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HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR
DIFFERENTIABLE m-PREINVEX AND (a,m)-PREINVEX
FUNCTIONS

M. A. LATIF AND M. SHOAIB

ABSTRACT. In this paper, the notion of m-preinvex and (a, m)-preinvex func-
tions is introduced and then several inequalities of Hermite-Hadamard type
for differentiable m-preinvex and («, m)-preinvex functions are established.
The obtained inequalities for m-convex and (o, m)-convex functions, are then
extended to functions of several variables.

1. INTRODUCTION
A function f: I CR — R is said to be convex if

fz+ 1 —t)y) <tf(x)+(1—1t)f(y)

holds for every z, y € I and ¢ € [0, 1].
The following celebrated double inequality

(1.1) f<a+b>§ ! /abf(rv)dxsw.

2 b—a 2

holds for convex functions and is well-known in literature as the Hermite-Hadamard
inequality. Both of the inequalities in (1.1) hold in reversed direction if f is concave.
The inequality (1.1) has been a subject of extensive research since its discov-
ery and a number of papers have been written providing noteworthy extensions,
generalizations and refinements see for example [6], [7], [25], [26] and [33].
The classical convexity that is stated above was generalized as m-convexity by
G. Toader in [30] as follows:

Definition 1. The function [0,b*], b* > 0, is said to be m-convex , where m € [0, 1],
if we have

fltz+m1—t)y) <tf(z)+m(1—1)f(y)
for all z,y € [0,0*] and t € 0,1] . We say that f is m-concave if —f is m-convexz.

Obviously, for m = 1 the Definition 1 recaptures the concept of standard convex
functions on [0, b*].

The notion of m-convexity has been further generalized in [14] as it is stated in
the following definition:
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Definition 2. The function [0,b*], b* > 0, is said to be (a,m)-convex , where
(a,m) € [0,1]%, if we have

flz+m(l—t)y) <t*f(z) +m(1—-1t%)f(y)
for all z,y € [0,0*] and t € 0,1] .

It can easily be seen that for a = 1, the class of m-convex functions are derived
from the above definition and for « = m = 1 a class of convex functions are
derivived.

For several results concerning Hermite-Hadamard type inequalities for m-convex
and (a, m)-convex functions we refer the interested reader to [8] and [9].

More recently, a number of mathematicians have attempted to generalize the
concept of classical convexity. For example in [10], Hason gave the notion of in-
vexity as significant generalization of classical convexity. Ben-Israel and Mond [4]
introduced the concept of preinvex functions, which is a special case of invex func-
tions. Let us first recall the definition of preinvexity and some related results.

Let K be a subset in R™ and let f: K — R and n: K x K — R" be continuous
functions. Let « € K, then the set K is said to be invex at a with respect to 7 (-, ),
if

T +in(y, ) € K,Vz,y € K,t € [0,1].

K is said to be an invex set with respect to 7 if K is invex at each x € K. The
invex set K is also called a n-connected set.

Definition 3. [24] The function f on the invex set K is said to be preinvex with
respect to n, if

fluttn(u,u)) < (1 —1) f(u) +1f(v),Vu,v € Kt € [0,1].
The function f is said to be preconcave if and only if —f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map
n(x,y) = v —y but the converse is not true see for instance [23].

In a recent paper, Noor [17] obtained the following Hermite-Hadamard inequal-
ities for the preinvex functions:

Theorem 1. [17] Let f : [a,a +n(b,a)] — (0,00) be a preinvex function on the
interval of the real numbers K° (the interior of K) and a, b € K° with a <
a+n(b,a). Then the following inequality holds:

2a + (b, a) 1 atn(b.a) f(a)+ f(b)
(12) f( ! )Sna),a)/a f@yde < OO,

Barani, Ghazanfari and Dragomir in [3], presented the following estimates of the
right-side of a Hermite- Hadamard type inequality in which some preinvex functions
are involved.

Theorem 2. [3] Let K C R be an open invex subset with respect ton : K x K — R.
Suppose that f : K — R is a differentiable function. If ‘f/‘ is preinvex on K, for
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every a,b € K with n(b,a) # 0, then the following inequality holds:

13) ' fla) + f(a; +n(ba) . ; . /aa-&-n(b,a) s
< Bl (1 o+ | ).

Theorem 3. [3] Let K C R be an open invex subset with respect ton : K x K — R.
Suppose that f : K — R is a differentiable function. Assume p € R with p > 1. If
p

f/‘ﬁ is preinver on K then, for every a,b € K with n(b,a) # 0, the following
inequality holds:

a a a a+n(b,a)
14) 'f( )+ o+ >>_n(b1a)/ F2)de
wa [P @7 o]
- 2(1 +p)% 2

For several new results on inequalities for preinvex functions, we refer the inter-
ested reader to [3] and [27] and the references therein.

