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ON SEIFFERT-LIKE MEANS

ALFRED WITKOWSKI

ABsTrRACT. We investigate the representation of homogeneous, symmetric
means in the form

r—Y
M(z,y) = —————~.
21 (55)
Tty
This allows for a new approach to comparing means. As an example we provide
optimal estimate of the form

(1 — p)min(z,y) + pmax(z,y) < M(z,y) < (1 — v)min(z,y) + vmax(z, y)
and
M(EEE — p25¥ BE 4 u220) < N(z,y) < MY — v 252, 20 4y 2)
for some known means.

1. INTRODUCTION, DEFINITIONS AND NOTATION

Looking at the two means introduced by Seiffert in [13]

r—y
9 arcsin Z=¥ TFY
p(z, y) = arcsm o ,
x x=y
and in [14]
-y
——— TFY
T(z,y) = { 2arctan % ,
x =y

as well as two other Seiffert-like means involving inverse hyperbolic function: in-
troduced in [11]

r—y
M(z,y) = 2arsinh§—;z TFY ,
x rT=y
and well known logarithmic mean
T—y T—y
L(z,y) = 2artanh% - logx — logy Ty )
x rT=y

it becomes quite natural to ask the following questions:
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2 ALFRED WITKOWSKI

Question 1.1. For positive z,y and a positive function f: (0,1) — R let

|z — y| r 4y
(1) Sp(e.y) = § 2f (254)

T T =y.

Under what assumptions on f the function Sy is a mean, i.e. satisfies min(z,y) <
S¢(z,y) < max(z,y) for all z,y > 07

Question 1.2. What means M can be represented in the form S¢?

The aim of this paper is to give answer the two question stated above and explore
the subject. In particular we introduce a metric and an algebraic structure on the
set of means. Then we show how the representation of a mean in the form Sy can
be used to investigate properties of M. In particular we give a simple criterium for
Schur convexity of M and criteria for finding optimal bounds of the form

(1= p)K(z,y) + uN(z,y) < M(z,y) < (1 —v)K(z,y) + vN(z,y),

~X
M — gt 55 4 ) € V) < MY gt =50 s g)

where K < M < N are homogeneous means.

Denote by M the set of functions M : R3 — R satisfying the following conditions:
(A) M is symmetric, i.e. M(z,y) = M(y,z) for all z,y € R;.
(B) M is positively homogeneous of order 1, i.e. for all A > 0 holds M(\x, \y) =

AM (z,y).

(C) M "lies in between", i.e. min(z,y) < M(z,y) < max(z,y).
We shall call elements of M means. The set of strict means, i.e. means satisfying
the condition
(D) min(z,y) < M(x,y) < max(x,y) whenever z # y,
will be denoted by M°.

By 8 we shall denote the set of functions f : (0,1) — R satisfying

z z

@) . ST s
We shall call them Seiffert functions.

By 8° the shall denote the set of those Seiffert functions for which both inequal-
ities in (2) are strict.

Note two important properties of Seiffert functions:
(3) lim f(z) =0, and lim fz) =1

z—0 z—0 z

The set of all real functions f : (0,1) — R satisfying for all z the condition
|f(2)] <1 will be denoted by B and its subset with strict inequality by B°. The
set B is a complete metric space with metric dg(f,g) = sup, |f(z) — g(2)|.

2. ANSWERS TO THE QUESTIONS

The next theorem gives complete (and rather surprising) answer to questions
stated in the previous section.

Theorem 2.1. The mapping f — Sy is a ono-to-one correspondence between 8
and M that transforms 8° onto M°.
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Proof. It is obvious that Sy is symmetric and positively homogeneous. S is defined

for all positive z,y, since 0 < % < 1. Suppose that z < y and let z = %

Then the inequalities (2) read

() <
This is equivalent to < Sy(x,y) < y and shows that Sy satisfies (C). Note also,
that for f € 8° the inequalities above are strict, which means that S; belongs to
J(\3/[01.1versely, for M € M we have

Y, (z+y—(y—x) z+y+(y—x)>
2 x4y ’ x4y

M(x7y) =

y—x
Z )

9o~
MA+z1-2)

and the function

z
4 - =
) fu(®) = =
in the denominator of the right-hand side is a Seiffert functions, because 1 — z <
M(1+2z,1—2) <14z Again, if M is strict, then so is fy. O

The next corollary follows immediately from the above proof.
Corollary 2.1. For arbitrary M € M and f € § the identities

fo(Z) =z, M(m,y) ZSfM(.’)L‘7y)
hold.

