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Abstract. The aim of this paper is to give different inequalities which result
from various generalizations of Young inequalities in some specific cases for a

and b using the power series method used by C. Mortici in his paper, [10]. Also
several integral forms for some inequalities deduced by power series method
starting from certain inequalities which generalize Radon’s inequality will be
presented.

1. Introduction

We will recall the inequality of J. Radon which was published in [11].
For every real numbers p > 0, xk ≥ 0, ak > 0 for 1 ≤ k ≤ n, we have the

following inequality:
n∑

k=1

xp+1
k

apk
≥

(
∑n

k=1 xk)
p+1

(
∑n

k=1 ak)
p

, p > 0.

In [12], the authors consider two n-tuples a = (a1, a2, ..., an) and b = (b1, b1, ..., bn)
where ab = (a1b1, a2b2, ..., anbn) and am = (am1 , am2 , ..., amn ), for any real number m.
Then a > 0 and b > 0 if ai > 0 and bi > 0 for every 1 < i < n. We consider the
expression:

(1.1) ∆[p]
n (a; b) :=

n∑
i=1

api
bp−1
i

−
(
∑n

i=1 ai)
p

(
∑n

i=1 bi)
p−1

,

for real number p > 1 and for n-tuples a ≥ 0 and b ≥ 0.
Then the well-known Radon’s inequality can be written as:

(1.2) ∆[p]
n (a; b) ≥ 0.

The scalar Heinz inequality says that if a, b ≥ 0 and 0 ≤ ν ≤ 1 then,

aνb1−ν + a1−νbν ≤ a+ b

and the scalar Young inequality says that under the same hypothesis for a and b
we have

aνb1−ν ≤ νa+ (1− ν)b

with equality if and only if a = b.
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Theorem 1. ([12]) For n ≥ 2, p ≥ 1, we have the following inequalities:

(2.16) ∆[p]
n (a; b) ≥ max

1≤i<j≤n

[
api
bp−1
i

+
apj

bp−1
j

− (ai + aj)
p

(bi + bj)p−1

]
,

and

0 ≤ ∆[p]
n (a; b) ≤

[
Mp +mp − (M +m)p

2p−1

]( n∑
i=1

bi

)
,

where m ≤ ai

bi
≤ M, ai ≥, bi > 0, 1 ≤ i ≤ n.

Theorem 2. ([12]) There is the inequality:
(2.19)

0 ≤ ∆[p]
n (a; b) ≤

[(M +m)
∑n

i=1 bi −
∑n

i=1 ai]
p

(
∑n

i=1 bi)
p−1

− (M +m)p

2p−1

(
n∑

i=1

bi

)
+

(
n∑

i=1

api
bp−1
i

)
,

where m ≤ ai

bi
≤ M, ai ≥ 0, bi > 0, 1 ≤ i ≤ n, p ≥ 1, n ≥ 2.

Theorem 3. ([12]) If a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) are n-tuples then
we have the inequality:

(2.13)
p(p− 1)mp−2

2
∑n

i=1 bi

∑
1≤i<j≤n

(aibj − ajbi)
2

bibj
≤

≤ ∆[p]
n (a; b) ≤ p(p− 1)Mp−2

2
∑n

i=1 bi

∑
1≤i<j≤n

(aibj − ajbi)
2

bibj
,

where m ≤ ai

bi
≤ M, p > 1, ai ≥ 0, bi > 0, for i = 1, ..., n.

Theorem 4. ([2]) If a, b ≥ 0 and 0 ≤ ν ≤ 1 then

(2.2) (νa+ (1− ν)b)2 ≤ (aνb1−ν)2 + s20(a− b)2,

where s0 = max{ν, 1− ν}.

The following result is a reverse of an inequality obtained by Kittaneh and Man-
asrah, see [7] or [2], who obtained a refinement of Heinz inequality.

Theorem 5. ([2]) If a, b ≥ 0 and 0 ≤ ν ≤ 1, then

(2.3) (a+ b)2 ≤ (aνb1−ν + a1−νbν)2 + 2s0(a− b)2,

where s0 = max{ν, 1− ν}.

