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ON SEVERAL INEQUALITIES DEDUCED USING A POWER
SERIES APPROACH

LOREDANA CIURDARIU

ABSTRACT. The aim of this paper is to study what would become several
inequalities using the power series method. Also some applications will be
presented.

1. INTRODUCTION

It is necessary to recall the inequality of J. Radon which was published in [§].
For every real numbers p > 0, xzx > 0, ax > 0 for 1 < k < n, we have the
following inequality:
n 1 n
Z ot St
k= k Zk 1 k)

p>0.

Theorem 1. ([4]) For ay, x, >0, p > 1, k € {1,2,...,n}, n € N and n > 2 the
inequality takes place,
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with equality if and only if Z—i = 2—2 =..= i—z

Also we will use the following two inequalities which were enunciated and proved
in [2] and [3].

Theorem 2. ([2]) If n € N* — {1}, a € Ry, b, ¢, d, z € RY, X,, = > 1_, ay,
cXp > dmaxi<p<n T and m € [1,00), p € R%, then:

" (aX, +bxy)" _ (an+bD)™ _
2 > p—ml xm=p
@) D (cXn —dzp)? = (en—dyp " n

k=1

Theorem 3. ([3]) If n € N* — {1}, a,b,z, € R, k € {1,...,n}, X,, = >}, =k
and m,t,u € [1,00), such that aX! > bmaxi<p<n, zt, then:

n m —m-+tut1

X n
(3) k - > UX:Lnftu
2 (X - ba" (a1
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It is also necessary to recall the extension of an inequality which is stronger than
the Radon’s inequality, and was given by [6] and also a consequence.

Theorem 4. ([6]) For everyn >2, p>0, ap >0, x; >0, 1 <k <n, it holds:

ah Tt bt Pt (zy o+ py,)PTE
Tttt
al ab an (al +az+ ...+ a,)P
—1 2
+p- max (@i + ;)" (aiz; — a;;)
1<i<j<n a;a;(a; + aj;)P

Denoting xp = Agag, 1 < k < n, we have the equivalent form:

(al)\l + agXg + ... + an)\n)p"‘l
(a1 +ag+ ... +a,)?

+p- max aiaj(ai)\i + aj/\j)P_l()\i — )\j)Q.
1<i<j<n (a; + a;)P

a N ap BT g NPT >

+

Corollary 1. ([6]) For everyn > 2, p > 0, z, > 0, 1 < k < n, with s =
1+ X2 + ... + Ty, the following extension of Nesbitt’s inequality holds:

Tk S 1 n p+
s—x+ kP~ sp7l \n-—1

2

n

il
- wiw; (@i + 2)P " (@i — %‘3 —
1<i<j<n (s — x;)(s — xj)[(@; + xj)s — (z7 + osj)]p

+p-

We use below also the next result, which is given in [9].

Theorem 5. ([9]) For everyn > 2, p > 1, a > 0, by >0, 1 < k < n, the
following inequalities hold:

(2.5), 0< AL{J] (a;0) <p (AQ’] (a;b) — é:in_lz%A,[f_l] (a; b))
i=10i

and
p 3 n
0 < APl(a;b) < E(M —m)(M,_; —mP™1) <;:1 bi) )

where m < Z—li <M, fori=1,...,n.

2. THE RESULTS

In next result an inequality obtained using power series for inequality (2) from
Theorem 2, see [2] is given.

Theorem 6. If n € N* — {1}, a € Ry, b,c,d,x, € RY, X, = Y0 wp, Xy, >
dmaxi<g<n T, m € [1,00), p € RL, and in addition aX, + bz < 1, (V)k €
{1,2,...,n} then:

n

Z aX, + bz, - nptl an+b
(cX, —dxp)P(1 —aX, — bxy) — Xﬁfl(n —(an+b)X,) (ecn—d)P

k=1
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Proof. Using inequality (2),

" (aX, +bx)" an+b .
> (X, —dzp)? = ( " X”) (Xo(on—d))

when m € N* and replacing m by ¢ and summing then for ¢ € {1,2,...,m} we obtain
m