Very important property of the mappings between the set of means and Seiffert
functions is their antimonotonicity.

Corollary 2.2. The following conditions are equivalent

i For all z,y >0, M(z,y) < N(z,y),

it For each 0 < z < 1, fm(2) 2 fn(2).
Also the following conditions are equivalent

iii For all z,y >0, x £y, M(x,y) < N(z,y),
iv For each 0 < z <1, fp(2) > fn(2).

In many cases comparing the Seiffert funtions is much easier than comparing the
means, so the antimonotonicity provides a new tool for proving inequalities between
means.

The set of Seiffert means is convex, which means that for 0 < A < 1 the convex
combination of two seiffert functions (1 — ) f + A\g is again a Seiffert function. Let
us see what this means in terms of means.

Lemma 2.1. If M, N are means and 0 < A < 1, then
(1 =N fu(z) + Afn(2) = Froan o (2),
where H(a,b,t) = (1 —t)a=t +tb=1)~1 is the weighted harmonic mean.
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Proof. To shorten the notation we skip arguments of means. Using (4) we have

(1 — )\)fM(Z) +)\fN(Z) = (1_7)\)2 + % = ZH_l(M,N, )\) = fH(M,N,A)(Z)~

O
The following corollary is trivial conequence of Theorem 2.1

Corollary 2.3. For the means min and max holds
z z
(5) fmin(z) = izv fmax(z) - 1+ Z.

The pair of mappings f — Sy and M — fas establishes a one-to-one and mono-
tone with respect to corresponding partial orders, correspondence between the fam-
ily of homogeneous symmetric means and the family 8
Let us transform (2) as follows:

1—2z 1 142
< <
z O flz) T oz

(6) R Ty
fz) =
This enables us to define a metric on the set of Seiffert functions by
(7) ds(f,g) = sup oL
0<z<1 f(Z) g(Z)

Lemma 2.2. The space (8,ds) has the following properties

(1) (8,ds) is a complete metric space and diam 8 = 2,
(2) (8,ds) is a unit ball centered at the identity function id(z) = .

Proof. Completeness follows, since the convergence in dg implies the pointwise con-
vergence, hence the limit function satisfies (6). The same inequality implies (2). O

Clearly, the metric on § induces the metric on M as

Thus our space of means is a unit ball centered at the arithmetic mean.
To obtain the explicit formula for dy (M, N) write

dM(M,N) = dS(fMafN) = Ssup L

fu(z)  fn(2)

0<z<1
2 - - M(z,y) — N
—sup lz—yl  |z—y — 9sup (z,y) = N(z,y) |
ety [T =yl [2fm(2)  2fn(2) oty T —y

For more properties of this metric see |7].
As an application let us prove the following result

Theorem 2.2. For M, N € M satisfying dyi(M,N) < 2, there exists a unique
mean K € M such that for all x,y

K(xz,y) = K(M(z,y), N(x.y)).
Note that this result is known in case M, N are strict means. There exist means

that satisfy dy(M,N) < 2 and are not strict, and there are strict means with
dyv(M,N) = 2.
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Proof. Define the mapping ® : 8§ — 8 by ®(X)(z,y) = X(M(z,y), N(z,y)).

1 X(M(lJrz,lz),N(lJrz,lz))X( 1 1 )
focx)(z) z B fu(2) fn(2)
_ fﬂ%(i) - f%@ 1 < 11 > 1

2fx (%) 2\fu(z)  fn(2)) fx(u)

_ In(E)—fm(z)
where u = m Thus

1 _ 1 B 1
f<I>(X)(Z) f@(y)(z) 2

which yields

<fM1(Z) - le(Z)> (fxl(u) - le(U)> ’

e (B(Y), B(Y)) < Zae(M, N)dse(X, V).