The famous arithmetic-geometric mean inequality, called Young inequality was
refined by F. Kittaneh and Y. Manasrah in [7]:

(1− ν)a+ νb ≥ a1−νbν + r(
√
a−

√
b)2,

where r = min{ν, 1−ν} and the conditions for a, b and ν are as in Young inequality.

In [8], N. Minculete has given a refinement of the Kittaneh-Manasrah inequality
in some special cases as an application:
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Proposition 1. For 0 < a, b ≤ 1 and λ ∈ (0, 1) we have:

r(
√
a−

√
b)2 +A(λ)ab log2

(a
b

)
≤ λa+ (1− λ)b− aλb1−λ ≤

≤ (1− r)(
√
a−

√
b)2 +B(λ)ab log2

(a
b

)
,

where r = min{λ, 1− λ}, A(λ) = λ(1−λ)
2 − r

4 and B(λ) = λ(1−λ)
2 − 1−r

4 .

Lemma 1. ([2]) For ν ∈ [0, 1], and a, b ≥ 0 we have:

νa2 + (1− ν)b2 ≤ (aνb1−ν)2 + s0(a− b)2

, where s0 = max{ν, 1− ν}.

We also need to use in this paper the second inequality, difference-type reverse
inequality from below

Corollary 1. ([6]) For a, b > 0 and λ ∈ [0, 1] the following inequalities hold:
(i) (Ratio-type reverse inequality)

a1−λbλ ≤ (1− λ)a+ bλ ≤ a1−λbλ exp{λ(1− λ)(a− b)2

d21
},

where d1 = min{a, b}.
(ii) (Difference-type reverse inequality)

a1−λbλ ≤ (1− λ)a+ bλ ≤ a1−λbλ + λ(1− λ){log
(a
b

)
}2d2,

where d2 = max{a, b}.

2. Several inequalities obtained from generalizations of Young’s
inequality by a power series approach

The following two results present some inequalities using a power series approach
starting from inequalities from Theorem 1 and 2, see also [12].

Theorem 6. For n ≥ 2 the following inequalities hold:

n∑
i=1

aibi
bi − ai

−
∑n

i=1 ai ·
∑n

i=1 bi∑n
i=1(bi − ai)

≥ max
1≤i<j≤n

{ aibi
bi − ai

+
ajbj

bj − aj
− (ai + aj)(bi + bj)

bi + bj − (ai + aj)
}

if ai < bi, (∀) i = 1, n, and

0 ≤
n∑

i=1

aibi
bi − ai

−
∑n

i=1 ai ·
∑n

i=1 bi∑n
i=1(bi − ai)

≤
(

M

1−M
+

m

1−m
− 2(M +m)

2− (M +m)

) n∑
i=1

bi,

if m ≤ ai

bi
≤ M < 1, (∀) i = 1, n.

Proof. We use the power series method, see[10] and [9], as in [3] or [4] for inequality
from Theorem 1, see [12].
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Theorem 7. For n ≥ 2 we have,

0 ≤
n∑

i=1

aibi
bi − ai

−
∑n

i=1 ai ·
∑n

i=1 bi∑n
i=1(bi − ai)

≤

≤
n∑

i=1

bi
(M +m)

∑n
i=1 bi −

∑n
i=1 ai∑n

i=1(bi + ai)− (M +m)
∑n

i=1 bi
− 2

M +m

2− (M +m)

n∑
i=1

bi +

n∑
i=1

aibi
bi − ai

,

if m ≤ ai

bi
≤ M < 1, (∀) i = 1, n.

Proof. With the same method as in [10] as in [3] or [4] for inequality from Theorem
2, see [12] by calculus we find the required inequality.