1=1 k=1

npt1

k=1

n
nptt

X i m %
(a n+bxk)pZZ an—|—bXn . .
(eX,, — dxy) P n (Xn(cn —d))
Now taking into account the hypothesis, 0 < aX,, + bzy < 1, (V)k € {1,2,...,n}
and a € Ry, b,¢,d,z, € R, k € {1,2,...,n} we can notice that,

b X,
0<% aX, 405" < aX, +b max < 1.
n n 1<k<n

Therefore when m tends to infinity we have

n

1 - aXy + bry S nptl . (an+0) X,
= (X —dxp)P 1= (aXy + bzy) — XE(en—d)P n— (an+b)X
or
Zn: aXy + by, > nPt an+b
k=1 (X, — dxk 11— (aXp +bay) — X2 (n— (an+b)X,) (en — d)P’
|

Now we give below a form of inequality (1) from Theorem 1, see [4], obtained
using a power series approach, see [7] and [5].

Theorem 7. Foray, x>0, {1,2,...,n},n € N, n > 2 ifay < ax, k€ {1,2,...,n}
the inequality takes place,

no2 nooy2 2 22 )2
Z €T3 > (Zz:l x’b) + max €T3 + J _ (‘Tl + IJ) }
a; — Ty Z

el n n Ll :
pt G — Y m 1<i<g<na; — X aj — x4 + aj — (T + x5)

Proof. We use the same method like before. By inequality (1), we have,

max + —
a, — (OCp_jak)? 1gz‘<j§n{ al a’ (a; + a;)P

+1 1 p+1
2“: v o o )™t + ot (i 4 )Pt
k=1

O L S A (IR 1)l
- il ap)r a? af (a; +aj)P ’
M 1<i<j<n.
Taking into account inequality (1) when p € N* is replaced by ! and summing
for I € {1,2,...,p}, we obtain:

p n 2\ p n S 141
Sa () =Y (Xa (gl )
=1 k=1 ak =1 \k—1 k=1 Ok
p I+1 4 I+1 p 1+1
T4 ZTj T; + X
) () rex(R) -erax (i)
=1 i =1 aj 1=1 a/7,+a/]
M1<i<j<n.
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When p tends to infinity, because 2= < 1, k € {1,2,...,n} and % < 1 the

Qg
series are convergent and we have,

Y — zpk 1T
1 1- 24; _ Xhe1 %k Zk:l ag

NIE

T i ak
1 €T; 1 T; 1 T; + T,
+a; - —1—-")+a f—l———a'—i—a» —— —1-— ,
(g el L D )
Therefore
2
zn: v (i w)? max { 7 P (i + 25)° )
= a; —T; Z?:l ai_zzlzl r; 1<i<ij<n a; —x; a; —T; Q; +a; — (xz—l—xj)
|

We can also see what will become the inequality from Theorem 2, see [6] by
using power series method.

Theorem 8. Forag, x>0, {1,2,...,n},n e N, n > 2 ifay < ax, k€ {1,2,...,n}
the inequality takes place,

SR > 20

ai—m o Y= YW

+ max (ai + aj)(aiz; — a;z;)? ) : 2
1<i<j<n a;a; [ai + a; — (xz + .73])}

.

Proof. We use the inequality from Theorem 4 and we have

xf-&-l zg+1 2Pt (2 + @0+ A+ )P
— + ot >
“ ay an (al +az + ... +a,)P
+p . max (xz + xj)Pfl(aixj — a‘jxi)Q 2 (1-1 +zo+ ...+ xn)p+1
1<i<j<n aiaj(ai + aj)P (al Tag t ..+ an)p

(@i +25)P " (aiw; — a;z:)?
a;a;(a; + a;)P

+p

b

M) 1<i<j<n.
When p € N* is replaced by [ and then summing for [ € {1,2,...,p}, we obtain:

p n a:é“ P (21 4 @2 + oo+ )1
ZZaiﬁ*Z@ﬁ“J‘)(a +ay + .+ ap) ! >
=1 i=1 % =1 1+air+..+ay
— 1—
> il . (xz + x])l l(aixj - ajl'i)2 _ (azfﬂj asz i x; + :L.j 1
B =1 aiaj(ai + aj)l aza] a; + aj — a; + a; )