Applying the Banach fixed point theorem we complete the proof. O

3. GROUP STRUCTURE

In this section we define in M° a group structure. Obviously we express the
group action in terms of Seiffert functions. It follows from formula (2) that the
operator A : 8° — B° defined

BRI
S fe) 2

is an isometry. Let v : (—1,1) — R be an odd, continuous bijection such that
~v(0) = 0. We define the addition on 8° by

(f®9)(z) = A7 (v T (WA)(2) +7(A(9)(2)))).

One can easily check that (8°,@) is an abelian group, and the identity function is
the neutral element.

The mapping M — f); allows us to transfer the group structure to the set of strict
means by setting

M@N = Sf]v[@fN'

Clearly, the arithmetic mean becomes the neutral element, and for every M we
have M & (2A - M) = A.
It is clear that if g, converges pointwise to g, then f @ g, converges pointwise to
f @ g. Unfortunately, the addition is not continuous with respect to the metric ds.
To show this, consider the following example: for natural n let z, = v~ 1(n) and let
In, g, [ € B° be defined by

gn(2) = {2n+1 if 2=z, 9(z) =2, f(z)=-=z

z otherwise,

We have ds (gn, 9) = |2n11—2a] = 0,7 (7(f(2))+7(g(2))) = 0 and v~ (y(f (24))+
Y(g(2n))) = y~1(1). Consequently da¢(f @ gn, f D g) # 0.
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4. NEW SEIFFERT-LIKE MEANS

Seiffert introduced two means corresponding to arcsin and arctan. Two other
means mentioned in the introduction come from their hyperbolic companions. We
shall show now, that also sin, tan, sinh and tanh are Seiffert functions. To this
end we use two lemmae.

Lemma 4.1. The inequalities

(8) z > arsinh z > arctan z > tanh z > "
z

hold for all z > 0. Moreover,

(9) arsinh z > sin z
holds for 0 < z < /2 and

(10) sin z > arctan z

is valid for 0 < z < 1.

2
Proof. Since cosh? z > (1 + %2) > 14 22, integrating form 0 to z the inequalities

1 1 1
> 7~ 2
V1i+22 142 cosh” z
we obtain first three inequalities in 8. To prove the last one observe that the graph
of the convex function cosh z and the straight line 1 + z intersect at two points:
z=0and z =2y > 0. Thus —4,— — % is positive for 0 < z < zp and negative

cosh? z (142)?
for z > zg. Therefore the function

1>

z 1 1
h(z) = tanhz — = - dt
(2) ey +z /0 cosh?t  (1+1)2

increases from h(0) = 0 to h(z) and then decreases to h(co) = 0, hence is nonneg-
ative. This completes the proof of the rightmost inequality in (8).
To prove (9), note that for 0 < z < 7/2 the inequalities

1—-222+224/341
2

cos2z+1
2
=1-442-2%) <1

(1+ 2% cos? z = (1+ 2%) < (14 2%

hold. Thus ﬁ > cos z and we obtain (9) by integration.

To prove (10) observe that for 0 < z < 1

22(1 - 2?)
2

and apply the same argument as above. O

(14 2% cosz > (14 22)(1 —22/2) =1+ >1,

Lemma 4.1 shows that the following inequalities hold if = # y

2smx—+3y’ 2tanhr—+z

Another set of means follows from the next lemma.
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Lemma 4.2. The inequalities

z
(12) z <sinhz < tan z < artanh z < 1
—z

hold for all 0 < z < 1. Moreover,
(13) sinh z < arcsin z < artanh z

holds for 0 < z < 1. The functions arcsinz and tanz are mot comparable in
0<z< 1.

Proof. The inequalities (12) follow from (8) and the fact, that the graph of an in-
verse function is symmetric with respect to the main diagonal. The same argument
applied to (9) implies the first inequality in (13), while the second inequality can
be obtained by integration of \/ll—j < ﬁ
It follows from (10) and the remark about the graph of an inverse function that
arcsin z < tan z for z < sin 1, while arcsin1 > tan 1.

