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ERROR BOUNDS FOR TRAPEZOID TYPE QUADRATURE
RULES WITH APPLICATIONS FOR THE MEAN AND
VARIANCE

PIETRO CERONE!, SEVER S. DRAGOMIR?3 AND EDER KIKIANTY?3:*

ABSTRACT. In this paper, we establish some inequalities of trapezoid type to
give tight bounds for the expectation and variance of a probability density
function. The approach is also demonstrated for higher order moments.
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1. INTRODUCTION

The trapezoid rule is a method to approximate the integral ff f(z)dz, by ap-
proximating the area under the curve of f(x) as a trapezoid:

b
/ f(x)dm%(b_a)w.

Some inequalities have been established to give bounds for the error of this approx-
imation, and we summarised the result in the following proposition (cf. Cerone and
Dragomir [5]).

Proposition 1.1. Let g : I C R — R be a function and u,v € I with v < v.
Consider the approxzimation of the integral of g on [u,v] by the trapezoid rule, that
is, find abound for the quantity:

1) 2900y~ [ gtoyar].

2
The following bounds for (1) holds for any u,v € I with u < v:
a. If g € BV[u,v], then

(2) ‘g(mw(v—u)—évg(t)dt‘<;|v—ul

v

V()]

u

2

b. If g is Lipschitz continuous with Lipschitz constant L, then

5 2+ 00) oy [ gt dt] < {Lv —uy’
c. If " exists and bounded, then
(4) ’g(u);g(v)(v—u)—/vg(t)dt‘ < %2('0_“)3”9,/“00'
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2 P. CERONE, S.S. DRAGOMIR, E. KIKIANTY

d. If the first derivative of g exists and is absolutely continuous on [u,v], then

M(v —u) — /uvg(t)dt‘

1 .
EHQIHOC(U - u)Z’ ngl S Loo[uav];
19/ [l (v — w)'* 3
1
2(q+1)a

sl l(o =), ifg" € Lafu, v].

IN

. if g € Lylu,v], 5+

We refer the reader to Cerone and Dragomir [5] for more details on the trapezoidal
type inequalities.

One of the applications of integral inequalities is to obtain bounds for the expec-
tation, variance and moments of continuous random variables defined over a finite
interval [1]. In Barnett et. al. [1], it is noted that some Ostrowski type inequalities
may be used to obtain these bounds (see, for example, Brnetié¢ and Pecarié [2]). We
refer the readers to the monograph by Barnett et al. [1], for an overview of these
inequalities.

There are other inequalities which provides bounds for means and variances.
Chernoff [7], for instance, proved that for any Gaussian random variable X and
an absolutely function G, we have Var(G(X)) < E(G’(X))2. This inequality is
then generalised with higher-order derivatives in Houdré and Kagan [9]. A charac-
terisation of distributions (normal, gamma, negative binomial or Poisson) is given
in [10] by means of a Chernoff type inequality. We refer to the papers by Cacaoul-
los [3], Cacoullos and Papadatos [4], Chang and Richards [6] and Dharmadhikari
and Joag-Dev [8], for further inequalities involving variances.

In this paper, we aim to provide some inequalities of trapezoid type to give tight
bounds for the expectation and variance of a probability density function f. In
Section 2, we give approximations for the first and second moments of a function
f :[a,b] = R around the midpoint of the domain, i.e.,

/ab (x—“;b> flz)dr and /ab <x—a;b>2f(x)dx.

We make use of the trapezoid type inequalities to obtain error bounds for the ap-
proximation. In Section 4, we apply the results to obtain bounds for the expectation
and variance of a probability density function f. Remark 2.10 demonstrates the
applicability of the approach for higher order moments.

2. MAIN RESULTS

Firstly, we note that inequality (4) also holds when we weaken the assumption,
as presented in the next proposition.

Proposition 2.1. Let g : I — R be a function and and u,v € I with u < v. If ¢’
is absolutely continuous and g" € Loo[u,v], then,

g +o0) A”g(t) dt‘ < = wlg e

for all u,v € 1.
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Proof. Since ¢" exists almost everywhere, we have

1 1

[ -0 = gl 0e-040

v

u—/:(u—&—v—Qt)g’(t)dt}
_ ;[(Qtuv)g(t):2/uvg(t)dt}
_ M(v_u)_/:g(t)dt.