M1<i<j<n.
By hypothesis, z; < a;, 1 <i < j <n we see that 21172] <lL,1<i<j<mnand
i T
therefore when p tends to infinity we obtain,

i (i #:)° > (az; — ajx;)? 1 _

— i =T DG~y % (et ag) (1 _ midw; )2

a;ta;

%
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(ai + aj)(aixj — aj.’L‘i>2 . 1
a;ia; lai + a; — (zi + 25)]*

M) 1<i<j<n.

This implies the required inequality, if we take maximum for all 1 < i < j <
n, i,7 € N in the right side of the last inequality.

The well-known equality,

L ke
(1—x)2 = ka
k=1

where 0 < x < 1, see [5] was also used before.

In next result also the power series is used in order to see what will become
the inequality form Corollary 3, see [6] under more restrictive conditions on the
numbers X1, ..., Tn.

Corollary 2. Foreveryn > 2, x>0, 1 <k <n, withs =21+ 2+ ... + x5, and
a:?+a:2-
zl—&-T;

s —1>maxi<icj<n, 1<k<n{Zk, ﬁ, } the following inequality takes place:

n

Z Tk > ns +
s —1—my “n(s—1)—s

© max ziw(z; — x5)? . [(z; + ;)5 — (27 + z7)]
1<i<isn (s —xi)(s —x5)  [(zi +25)(s = 1) — (a7 +27)]?

Ti+T; .
[T P e < 1 so if we

change p in [, where [ € {1,2,...,p} and p € N* and take the below sum, we obtain,

Proof. Using the hypothesis we have, s —xp > 1, s —1 >
(zi +x5)s — (27 +a3) or Lo <1, s < 1 and

S—Tp

and x; +x; <

and when p tends to infinity we have,

3

n 1 2 2 2
Tk n_ s(n—1) ziwj(xi — ;)% [(2; + x5)s — (27 + 77)]
;xkl_#zn—l s(n—1)—n [(zi +25)(s = 1) — (x7 +23)]?

S—ITf

M1<i<j<n.
Then using the same technique as in previous theorem we obtain the desired
maximum and the required inequality.

Considering Theorem 3 we can obtain below two different inequalities. First case
is when m tends to infinity and the second inequality is obtained when u tends to
infinity. Then we study the case when and m and w tends to infinity.
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Theorem 9. Ifn € N* — {1}, a,b,z, € R%, k € {1,...,n}, X,, = >}z, and
t,u € [1,00), such that aX! > bmaxi<y<n ak, and xp <1, k € {1,...,n} then:

n ntu+1 1

> R T 2
P (aXfl — bx};)u 1—x, — (ant — b)u)(,tﬂbuf1 n—X,

Proof. Like in previous demonstration summing when m tends to infinity we have,

n 1 ntqul 1
t ( o 1) = t Uy tu X, L.
= (aX] — bxk) 11—z (ant =b)" XI* \1— ==

Theorem 10. If n € N* — {1}, a,b,z, € R, k€ {1,...,n}, X, = >} ) and
t,m € [1,00), t € N such that aX} > bat +1, (V) k € {1,...,n} then:

zn: (EZZ - nt-i—l—mX:ln—t
aX! —bxt —1

-
_ n k t _ n
k=1 an b (Xn)

Proof. In inequality (3), we consider ! instead of u, I € {1,...,u} and u a natural
number, v > 1 and summing we obtain:

>3

t_
llklaX bxk

> Z 7m+tl+1 m tl'