(]

Lemma 4.2 implies the following chains of inequalities between means

+ - .
(14) TV Y s P(a,y) > Lix,y) > min(z,y)
2 2 sinh w+z
(15) AV TV o TV s L(ey) > min(z,y).
2 2 sinh :c+y 2 tan =Y
Y z+y

So all hyperbolic and inverse offspring of sine and tangent forms Seiffert-like means.
We shall see in a while that both of them are much more fertile.

5. INTEGRAL TRANSFORMATION

Theorem 5.1. If f € M is concave and

(16) 106 = [ Ha,

<I(f)(2) < 2 for all z € (0,1).

then I(f) is also concave and f(z)
(f) is also convex and f(z) = I(f)(z) > =.
)

Similarly, if f is convez, then I

Proof. Note first, that setting f(0) = 0 we extend f to a concave function on [0, 1).
Inequalities (2) imply f'(0) = 1 so f(z) < z by concavity. Moreover the divided
difference f(t)/t decreases which yields concavity of I(f), and implies

f(z):/ozf(;)dté/ozfit)dtg/ozdt:z.

The proof in case of convex function is similar. O

The operator I is monotone on the set of functions where it exists, and because
fmax 18 concave and fi, is convex we obtain the following corollary.

Corollary 5.1. If f is a Seiffert function such that I(f) exists, then I(f) is also
a Seiffert function.
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In particular we conclude that the following functions are Seiffert functions

sin z n=~0

Sin(z) = /z Sip—1(t) g n>0’
t
0

arcsin z n=~0

O t

ASi,(2) =

tan z n=~0

0

t

arctan z n =
ATin(2) = {/ AThat) )2
0

t
sinh z n=20
SHi, = ? in— )
in(2) / SHi,,—1(t) i >0
0 t
arsinh z n=>0
ASHn = # .nf )
In(2) / ASHIL (1) )y 2
0 t
tanh z n=0
THi = # i
in(2) / THi,,—1 (¢) i =0
0 t
artanh z n=20
ATHi, (z) = # ATHi,,_1(t .
in(2) / mteel) W nso
0

Since all functions mentioned in Lemma 4.1 are concave, we have the following grid
of inequalities between means:

7y =y Ty
© S SAsH, e < ZasHn = < 2arsinh -2 M(z,y)
A A A
< = < L < L
281y T2 281y ¥ 2sin g4
= < A A A .
Ty Ty _mmy
$ S 2ATiz ilf, < 2 ATi, ;;g < 2 arctan ﬁ T(ZL', y)
A A A
Ty T—y z—y
© S 2THL Ly < 3THL ¥ < Ztamn Iy

The horizontal lines are granted by Theorem 5.1 and vertical ones follow from
Lemma 4.1.

Before providing a similar picture for other four functions, remind that there is
no comparison between arcsine and tangent functions. Nevertheless, the operator
I quickly rectifies this irregularity.

Lemma 5.1. For 0 < z <1 we have
# int “ tant
ASiy(2) = / a“"cim dt < / af dt = Tiy (2).
0 0




ON SEIFFERT-LIKE MEANS 9

Proof. Let ¢(t) = arcsint — tant. As shown in the proof of Lemma (4.2), for
t < sinl ~ 0.841 the inequality ¢(t) < 0 holds. For ¢ > 7w/4 ~ 0.785 we have

q ) = C%Vcis2tt27 q'(m/4) < 0 and ¢/(1) > 0. Since cos?t is convex and /1 — t2

concave, their graphs intersect exactly in one point. Thus ¢(t ) changes sign exactly

once in the interval (0,1). This implies that the function u(z) = [ q(t)/tdt has
exactly one local minimum, and since u(z) = 0 and u(1) ~ 70 016, it is negative,
which completes the proof. O
Now Theorem 5.1 together with Lemmae 4.2 and 5.1 yield
a+y z—y z—y z—y
2 > 2 sinh ;;g > 2 SHi; z+§ > 2 SHi I+Z >
V V \Y
= Ty 7Y Ty
P(LU, y) - 2 arcsin ijrz > 2 ASiq J_Jrz > 2 ASis J.+Z >
V V
_z-y _z-y =y :
v 2tan 232 ~ am, o T EE) Z
\% V Vv
— -y Ty z—y
L(SC, y) " 2artanh :;:j > 2 ATHi; Z 1+7/ > 2 ATHi» 'T+u >
V V V

6. SCHUR CONVEXITY
Given a symmetric, convex set D C R? a partial order in D is defined by

(A7) (z1,y1) < (T2,92) © 21 +y1 = T2 + Yy and max(z1,y1) < max(z2, ya).

