a = minx∈[a1,b1] f(x)

or (
∫ b1
a1

f(x)dx < (b1 − a1)minx∈[a1,b1] f(x)) then the following inequality holds:∫ b1

a1

1

1− f(x)
dx− b1 − a1

1−minx∈[a1,b1] f(x)
≤ 1

(b1 − a1)minx∈[a1,b1] f(x)−
∫ b1
a1

f(x)dx
.

Proof. Using inequality
p∑

i=1

1

1− xi
+

1− p

1− a
≤ 1

pa−
∑p

i=1 xi
.

from Theorem 8, and multiplying it by b1−a1

p we obtain,

b1 − a1
p

p∑
i=1

1

1− xi
+

b1 − a1
p

1− p

1− a
≤ b1 − a1

p

1

pa−
∑p

i=1 xi
.

Let p ∈ N and xk = a1 + k b1−a1

p , k ∈ {0, 1, ..., p}. We will take in Theorem 8

instead of xk, f(xk) and then the inequality becomes:

b1 − a1
p

p∑
i=1

1

1− f(xi)
+

b1 − a1
p

1− p

1− a
≤ b1 − a1

p

1

pa−
∑p

i=1 f(xi)
.

where ∆p = (x1, x2, ..., xp) is a division of the interval [a1, b1].
It results that

σ

(
1

1− f
,∆p, xk

)
+

1− p

p

b1 − a1
1− a

≤ (b1 − a1)
1

p2
(
a− 1

b1−a1
σ(f,∆p, xk)

) ,
where σ

(
1

1−f , ∆p, xk

)
is the corresponding Riemann sum of function 1

1−f , ∆p =

(x1, x2, ..., xp) division, and the intermediate points xk.
When p tends to infinity, we consider the following

σ

(
1

1− f
,∆p, xk

)
+

1− p

p

b1 − a1
1− a

≤ (b1 − a1)
1

(b1 − a1)2
(
a− 1

b1−a1
σ(f,∆p, xk)

) ,
and then we obtain the inequality.
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Following the method used by C. Mortici, see [5] and [3] for proving and discov-
ering a class of inequalities using infinite series, we give the following result:

Theorem 10. If p ∈ N, yi > 0, i ∈ {1, 2, ..., p}, 0 ≤ r ≤ 1 and 0 ≤ xi < 1, i ∈
{1, 2, ..., p} then the following inequality takes place:

p∑
i=1

xi

yri (1− xi)
≥ pr+1

(
∑p

i=1 yi)
r

∑p
i=1 xi

p−
∑p

i=1 xi

Proof. Using inequality from Theorem 2 with r instead of p and p instead of n we
have

xm+1
1

yr1
+

xm+1
2

yr2
+ ...+

xm+1
p

yrp
≥ pr−m (

∑p
i=1 xi)

m+1

(
∑p

i=1 yi)
r

and summing when k ∈ {1, 2, ...,m} we we obtain,

m∑
k=0

p∑
i=1

xk+1
i

yri
≥

m∑
k=0

pr−k (
∑p

i=1 xi)
k+1

(
∑p

i=1 yi)
r

or
p∑

i=1

1

yri

m∑
k=0

xk+1
i ≥ pr+1

(
∑p

i=1 yi)
r

m∑
k=0

(
∑p

i=1 xi)
k+1

pk+1
.

Taking now into account the hypothesis, xi ∈ [0, 1), i ∈ {1, 2, ..., p} which means
that

0 ≤
∑p

i=1 xi

p
< 1

, when m tends to infinity previous inequality becomes

p∑
i=1

1

yri

(
1

1− xi
− 1

)
≥ pr+1 1

(
∑p

i=1 yi)
r

 1

1−
∑p

i=1 xi

p

− 1

 .

Now we can think which is an integral form of previous inequality.

Consequence 1. Let a, b ∈ R with a < b,. If f, g : [a, b] → R+ are two integrable
functions, g(x) > 0, (∀) x ∈ [a, b] and f(x) ∈ (0, 1), (∀)x ∈ [a, b] then the following
inequality holds:∫ b

a

f(x)

gr(x)(1− f(x))
≥ (b− a)r(∫ b

a
g(x)dx

)r ∫ b

a
f(x)dx

1− 1
b−a

∫ b

a
f(x)dx

,

where r ∈ [0, 1).

Proof. Let p ∈ N and xk = a+ k b−a
p , k ∈ {0, 1, ..., p}. We will take in Theorem 5

instead of xk and yk, f(xk) and g(xk) and then multiplying by b−a
p the inequality

we obtain,

p∑
i=1

b− a

p

f(xi)

g(xi)r(1− f(xi))
≥ pr

(
∑p

i=1 g(xi))
r

∑p
i=1

b−a
p f(xi)

1− 1
b−a

∑p
i=1

b−a
p f(xi)
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where ∆p = (x1, x2, ..., xp) is a division of the interval [a, b]. Then when p tends to
infinity, taking into account that pr ≥ (b− a)r we have

σ

(
f

gr(1− f)
,∆p, xi

)
≥ (b− a)r

(σ(g,∆p, xi))
r

σ(f,∆p, xi)

(1− 1
b−aσ(f,∆p, xi))

,

where σ
(

f
gr(1−f) , ∆p, xi

)
is the corresponding Riemann sum of function f

gr(1−f) ,

∆p = (x1, x2, ..., xp) division, and the intermediate points xi.

References

[1] D. M. Batinetu-Giurgiu, D. Marghidanu, O. T. Pop, A new generalization of Radon’s inequality
and applications, Creative Math. Inform., 2 (2011), 111-116.

[2] L. Ciurdariu, On Bergstrom inequality for commuting gramian normal operators, Journal of
Mathematical Inequalities, 4, No. 4, (2010), 505-515.

[3] J. Moonja, Inequalities via power series and Cauchy-Schwarz inequality, J. Koreean Soc. Math.

Educ. Ser. B: Pure Appl. Math., Vol. 19, Number 3 (August 2012), 305-313.
[4] C. Mortici, A new refinement of the Radon inequality, Math. Commun., 16 (2011), 319-324.
[5] C. Mortici, A Power Series Approach to Some Inequalities, The American Mathematical

Monthly, Vol. 119, No. 2(February 2012), pp. 147-151.

[6] D. Marghidanu, Generalizations and refinements for Bergstrom and Radon’s inequalities, Jour-
nal of Science and Arts, 2008, 8, 1, 57-62.

[7] L. Maruster, St. Maruster, On the parallel variant of Broyden method, submitted.
[8] Pop O. T., About Bergstrom′s inequality, Journal of Mathematical Inequalities, 3, No. 2,

(2009), 237-242.
[9] J. Radon, Uber die absolut additiven Mengenfunktionen, Wiener Sitzungsber 122 (1913),

1295-1438.
[10] A. Ratiu, N. Minculete, Several refinements and counterparts of Radon’s inequality, submit-

ted.

Department of Mathematics, ”Politehnica” University of Timisoara, P-ta. Victoriei,
No.2, 300006-Timisoara