Now the integral forms for inequalities from last two theorems will be given in
the next theorem:

Theorem 8. Let f(x) ≥ 0, g(x) > 0 and if f, g : [a, b] → R+ be two integrable

functions on [a, b] with m ≤ f(x)
g(x) ≤ M, (∀) x ∈ [a, b] and M < 1 then we have

0 ≤
∫ b

a

f(x)g(x)

g(x)− f(x)
dx−

∫ b

a
f(x)dx

∫ b

a
g(x)dx∫ b

a
[f(x)− g(x)]dx

≤

≤
(

M

1−M
+

m

1−m
− 2(M +m)

2−M +m

)∫ b

a

g(x)dx

and

0 ≤
∫ b

a

f(x)g(x)

g(x)− f(x)
dx−

∫ b

a
f(x)dx

∫ b

a
g(x)dx∫ b

a
[f(x)− g(x)]dx

≤

≤
∫ b

a

g(x)dx
(M +m)

∫ b

a
g(x)dx−

∫ b

a
f(x)dx∫ b

a
[f(x) + g(x)]dx− (M +m)

∫ b

a
g(x)dx

−

−2
M +m

2− (M +m)

∫ b

a

g(x)dx+

∫ b

a

f(x)g(x)

f(x)− g(x)
dx.

Proof. We will use the definition of Riemann integral and the same techniques as
in [1], [3].

A power series variant of inequality from Theorem 4 is presented below, under
more particular conditions on a and b.

Theorem 9. If 0 < a < 1, 0 < b < 1 and 0 ≤ ν ≤ 1 then

ν2
1

1− a2
+ (1− ν)2

1

1− b2
+ 2ν(1− ν)

1

1− ab
≤

≤ 1

1− a2νb2(1−ν)
+ s20 ·

(
1

1− a2
+

1

1− b2
− 2

1

1− ab

)
,

where s0 = max{ν, 1− ν}.
Under previous conditions we also have:

ν2
a2

(1− a2)2
+ (1− ν)2

b2

(1− b2)2
+ 2ν(1− ν)

ab

(1− ab)2
≤

≤ a2νb2(1−ν)

(1− a2νb2(1−ν))2
+ s20

(
a2

(1− a2)2
+

b2

(1− b2)2
− 2ab

(1− ab)2

)
.
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Proof. We will use the power series method(see [10]), inequality (2.2) from Theorem
2.1(Theorem 4), see [2] with al instead of a and bl instead of b and then summing
when l = 1, n we will obtain:

n∑
l=0

[νal + (1− ν)bl]2 ≤
n∑

l=0

[(alνbl(1−ν))2 + s20(a
l − bl)2],

or
n∑

l=0

[ν2a2l + (1− ν)2b2l + 2ν(1− ν)albl] ≤
n∑

l=0

[a2lνb2l(1−ν) + s20(a
2l + b2l − 2albl)].

Taking into account the hypothesis, 0 < a < 1 and 0 < b < 1 when n tends to
infinity, and using the well-known identity,

∞∑
n=0

xn =
1

1− x
, x ∈ (0, 1),

we obtain the desired inequality.
Using the same inequality (2.2) and summing when l = 1, n we have,

n∑
l=1

l[ν2a2l + (1− ν)2b2l + 2ν(1− ν)albl] ≤
n∑

l=1

l[a2lνb2l(1−ν) + s2) (a
2l + b2l − 2albl)].

Now applying the well-known identity,

∞∑
n=1

nxn =
x

(1− x)2
, x ∈ (0, 1)

in our case we obtain the desired inequality.

The next result is an inequality obtained by the power series method applied to
a generalization of Heinz inequality.

Theorem 10. If 0 ≤ a < 1, 0 ≤ b < 1 and 0 ≤ ν ≤ 1 then

1

1− a2
+

1

1− b2
≤ 1

1− a2νb2(1−ν)
+

1

1− a2(1−ν)b2ν
+2s0

(
1

1− a2
+

1

1− b2
− 2

1− ab

)
,

and

4

1−
(
a+b
2

)2 ≤ 1

1− a2νb2(1−ν)
+

1

1− a2(1−ν)b2ν
+2s0

(
1

1− a2
+

1

1− b2

)
+
2(1− s0)

1− ab
,

where s0 = max{ν, 1− ν}.
Moreover, under previous conditions, the following inequality holds:

a2

(1− a2)2
+

b2

(1− b2)2
≤ a2νb2(1−ν)

(1− a2νb2(1−ν))2
+

a2(1−ν)b2ν

(1− a2(1−ν)b2ν)2
+

+2s0

(
a2

(1− a2)2
+

b2

(1− b2)2
− 2 · ab

(1− ab)2

)
.
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Proof. Taking al instead of a and bl instead of b in inequality from Theorem 2.2,
see [2] and then summing when l = 1, n, we have,

n∑
l=0

(al + bl)2 ≤
n∑

l=0

(alνbl(1−ν) + al(1−ν)blν)2 +

n∑
l=0

2s0(a
l − bl)2.