A symmetric function h : D — R is called Schur-convex if it preserves this partial
order, i.e. if (z1,y1) < (x2,y2) yields h(z1,y1) < h(z2,y2), and Scur-concave it the
partial order gets reversed.

Setting ¢ = (z1 +¥1)/2, t1 = |21 — ¥1]/2, t2 = |z2 — y2|/2 we see that (x1,11) <
(22,y2) is equivalent to t; < to, and thus we can say that h is Schur-convex (resp.
concave) if and only if for all ¢ the function h(c+t,c—t) increases (resp. decreases)
for t > 0, cf. [9, I.3.A.2.b]. It will be useful to introduce the strict Schur-convexity:
it is when the inequality in (17) is strict whenever (x1,y1) is not a permutation
of (xz2,y2). In his case all reasoning in this section remains valid with the adverb
’strictly’ added to all mentioned properties.

Schur convexity of means is an interesting subject being investigated by many
mathematicians (see e.g. [4, 15, 6] and the references therein).

In case of a homogeneous symmetric mean the Schur-convexity condition may
be written in a very simple form: M (x,y) is Schur-convex (resp. concave) if and
only if the function s(¢) = M(1 +¢,1 — t) increases in the unit interval. Let us
see how this condition translates into the language of Seiffert functions. We have
st)=MA+t,1—-1t)= f#(t), so we have the following.

Theorem 6.1. A mean M is Schur-convex (resp. concave) if and only if the
function fr(2)/z decreases (res. increases).

Note that if a Seiffert function f is concave (resp. convex), then if divided
difference f(z)/z) decreases (resp. increases), so we have

Corollary 6.1. If f € § is concave (resp. convex), then the mean Sy(x,y) is
Schur-convex (resp. Schur-concave).
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Corollary 6.2. The means

r—y r—y r—y r—y
28iy, T4 " 2ASHi, . " 2ATi, e " 2THi, ey
are strictly Schur-convex, while means
r—y r—y r—y r—y
2 Tiy, 572 " 2ATHi, . " 2ASi, ey " 2SHi, .

are strictly Schur-concave.

7. MEANS WITH VARYING ARGUMENTS

~

Denote by f(z) the function f(z)/z. For0 <t <1,0 < z <1 and f € § we have
the inequalities
z <1 tz <f(tz)g} tz < _* 7
1+2 tl+tz t tl—tz 11—z
which shows that fi(z) = f(tz)/t are also Seiffert functions. Note that lim; ¢ f;(2) =
z, thus this process defines a homotopy between f and id. It is a matter of simple

transformation to verify, that if f corresponds to a mean M, then f; maps to the
mean

M =M t
t($7y) ( 2 2 ’ 9 + 9

There are numerous papers on comparison between means of the form M; and other
classical means (see e.g. [1, 2, 3, 5, 8, 10, 16]).

The most popular problem is be formulated as follows: given two means M, N
satisfying A < M < N find optimal p, ¢ such that NV, < M < Ny. To avoid double
subscripts, let m and n be the Seiffert functions of M and N respectively. Then,
by Corollary 2.2 the inequalities N, < M < N, are equivalent to n, > m > n,.
The inequality A < N implies n(z) < z. Assume additionally, that the function
n(z) is strictly decreasing, (in case of classical means their Seiffert functions are
usually concave, so this condition is satisfied). Then the following inequalities are
equivalent:

sty o—y rty x—y>

np(2) >m(z) > nglz) = > > =p <
p(2) > m(z) > my(x) = =7 > == > = = =p

Thus we have proven the following theorem.

npz) _ m(z) _ n(qz) n—t(m(z))