2
Thus,
mwgﬂwwm/g@ﬁ‘g 5 [ (6w = ol
1 v
< 51" [ = uw =t
I TR
= el o~ ),
as desired. -

2.1. Error bounds for the first moment approximation. Utilising (1) we
have the following approximation for the first moment of a function f.

Lemma 2.2. Let f : [a,b] — R be an integrable function. We have the following

approzimation for the first moment of f:
a+b

(6) /:<x—“;rb)f(x)dmxb;“(/a;f(x)dm—/a ’ f(:c)da;).

Proof. Setting f =g, u = %2 and v = z in (1), we have

T atd a z
I (oY

Integrating the above on [a, b], we have:

[ (_asty [ ( I f(t)dt) "
Now

| /a”f(x)+f(%+”) (x_a+b> -

(7)

2 2

Il
N |
T~
o
/N
=
|
IS
o[+
>
N——
=
8
SN~—
jsW
)

We also have

[ ([ o) a

2

a+b r
(:E— 5 ) %Mf(t)dt
b—a

)

b _ afb b
. /+ F(t)dt — bza/a f(t)dt—/a <33— “;b) (@) da.

Thus, (7) becomes
a+b

2/; (z_“;b)f(x)dz—bza(/C;f(t)dt—/a ) f(t)dt) .

Multiplying the above by % completes the proof. U
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Let f be an integrable real-valued function defined on [a, b], and set

a+b

() :=/ab(x—“;b)f<x>dx—bga (/;fmdx—[ f(a:)dx).

In the next theorem, we give bounds for |Ti[, i.e. the error bounds for the approx-
imation in Lemma 2.2, for different classes of functions.

Theorem 2.3. Let f :[a,b] = R be an integrable function.
a. If f of bounded variation on [a,b], then,

b-a)? |1, 1, b
S sV VoVl
(8) 1Tl < L . < sb-a’\/(f).
b—a
= [ V] “
b. If f is L-Lipschitz, then
) T()] < 25200 - o)’

c. If f' is absolutely continuous and f" € Loo[a,b], then
1

1 T < Moo (b —a)t.
(10) T < gl ot~ a)
d. If f is differentiable and [’ is absolutely continuous, then
1 .
EHf/HOO(b_a)Sv foleLOO[aab];
1 b— 2+%
ay < WO ZT e e, L=
3(2¢+1)(g+1)72' "3 v

S o a)? J T € La.t].

The proof of Theorem 2.3 is presented in Section 3. In the next propositions, we
present the sharpness of the constants for some of the inequalities in Theorem 2.3.

Proposition 2.4. The constant - in the first case of (8) is best possible.

Proof. Let f :[a,b] C R — R be the function defined as follows:

1, a<z< “7“’;
f(x) = 0, T = GT—H]’
-1, ¢ ogp<h
We have
a;rb b b
V=1 V=1 and \/(f)=2
a+b a

Let us assume that (8) holds for constants A > 0 instead % ie.

5o 5[ [ 1)

(12) b |
< Ap-ao |5V +5

/-yl
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With the above choice of f, we observe the terms on the left hand side of (12) in

the following:
b
b 1
/ (x“; )f(x)dx4<ba>2;

/ibf(x)dx: , and / b;a.

We observe the term on the right hand side of (12) in the following;:

b
! \/(f)—\/(f)‘=

Thus, (12) becomes:

which asserts that A > 1—12 O
Proposition 2.5. The constant ﬁ in (10) is best possible.

Proof. Let us assume that (10) holds for constants B > 0 instead == i.e.

576
(13) ‘/b (fﬂ—a;b> f(z)d a(/ibf(m)dx—/aa;rbf(x)dx>
< B[f"lee(b—a)". ’

Let f: [a,b] C R — R be the function defined as follows:

2
(x_a-i-b) 7 agxﬁ'ib'
2 27

fz) = 2
(:ra+b) , et cp <p

2

We note that f exists almost everywhere and || f”]|o = 2. With this choice of f,
the left-hand side of (13) becomes

+

atd 3 b 3

2 a+b a+b
/a (Jc— 2 ) dw—/”h(x— 5 ) dr

b—a b a-+b 2 5t a+b 2
S (L) e [ () e

_ ‘—614(19— W)~ b= a4 s (b— )+ (b a)
1
= @(bfa)4

The right-hand side of (13) becomes
B|f"|oo(b—a)" =2B(b—a)".