Now for the first inequality by computation we obtain,

n∑
l=0

(a2l + b2l) ≤
n∑

l=0

(a2lνb2l(1−ν) + a2l(1−ν)b2lν) + 2s0

n∑
l=0

(a2l + b2l − 2albl)

and for the second one, using the generalized means inequality, we deduce that

4
n∑

l=0

(
a+ b

2

)2l

≤
n∑

l=0

(a2lνb2l(1−ν)+a2l(1−ν)b2lν +2albl)+2s0

n∑
l=0

(a2l+b2l−2albl),

and when n tends to infinity, we find the first and the second inequality.
The last inequality will be deduced by

n∑
l=1

l(a2l+b2l+2albl) ≤
n∑

l=1

l(a2lνb2l(1−ν)+a2l(1−ν)b2lν+2albl)+2s0

n∑
l=1

l()a2l+b2l−2albl,

taking into account the identity,

∞∑
n=1

nxn =
x

(1− x)2
, x ∈ (0, 1).

Theorem 11. For 0 < a, b < 1 and λ ∈ (0, 1) the following inequality holds:

r

(
1

1− a
+

1

1− b
− 2

1− a
1
2 b

1
2

)
+A(λ)

ab(1 + ab)

(1− ab)3
log2

(a
b

)
≤

≤ λ
1

1− a
+ (1− λ)

1

1− b
− 1

1− aλb1−λ
≤

≤ (1− r)

(
1

1− a
+

1

1− b
− 2

1− a
1
2 b

1
2

)
+B(λ)

ab(1 + ab)

(1− ab)3
log2

(a
b

)
,

where r = min{λ, 1− λ}, A(λ) = λ(1−λ)
2 − r

4 and B(λ) = λ(1−λ)
2 − 1−r

4 .
Moreover, under previous conditions, we have:

r

(
a

(1− a)2
+

b

(1− b)2
− 2a

1
2 b

1
2

(1− a
1
2 b

1
2 )2

)
+A(λ)

ab(a2b2 + 4ab+ 1)

(1− ab)4
log2

(a
b

)
≤

≤ λ
a

(1− a)2
+ (1− λ)

b

(1− b)2
− aλb1−λ

(1− aλb1−λ)2
≤

≤ (1−r)

(
a

(1− a)2
+

b

(1− b)2
− 2a

1
2 b

1
2

(1− a
1
2 b

1
2 )2

)
+B(λ)

ab(a2b2 + 4ab+ 1)

(1− ab)4
log2

(a
b

)
,
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Proof. Like before, we put al instead of a and bl instead b in inequality from Propo-
sition 1, see [8] and obtain,

r(
√
al −

√
bl)2 + log2

(a
b

)
A(λ)l2albl ≤

≤ λal + (1− λ)bl − alλbl(1−λ) ≤

≤ (1− r)(
√
al −

√
bl)2 + log2

(a
b

)
B(λ)l2albl.

When l = 1, n we have,

r
n∑

l=0

(
√
al −

√
bl)2 + log2

(a
b

)
A(λ)

n∑
l=0

l2albl ≤

≤ λ
n∑

l=0

al + (1− λ)
n∑

l=0

bl −
n∑

l=0

alλbl(1−λ) ≤

≤ (1− r)
n∑

l=0

(
√
al −

√
bl)2 + log2

(a
b

)
B(λ)

n∑
l=0

l2albl.