Theorem 7.1. Let M and N be two means with Seiffert functions m and n re-

spectively. Suppose that n(z) is strictly monotone and let py = iIZlf m and

n (m(z
o = sup (z (2))
If A(z,y) < M(z,y) < N(z,y) for all x # y then the inequalities
Np(zvy) g M(Ivy) g Nq(xay)

hold if and only if p < pg and q = qq.
If N(z,y) < M(z,y) < A(z,y) for all x # y then the inequalities

No(z,y) < M(z,y) < Np(z,y)
hold if and only if p < po and q = qq.
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To illustrate this theorem let us consider two examples featuring the contrahar-
224y

monic mean C(z,y) = = -

Example 7.1. Let M(z,y) = 4oyt Tt s known (cf. [17]) that for z % gy holds
z+/TYy+y

Az, y) < M(z,y) < C(z,y).
We have

m(2)

241 — 22 o(2) 1 cl(m(z)) 1—+1—22
=———— ¢») = .
3422 14227 z 22

The function 1 —+/1 — u is convex, so its divided diffrence increases from 1/2 to 1,
therefore we obtain

Example 7.2. The contraharmonic mean belogs to the family of Gini means de-

ryoe\ 1/(r—s)
igizg . They are increasing with

respect to parameters r, s, thus for 0 < a < 2 we have

Az,y) = G(1,0;z,y) < G(l, s z,y) < G(1,2;2,y) = C(x,y).

fined in general case by G(r,s;x,y) =

Fix a and let M = G(1, ). An easy calculation shows that

e (m(z) _ 2()\/ [(1+2)7 + (1 = )]/ 7D — 91/(e-1)
z o 22 .

We shall show that the function under the square root increases. To this end we shall
use the following version of de 'Hospital’s rule ([12]): if f and g are differentiable
functions ¢'(z) # 0 and such that (f’/¢’)(z) increases (decreases), then so does the

divided difference w
g(x)—g(a)

Let f(z) = [(14+2)*+ (1 - z)a}l/(afl) and g(z) = 22. We intend to show that
(f'/g")(z) increases in (0,1). We have

Fo o o)(2=a)/(a=1) a (42t -(1-2)"
72 =042+ (1= /et B :
= hi(z) x 2(04&—1)@22)

Case 1: 1 < a < 2. The power function z% is convex, so (1 + 2)® + (1 — 2)*
increases and so does hi(z). The function ha(z) is positive and convex, so its di-
vided difference increases, thus f’/¢’ increases being a product of positive increasing
functions.

Case2: 0 < a < 1. The power function z® is concave, so (1 + 2)* + (1 — 2)*
decreses, thus hq(z) increases. The function ho(z) is negative and concave, so its
divided difference decreases, and the negative factor m turns it into positive
increasing. Thus again f'/¢’ increases.

Therefore

<

a_oetm(z) _et(im(z) e t(m(1) _
z z 1
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and we obtain the optimal inequalities

r+y ar—y r+y ar—y
o - o < , 5 T, < ) .
C( oty 53 ) G osz,y) < C(x,y)

Using the same technique as in Example 7.2 we obtain the following results for
power means G(0, a; z,y):

Example 7.3. Let N(z,y) = G(0,2;x,y) denote the root-mean square. For 1 <
a < 2 the following inequalities

N (5 5t 5 - ppt) GO e y) SN (5 4%t 5 - a5

holds if and only if p < Voo — 1 and ¢ > V4l-1/e — 1.

Example 7.4. For —1 < a < 1 the following inequalities

l1—a

holds if and only if and g < 5.

8. APROXIMATION BY CONVEX COMBINATION OF MEANS

Suppose three means K, M, N satisfy for all positive distinct z,y inequalities
K(z,y) < M(x,y) < N(z,y). Our goal is to determine the best possible constants
1 and v such that the inequalities

(18) (1= wK(z,y) + puN(z,y) < M(z,y) < (1 —=v)K(z,y) + vN(z,y)

are valid for all z,y. The inequalities (18) in terms of Seiffert functions have the
form ) ) )
—n -v v
+ < < + )
fk(z)  In(z) " fu(z) © fk(z)  fn(z)

which is equivalent to

1 1
)~ fr()
(19) p< S

Thus we have the following result.