Thus, (13) becomes
1
288
which asserts that B > 576 O

(b—a)* <2B(b—a)*
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2.2. Error bounds for the second moment approximation. Utilising (1) we
have the following approximation for the second moment of a function f.

Lemma 2.6. Let f : [a,b] — R be an integrable function. We have the following
approxzimation for f:

(14) /ab (x—a;b)Qf(x)dx%é(b—a)Z/abf(t)dt—;élf<a;b) (b— a)?.

Proof. Set f =g, u= “TH’ and v =z in (1) and let F(z f f(t) dt to obtain:
a+b f(iv)—i—f(aT'H)) a+b
(15) F(;v)F( 5 > 5 <x 5 ) .

If we multiply (15) with [z — 2$2|, we get

(16)
o= (5] (557 s b (5] (- 25)

Integrate (16) on [a, b], we have:
[ o222
L) o () [ (53 o]
Now, observe that

[fro-r ()] (-5
/ ( a+b> de
AF(x)d((x—a—;b>2>

(17)

DN =

- ! F(x)<$—a;b>2 :—/ab(x—“;bff(x)dx]
_ % (F(b) — F( ))(bf)z/ab(xa;b Zf(x)dz]
= Lo—ap abf<t>dt—;/ab<x—“§b>2f<x>dz,
nd
a /ab(sc—a;_b>2d$:;(w_a;b>3izllz(b_a)3

Then, (17) becomes

/ab (xa;b)Qf(x)dx;(ba)z b (t)dt+214f<a;rb> b— o)

as desired. O
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Let f : [a,b] — R be an integrable function and set

nqw:lb@—“gbfmeM—;w—w{AU<dn% 5l (5) 0=,

In the next theorem, we have bounds for |T3|, i.e. the error bounds for the approx-
imation in Lemma 2.6, for different classes of functions.

Theorem 2.7. Let f : [a,b] — R be an integrable function.

a. If f is of bounded variation, then
b

1 3
<= —a).
(18) \RU)_%YUM a)
b. If f is L-Lipschitz function, then
1
1 T: L(b—a)*.
(19) IT(f)| < £ L6~ 0)
c. If f' is absolutely continuous and f" € Lu[a,b], then
20 T "Noo
(20) T < o 17" ool — ).
d. If ' exists and is absolutely continuous, then
. , / .
/ —
e mp <] IO ®13“ I e Lyfab], L4t —1;
(3¢ +1)(g +1)92%"s
Sl hb—a® e Liab]

The proof of Theorem 2.7 is presented in Section 3. In the next propositions, we
present the sharpness of the constants for some of the inequalities in Theorem 2.7.

Proposition 2.8. The constant 45 in (18) is best possible.

Proof. We now prove the sharpness of the constant 4—18. Let f:[a,b)) CR — R be
the function defined as follows:

0, x=2atb,
_ ’ 2
f(z) { 1, otherwise.
Therefore \/Z(f) = 2. Let us assume that (18) holds for a constant C' > 0 instead
of 2 IR
(22)

/ab <x_a;b)Zf(x)dx—;(b_a)zfabf(t)dH?zf <a42rb> b oy
= C\b/(f)(b—

With the above choice of f, we observe the terms on the left hand side of (22) in

the following:
b —a) / ft) b —a)?;

/b( a+b> f()dx_ﬁ(b a);and%f<a;b)(b—a)3=0-
(2

2) becomes:

Thus,
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which asserts that C' > hence the constant 4—18 is best possible. U

487

Proposition 2.9. The constant 960 in (20) is best possible.

Proof. Assume that (20) holds for a constant K instead of
(23)

960’ 1.e.,

/ab<x_a;b)Qf(x)dx—;(b—ay/abf( )t + f<a+b>(b—a)3

< K[| loo (b a)?.