Therefore if n tends to infinity, we have

r

(
1

1− a
+

1

1− b
− 2

1− a
1
2 b

1
2

)
+A(λ)S(ab) log2

(a
b

)
≤

≤ λ
1

1− a
+ (1− λ)

1

1− b
− 1

1− aλb1−λ
≤

≤ (1− r)

(
1

1− a
+

1

1− b
− 2

1− a
1
2 b

1
2

)
+B(λ)S(ab) log2

(a
b

)
,

because the fractions which appear are the sums of some convergent geometric

series and S(x) =
∑∞

n=0 n
2xn has the sum x(1+x)

(1−x)3 , for x ∈ (0, 1).

For the second inequality we proceed like before, we multiply by l the same
inequality from Proposition 1, but we consider the sum from l = 1 to n and then
when n tends to infinity, we have

r

(
a

(1− a)2
+

b

(1− b)2
− 2a

1
2 b

1
2

(1− a
1
2 b

1
2 )2

)
+A(λ)G(ab) log2

(a
b

)
≤

≤ λ
a

(1− a)2
+ (1− λ)

b

(1− b)2
− aλb1−λ

(1− aλb1−λ)2
≤

≤ (1− r)

(
a

(1− a)2
+

b

(1− b)2
− 2a

1
2 b

1
2

(1− a
1
2 b

1
2 )2

)
+B(λ)G(ab) log2

(a
b

)
,

whereG(x) =
∑∞

n=1 n
3xn for x ∈ (0, 1) and has the sum x

(
x(1+x)
(1−x)3

)′
, i.e. x(x2+4x+1)

(1−x)4 .

In order to compute the sums of two uniform convergent series on (0, 1) let us

notice that S(x)
x =

∑∞
n=0 n

2xn−1 and if we denote
∫ S(x)

x dx by A(x) then A(x) =∑∞
n=0 nx

n. Therefore A(x)
x =

∑∞
n=1 nx

n−1 and then
∫ A(x)

x dx =
∑∞

n=0 x
n = 1

1−x

for x ∈ (0, 1). This result let us to find A(x) by derivation and then S(x).

For the second sum, we can also see that G(x)
x =

∑∞
n=1 n

3xn−1 and then
∫ G(x)

x =∑∞
n=1 n

2xn = x(1+x)
(1−x)3 , for x ∈ (0, 1).
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As a particular case of previous theorem, we have a power series variant of
inequality from the Proposition 1.1, see [5].

Consequence 1. If 0 < a, b < 1 and r = min{ν, 1− ν} then we have,

(1− ν)
1

1− a
+ ν

1

1− b
≥ 1

1− a1−νbν
+ r

(
1

1− a
+

1

1− b
− 2

1

1− a
1
2 b

1
2

)
.

In the above theorem if we take ν = 1
p , a

p instead of a and bq instead of b then

1− ν = 1
q and the following result, Theorem 1, [10], holds:

Consequence 2. If 0 < a, b < 1 and p, q > 0 with 1
p + 1

q = 1 we have:

q

1− ap
+

p

1− bq
≥ pq

1− ab

and
ap

p(1− ap)1
+

bp

q(1− bq)2
≥ ab

(1− ab)2
.

Another variant of inequality from Lemma 2.1, see [2], deduced by power series
method, will be presented also below.

Consequence 3. For ν ∈ (0, 1) and a, b ∈ (0, 1) the following inequality holds:

ν
1

1− a2
+ (1− ν)

1

1− b2
≤ 1

1− a2νb2(1−ν)
+ s0

(
1

1− a2
+

1

1− b2
− 2

1

1− ab

)
,

where s0 = max{ν, 1− ν}.

A power series variant of Corollary 2.2 (ii), see [6], is given below:

Proposition 2. For a, b ∈ (0, 1) and λ ∈ [0, 1] the following inequality takes place:

(1− λ)
1

1− a
+ λ

1

1− b
≤ 1

1− a1−λbλ
+ λ(1− λ){log

(a
b

)
}2 d2(1 + d2)

(1− d2)3
,

where d2 = max{a, b}.

Proof. We use the same technique and the fact that the sum of the series,
∑∞

n=0 n
2xn

is x(1+x)
(1−x)3 when x ∈ (0, 1).
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