Theorem 8.1. For three means satisfying K < M < N the inequalities (18) hold
if and only if
1 11
: fu(z)  fk(2) fu(z) k(2
< inf DB IO gng sup LB _IE

1
IO D) 0<2<l 8@ ~ Tx (@

Let us illustrate this result by finding the optimal bounds of eight Seiffert-like
means discussed in Section 4 by convex combination of min and max. In this case
the inequalities (19) read

" <v

< 1 ! L +1) <

X 5 N X 1/7

D) f(z) =z

thus we have to find the upper and lower bound of the function ﬁ - % In all
1 1

eight cases we can write f(z) =z +cz®+ ..., so lim,_, 7o~z =0
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Example 8.1. Let f(z) = sin(z). The function cos z is concave in (0,7/2) thus

so are cos(tz) and fol cos(tz)dt = 22 Therefore its reciprocal -2 is convex and

/ J \ z sin z
consequetly, its divided difference

1( z 1)7 1 1
z \sin z Cginz 2z

increases from 0 to 1/sin(1) — 1. Thus

r+y T—y 1 . 1
< <(1-— ; — Y)-
2 2sin it ( 2sm1) min(z, y) + 55 max(z,y)

Example 8.2. Let f(z) = arcsin z. To investigate monotonicity of arcslinz — % set
z = sint and use the result of the previous example to see, that the range of this

function is (2/7 — 1,0). Thus

1 . 1 T +y
- 1- = < P(z,y) < .
- min(z,y) + ( 7r) max(z,y) (z,9) 5
Example 8.3. Let f(z) =tanz. Then
1 1\ 1 tan'(z) sin?z— 22
- = == 72 - D) == 2 < O,
tanz 2 z tan®(z) 22sin® z

1

so —— — 1 decreases from 0 to 1/ tan(1) — 1 and consequently
1 . 1 x—y x4y
1- < < .
( 2tan1> min(z,y) + 5y mex(@y) < oo =T

Example 8.4. In case f(z) = arctan(z) we set z = tant and use the previous
example to get

2

2
52 < T < (122 ) minep) + 2 max(o, ).
i i

2

Example 8.5. The story of hyperbolic tangent is quite similar to that of tangent,
the only difference is that sinh z > z.

T4y ] 1 . 1
< S(l=—57=7 ; Py—— 1Y)
2 2tanh =7 ( 2tanh 1) min(z, ) + 2tanh1 max(z, y)

Example 8.6. As shall be expected, for the inverse hyperbolic tangent we shall
use Example 8.5 and the substitution ¢ = tanh z. Nevertheless, it is wise to note
that lim,_,; artanh 2 = oo, so in this case there is only trivial lower bound

. Tty
min(z, ) < L(,y) < 5.
Example 8.7. An attempt to use for f(z) = sinhz the same approach as in

Example 8.1 fails, because sinh z/z is convex and the reciprocal of a convex function
may not be convex.

(20) ( 1 1)’ sinh? 2z — 22 cosh

-2
z2sinh® z

coshz [ sinhzcosh™ /2 2 sinh z cosh™ /2 2
- +1||—F—-1].

sinhz =z

sinh? 2 z z
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Let ¢(z) = sinh z cosh™*/2 2. Then ¢”(z) = .25 cosh™>/® z sinh z(cosh? z — 3), hence
q is concave in (0, arcosh \/§) Since arcosh v/3 ~ 1.14, we conclude that q(2)/z
decreases in the interval (0,1), and thus the expression (20) is negative. Therefore
we have

T—y Tty
max(x,y) < < .

2sinh 1 2tan =¥ =9
T4y

(1 B 25inh1> min(z, y) +

And finally

Example 8.8. For f(z) = arsinh z the substitution z = sinh ¢ converts m - %
into % — Flht and monotonicity follows from the previous example, since 1 > z > t.

The optimal inequalities then are
Tty T—y . < ] 1

1
2 arsinh 1 m

< - ax(z,y).
2 2 arsinh 2 arsinh 1 x(2,)

= ) min(z,y) +
T4y
9. MISCELLANEA

In this section we collect some facts about means and Seiffert functions, that
might be useful for future investigations.
This surprising result follows from the results of Section 7.