Let f : [a,b] — R defined by f(z) = 1(z — “E2)2 So, f”(z) = 1 for all z € [a, b]
and thus ||f”||oc = 1. Therefore, (23) becomes

L
960

which yields K > 960 O

(b—a)® < K(b—a)®

Remark 2.10. Utilising a similar technique to that of Lemma 2.6, we are able to
obtain the higher order moments can be derived from (1). Set f =g, u = “T% and
v=uzin (1), let F(z) = [ f(t)dt, multiply with |z — atb|m (> 1) and integrate

with respect to x on [a b]
b n+1 n+1 b
a+b 2(n+1) 1 b—a
/a (:v— 2 ) J(@)de ~ n+3 n+1( 2 ) /af(t)dt
a,;—b b n+1
_/ f(q:)dx/ (x—a+b) —f<a+b>/ (x—a+b> dx}.
a a 2 a 2

The integral f; (:L' - %rb)k dx vanishes when k is odd; and when k is even,
b k _ k41
/ R S R ) i
a 2 2k(k+1)

3. PROOF OF THE MAIN THEOREMS

3.1. Proof of Theorem 2.3. Let f be a function of bounded variation on [a, b].

Setting f =g, u =2z and v = “—er in (2), we have

|f<x)+2f(a2+b) <Ia+b> / F)dt

Integrating the above on [a, b], we have

+f )( a;b) d:r/ab(/;f(t)dt> dx
(24) < /‘f +f )< —a;b)—/azbf(t)dt

g/a _a+b \/(f)

a+b
2

‘ 7a+b

dzx

IN
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Following the proof of Lemma 2.2, the first term of (24) is %|T1(f)| Furthermore,
we have

* b a-+b
max \/(f)’/ x — ;r dx
b a+b T z€la,b] atb a
[l Ve < bl
= Juax |o— — ‘/a l(f) dx
T (b—a)?
max ¢ \/ (1), \/ () p =
S (z N a;—b
bh—
- V()
b-a)2 1, 13 b
BV +5 V- Vo)
< ) , ma =n =1
S ANLIE
Thus, (24) becomes
3

Multiplying the above by 2 gives us (8).
Let f be L-Lipschitz. We apply similar steps as above and utilise (3) to obtain

3 b1 a+b| 1 (1 a+b\"|" 1 )
— < —_ — = — — — = — — .
2|T1(f)| _/ L ’x dx 4L (3 (;B 5 ) ) 48L(b a)

1 2
Multiply the above with % gives us (9).

Let f’ is absolutely continuous and f” € Ly[a,b]. We apply similar steps as
above and utilise Proposition 2.1 to obtain

3
dx

3 b1 a+b
Z < || £ _
2ITl(f)\ < /a12”f IIOO’:c 5

atb 3 b 3
1. ., z fa+b a+b
L) [/ (32 -<) x+/( ) e
atb 4 (b
N a+b i a+b
—48||f||oo[(2 x) ()
Multiply the above with % gives us (10).

1
= ol (0 —a)t.

Let f’ exists and absolutely continuous. We apply similar steps as above and

utilise (5). We have

384
b 2
1, ., a+b 1, 3
- oo - de = — oob_ .
[ 318 (2= 252) o= 10 - )
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The second case of the right hand side of (5) becomes

— 7 /
2((]4—1)% b a
ath 1+ b 1+
1 2 q q
— Il | [ (“”’—x) ot [ (x—a“’) du
2(g+1)% a 2 = 2

_ q / _ a2+
= e I -

142

a+b de

2

T —

The third case of the right hand side of (5) becomes
b
1
SN
|
a+b
1, 2 (fa+b b a+b 1, 9
- 2|f|1[/a (=)ot [, (o= )dx]—snfnl(b—a).

2

b
x—% dxr

Thus we have

1 .
&l (6 =), if f" € Loo[a, bl;
3 q 2+l . 1 1 _ 1.
i‘Tl(f”S g2q+1)(q+1)}122+;||f/||P(b_a) 1, lff/eLp[a7b]7;+E_17
LI (b ) i 17 € Lafa. ).

Multiply the above with 2 gives us (11).