(ant — b Xn
Because aX! > bzl +1, (V) k € {1,...,n} and a,b,z, € RY results naX] >
b> i xk +noraX! > b@ + 1. It is known that

t
1+ ...+, 1 ., ¢
— ] < —(z7+ ..tz
< n > _TL( 1+ + n)

if t € N|J{0}, see [5] and therefore

X

or
nt 1 -1
Xt ant—1b
If u tends to infinity we have
1I-mym 1
Z o il S1) s S
L bac 1- (XL) an’}fb

Consequence 1. Ifn € N* — {1}, a,b,z, € R%, k € {1,...,n}, X, = > 1_; ak
and t,m € [1,00), t € N such that aX} > bt +1, (V) k € {1,...,n} and zy <
1, ke {l,...,n} then:

n
1 Tk nttl X,

: > . :
aXt —bxt —1 1—a, — Xt(ant* —b)—nt n—-X,

k=1
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It would be also interesting to see what will become some applications of Theorem
1 and Theorem 2, see [3].

Now we see what will become the inequalities (2.5) and (2.6) from Theorem 2.3,
see [9] if on numbers a;, b; M and m we have some restrictions.

Theorem 11. For every n > 2, ar > 0, by > 0, 1 < k < n, the following
inequalities hold:

0< Z a;b; _ (22;1 bi) (Z?:l ai) <
= bi—a; Yoo bi—Yra
i—1 b 7 i=1"Y =1 "

a;? (0 a) (00 b))
< — _
B ; (bi — a;)? (Z?:l bi)2 - (Z:‘L:l ai)2

Yl (g W (S, b’
_anbi (Z(bi—ai)Q_ n b n )a

2
i= i=1 (i1 bi = 2imy @)
and
"\ ab; by a1 ( 1 1 ) "
0 < nIL - n < 7(M m) bza
;bl—az Diimibi =2 T 4 (1-M)>  (1-m) ;
wherem < 3£ <M <1, (V)i e{l,..,n}.

Proof. We deduce the inequality by the same technique as before, taking into ac-
count that the condition m < §& < M < 1, (V) i € {1,...,n} result ¥ < 1 and

SELE <1, (V)i € {1,.n).
-

We shall enunciate below the integral form of this last inequality using the same
techniques as in [1].

Theorem 12. Let f(z) > 0, g(x) > 0 and if f,g : [a,b] = Ry be two integrable
functions on [a,b] with m < (—g <M, (¥Y)z €[a,b] and M <1 then

)< /b F(z)g(x) . (f[f g(x)dx)
~Ja 9(x) = f(2) fabg(m)dx - f: f(x)dx

9 = F@P (1 g(ayaa) — () fa)de)

Lt (@, (1 gwyac)’
o ) = T (f;g(m)dx - f: f(x)dx)2

[ T (Y

and

o< [ St (f2(@)o)
~Ja 9(x) = f(2) fabg(m)dx - f; f(z)dz
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< 3 -m) ((1 —1M)2 T —lm)2> /abg(x)dx'

Proof. Let n € N and z, = k + b’Ta, k € {0,1,...,n}. We use previous theorem,
we put f(xy) instead of ay and g(zy) instead of by, , then we multiply by =% and

n
obtain the corresponding Riemann sums of the functions gf_—gf, 5 g, % and

ﬁ below in our inequality:

A A
0<o (fg An’gjk> — U(f’ "7$k)0(gv nyxk)
g

g*f7 (g,An,CEk)fU(f,An,.ﬁk)_

o f92 A T _ U(fa Anaxk) (U (g5A7l’x1€))2 _
: <(g - f)27 v k) (U (gvA'mxk))Q - (U (f7 A'mmk))Q

3 3
L) (s pvﬁmm€>—(g( (7 (9. A, 12)

7 (9, An, i) 9—f 9, A, k) — 0 (f, A, 1))
and
0<o (fg7An’ k) _ G (fv An7xk)0 (Q’Anaxk) <
g—f 0 (9, A, zi) — o (f, An, i)
1 1 1
<300 (=~ () o 0B,
where A, = (zg,z1,...,2,) is the division, x; are the intermediate points and
m < gg;’:g <M<1, (¥)ke{l,..,n}. When n tends to infinity, we obtain the
inequalities.
|
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