Theorem 9.1. If M is a mean satisfying M(z,y) < A(z,y), and My o(z,y) =

M(?’”ﬂ#, x‘f’y), then Mf/Q/A is a mean.

Note, that in general M?/A is not a mean (take the harmonic mean as an
counterexample).

Proof. Let f be the Seiffert mean of M. Then the function 2f(z/2) is the Seiffert
function of M /5. Consider the function g(z) = 4f*(z/2)/z. Since z < f(z) we
have z < g(z) and
4 2%/4 z
<= .
9(2) z(1—2/2)? R
Thus g is a Seiffert function and its corresponding mean is

o —ylz _( [z —y] ) 2 My
2-2f(2/2)) x+y  Alz,y)

8/%(2/2)

This result may be generalized as follows

Corollary 9.1. If M is a mean satisfying M (z,y) < A(z,y), and Mi(z,y) =

M(%ﬂ + 54, %ﬂ’ —t%5Y), then Mtl/tAlfl/t is also a mean.

To prove this it is enough show that g(z) = z[g(tz)/(tz)]/* is a Seiffert function.
We leave the details to the reader.

Remark 9.1. It is easy to see that z + az® is a Seiffert function if and only if
—-1/2<a<1/2.
Theorem 9.2. The inequalities
6A%(z,y)
5A%(z,y) + G*(x,y)

v
(21) Ay < 278 < e y)
2sin Ty

xT
x

hold.
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Proof. The sine function satisfies z > sinz > z — 23/6. It follows from Remark 9.1
that the last function in this chain is a Seiffert function, and a simple calculation
shows that its mean is the rightmost mean in (21). O

For two Seiffert functions fy; and fx and arbitrary mean K the function g(z) =
K(fam(2), fn(z)) is a Seiffert mean corresponding to M N/K (M, N)). In particular,
if K is M, N invariant (see Theorem 2.2), then M N/K is also a mean.

Now we shall show facts about power series representation of Seiffert functions.
The first one is trivial.

Theorem 9.3. If 0 < a, <1 for n > 1, then the function f(z) = z+ >~ 5 anz"
is a Seiffert function.

Proof. Clearly, the series converges for 0 < z < 1 and

- 1
n _
z<f(z)<2z =1
n=1
O
The two following theorems concern alternating series.
Theorem 9.4. Let 1 = a1 > aa > --- > 0 be a convex sequence (i.e. sat-

isfying 2ar, < ag—1 + apy1 for k = 2,3,...). Then the function f(z) = z +
Yoo o (=1)"a, 2™ is a Seiffert function.
Proof. Note first, that

f(z) =2z —2%(ag — azz) — 2*(ag — asz) — -~ < 2.

Let b, = a,, — ap4+1. This sequence decreases monotonically to 0 and we have

I1+2)f(z) =2+ i(—l)”“anz" + i?(—l)"“anz’”rl
n=2 n=1

zZ+ 22(b1 — bQZ) + Z4(b3 - b4Z) + -2 z,

thus f(2) > 135- O

Corollary 9.2. The following functions are Seiffert:
z —log(1+ 2) 310g(1+z)—z+22/2

log(1+2), 2 , L
og(1+ 2) ; >
Theorem 9.5. Let a,, n > 1 be nonnegative numbers satisfying a; < 1/2,1 >
az =az > ..., then f(z) =z — a1z + > 7 ,(=1)"a,2*" 1 is a Seiffert function.
Proof. We know from Remark 9.1 that z — a;23 > 15 thus

f(z) = ﬁ + 2%(ag — a3z®) + 2°(a4 — as2®) + - > 1 j_ ~

On the other hand
2n+1 _ %
f(z)gnzzozn <n§12”—7172,

which completes the proof. (I
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Corollary 9.3. The following are Seiffert functions:

) z—sinz sinz — z+2%/6
sinz, 6o 120 STE2

22 z

1—cosz 24cosz—1—|—22/z

)

S
z 23
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