3.2. Proof of Theorem 2.7. Let f be of bounded variation. Let F(z) = [ f(t) dt,
we have the following by (2):

(25) a+b
F(x)_F(a;rb>_f(x)+2f(a;b) (x_a;b) g;‘ _a—;—b’ \2‘/(f)
If we multiply (25) with [z — 2£2|, we get
(26) ,
o= () (=) sl s (7)) (%)
1 a+bl? &
< 5 €T — 9 \/(f) :

x

Integrate (26) on [a,b] and follow the proof of Lemma 2.6 we have:

b b2 n,;—b
Tl < g [ et V)
_ 1 /T@”b)?u\;/b(f)dH/b <xa+b>2\7(f)dg:
20/, 2 ath 2

x 2
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b

5 2 b 2
(x—a—z’—b) dm—&—%\/(f)/ﬁ (w—a;—b> dx

a+b
2

A
DN =
s <]
=
T~

Il
N
)
k,j
N—
—

4
7N
8
|

IS
| +
>
~_
[\v]

QU

5

1 1 a2 1
- (f)3(a:— ! ) S =EVoe-a

IN

1 b
mol < g f
atb 3 b 3
2 a+b a+b
/a ( > —m) dm—f—/m(sr:— 5 ) dx]
a+b b

2
1 a+b Y a+b\* 1 4
= —_L|- - — =—L(b—-a)".
16l<2 x)g +<x 2)”& 12s L -
2
Let f be a function such that f’ is absolutely continuous and f” € Lo[a,b]. We
apply similar steps as above and utilise Proposition 2.1 to obtain:

1, ., b b\* 1, ., b\°
) < e [ (050 ) de = e (2= 55)

<
12
1
= g7~ )"

Let f be a function such that f’ exists and absolutely continuous. We apply
similar steps as above and utilise (5) to obtain:

1 b
0 [

The second case in the right hand side of (5) becomes
1 b

—— Il |

2((] + 1)% i a

atb 243 b 2+
1 2 b q b q
— 1T ”f/Hp / <a+ —x) dx+/ (z— ot ) dx
2(q+1)s a 2 o 2

g (b— a)3+%. 2
(Bg+1)(g+1)

The last case in the right hand side of (5) becomes

1, ., b a+b
s [ (o=

This completes the proof.

b

a

aqu3

1 !
. = sl e

128

€T —

241

atb e

T

!/
e "

2d _ 1 / b 3
) e = e

4. APPLICATIONS TO MEAN AND VARIANCE

In this section we provide some applications of Theorems 2.3 and 2.7 to obtain
bounds for expectation and variance of a probability density function.
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4.1. Applications to expectations. Let f be a probability density function on
[a,b]. Let Ej,p)(f) := f; xf(x) dz. Thus, Ty becomes

a+b

b a _a b .
/ (z_ ;Fb>f(gg)dx_ 63 < " f(x )dgc—/ f(m)das)
_ E[ab] aer/f
atb ba =R a+b b-a
= Eju(f / f(z { 3 }/a f(:z:)dx{ 5~ 3 ]

b b
= Epgy(f a+5/ f(z 5a+ /a f@)dx =: Tr(f).

Then, we have the following results for f : [a,b] — R:
1. If f is of bounded variation, then

b
1

(27) To() < z(0-a)*\/(f).
2. If f is L-Lipschitz function, then
2 T < —L
(28) To()] < 25 Dlb — ).
3. If f’ is absolutely continuous and f” € L[a,b], then
2 Moo (b —
(29) To(F)] < gl (b~ )"
4. If f is differentiable and f’ is absolutely continuous, then

1 ) .

1 oo (b =), if f" € Loo[a, b;

’ b— 2+%

CORMNCINE g gt A1 S WA S T

31(2q+ D(g+1)a2'"a K

oI lh®—a)?, if f" € Lafa,b].

Consider
d:a=20 <21 <T2< - < Xp_1<Tp=">0
and set
Tg(f) = E[a,b] (f)
TitTipq

n—1 )
. 51, Tit1 51, i 2
- E : T o /  flz)dz + 2Li T Tita / f(x)dx
=0 6 L%’“ 6 Ti

Write (27) for [x;,2;41], ¢ € {0,...,n — 1} and then use the generalised triangle
inequality, we get:

Tit1
()] < ZhQ \/
3 2V () = L i)
o ze{o ,n 1} = M 2 M
where A(9) := max  h; and h; = z;41—x;, assuming f is of bounded variation.

i€{0,...,n—1}
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Now, f is L-Lipschitz function, (28) becomes

IT2(f) < LZthLA (8).

Now, f is twice differentiable and f” is bounded, (29) becomes

T6 < 4<7A4 " ]
T < el \lwzhl_m OIFE

Now, f is differentiable and f” is absolutely continuous, (30) becomes

n—1
1 .
2o llf oo D 13, if f € Loo[a, b
P
5 alf sy i
T < =
-, if f' € Lyla,b], L +1=1;
3(2q+1)(q+1) a2ty b
S Zh if ' € Lo, 0]
||f o A%(3), if f" € Loo[a, b;
/ 2+7
3(2q+1)(q+1)?2 ‘ K
I A%), it £/ € Lufab]
Remark 4.1. We note that Tr(f) can be simplified as follows:
a+b
a+5b 2(0b—a 2
T() = o) - E2+ 202D [ payan,

or

B b
T() = Bo($) - 2t - 22 [ j@yas

in which the partition over [a, b] can be halved.

4.2. Applications to variance. Let f be a probability density function on [a, b].
Let Var( ) (f) = [} 2 f(x) dz — [Ejq 4 ()], Thus,

/ab (x—a;—b>2f($)d$
_ /ab;czf(x)dx(a+b)/abxf(x)dzv+ (“;Lb>2/:f(x)d:v
2

= Varpy)(f) + [Blap) (1)]* = (a +b) B (f) + (a —; b)
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Therefore, To becomes
b a+b\> 1 b 1 a—+b
/a <9: ) ) flx)dx — g(bfa)z/a f(x)dx+24f( 5 ) (b—a)®
2 a+b 2
= Var () + a1 - 0+ 0B () + (5

2
1 1 a+b
8<ba)2+24f< B )(ba)3

a+b 2
8 24 2

= Varp(f) + [E[a,b] (f) =
Then, we have the following results:
1. If f is of bounded variation, then

- go-ar s g (SF) 0= 0P = T,

1
(31) Ty ()] < g\/(f)(b—a)g-
2. If f is L-Lipschitz function, then
1
< —L({b-a)
(32) Ty ()] < 5520~ a)
3. If f’ is absolutely continuous and f” € Loo[a, b], then
e
() Ty (7)< gl — ).
4. If f exists and is absolutely continuous, then
— i el .
Sl b =0t 7€ Lot

gll ']l (b — a)**7

(34) Ty (f)| < Gat Dt 1) Ty if f' € Ly[a,b], % %: 1;
1 .
LI -af, i e Lfat]
Consider
0:a=29 <21 <29 < < Xp_1<Typ=">0
and set

2
T\é'(f) = V&I‘[a b] E ( [zs,xi41] ) 2 +1)

1 T+ Tiy1
*§($i+1 - xz‘)z + ﬂf <2+> (Tig1 — xz)B] :

Write (31) for [z, 2i4+1], ¢ € {0,...,n — 1} and then use the generalised triangle
inequality, we get:

Ti+1

T3(f)] < Zfﬁ\/
n—1Tit+1

1 b
48 16{0 hi Z \/ A3(§) \a/(f)

=0 x;

where A(0) := ZE{Ornax " h; and h; = z; 11 —x;, assuming f is of bounded variation.

Now, f is L-Lipschitz function, (32) becomes

TN < g th_@m‘*((s)
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Now, f is twice differentiable and f” is bounded, (33) becomes

5 " "
T < el ||oozhz_960||f N0}

Now, f is differentiable and f” is absolutely continuous, (34) becomes

51l Zh if f' € Loola, s
3+1
|T6(f)| < QHf/HPth !
T ( )(izl) . iff el L+l=1;
3¢+ 1)(g+1)a23Tq
Hf & Zh if ' € Ly[a, b];
128||f oo A*(5), if ' € Loo[a, bl;
< alf AT (0) if ' € Lyla,b], 1 +1=1;
= 1 1 pLY 9 -
(3¢ +1)(g+1)92% 7 P
q\lf’lllAS( ), if '€ Ly[a,b].
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