In the present paper we first give the concept of m-preinvex and («, m)-preinvex
functions, which generalize the concept of preinvex functions, and then we will
present new inequalities of Hermite-Hadamard for functions whose derivatives in
absolute value are m-preinvex and (o, m)-preinvex. Our results generalize those
results presented in very recent paper [3] concerning Hermite-Hadamard type in-
equalities for preinvex functions. We also present extensions to sveral variables of
some inequalities for m-convex and («, m)-convex functions which are special cases
of our established results.

2. MAIN RESULTS

To establish our main results we first give the following essential definitions and
Lemmas:

Definition 4. The function f on the invex set K C [0,b*], b* > 0, is said to be
m-preinver with respect to n if

flu+tn(v,uw) < (1= ) f(u) +mtf (=)
holds for all u,v € K, t € [0,1] and m € (0,1].The function f is said to be m-
preconcave if and only if —f is m-preinvez.

Definition 5. The function f on the invex set K C [0,b*], b* > 0, is said to be
(o, m)-preinvex with respect to n if

Flu+tn(v,uw) < (1= ) f(u) +mef (=)

holds for all u,v € K, t € [0,1] and (a,m) € (0,1] x (0,1].The function f is said
to be (o, m)-preconcave if and only if —f is (o, m)-preinve.
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Remark 1. If in definition 4, m = 1, then one obtain the usual definition of
preinvezity. If a = m = 1, then definition 5 recaptures the usual definition of the
the preinvex functions. It is to be noted that every m-preinvex function and (a, m)-
preinvex functions are m-convex and (a, m)-convex with respect to n(v,u) = v —u
respectively.

Lemma 1. [3] Let K C R be an open inver subset with respect to n: K x K — R
and a, b € K with a < a+n(b,a). Suppose f : K — R is a differentiable mapping
on K such that f* € L([a,a+ 1 (b,a)]), then the following equality holds:

f(a)+ f(a+n(ba)) 1 atn(b,a)
(2.1) - 2 + o a)/a f(z)dz
= 77([;(1)/0 (1—2t) f (a+tn(b,a))dt.

Now we establish results for functions whose derivatives in absolute values raise
to some certain power are m-preinvex and (o, m)-preinvex.

Theorem 4. Let K C [0,b*], b* > 0 be an open invex subset with respect to
n: KxK —Randa, b€ K witha < a+n(b,a). Suppose [ : K — R is a

differentiable mapping on K such that f € L([a,a + 7 (b,a)]). If ’f/’ s m-preinvex
on K, then we have the following inequality:

a a a a+n(b,a)
SO i) 1,

(2.2) ‘ -
<22 ool (2]

2 1 (b, a)

Proof. From lemma 1, we obtain

b a+n(b,a)
23) 'f<a>+f<;+n<,a>>_n(b1a)/ f (@) de
b ! ,
< 77(2’@/0 [1— 2t ‘f (a+t77(b,a))’dt.
Since ‘f/ is m-preinvex on K, for every a, b € K and t € [0,1], m € (0, 1], we have
(2.4) ]f’ (a +tn (b,a))‘ <(1-1) ‘f’ (a)‘ +mt‘f’ <:1>’

Hence we have

a a a atn(b,a)
25) |f( ) +i e+t ))n@la)/ f (@) de

<19 [f’(a)‘/ol1—2t|(1—t)dt+m‘f’ <:1>’/01|1—2t|tdt].

- 2
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Since

1 1
/|1—2t|(17t)dt:/ 11— 2¢| tat
0 0
1

2/02(1—2t)(1—t)dt—/11(1—2t)(1—t)dt:i,

We get the desired inequality from (2.5). This completes the proof of theorem

4. O
Corollary 1. If n(b,a) = b — a in theorem 4, then (2.2) reduces to the following
inequality:
f(a) + f(b) 1 /b b—a (|, (b
. - <= — 1.
(2.6) : b= | S @ <= E | @l (G

Theorem 5. Let K C [0,b*], b* > 0 be an open invexr subset with respect to
n: KxK — Randa, b € K witha < a+ n(b,a). Suppose f : K — R is

a differentiable mapping on K such that f € L(la,a+n(ba)]). If ’fl’q is m-

preinver on K for g > 1, then we have the following inequality:

a a a a+n(b,a)
2 ‘f( ESICEL LY >>_n(;a)/ f (@) de

_ _n(ba) f,(“>‘
72(p+1)% 2

Q
Bl

1,1 _
where;+5f1.

Proof. By lemma 1 and using the well known Holder’s integral inequality, we have

a a a a+tn(b.a)
28) if()+f( +n(ba) 1 / f (@) de

2 1 (b,a)
- n(l;a) </01

Q=

1 —2t|pdt)é (/01 ‘f’ (a+tn(b,a)))th>

/14
Since ‘f ‘ is m-preinvex on K, for every a, b € [a,b] with a < a + 7 (b,a) and
m € (0,1], we have

q

b
m

19

sl o of vl (4)

Hence

/Ol‘f' (a+t7](b,a))‘th§/01 [(1t)‘f' (a)‘qumt

el ()

q
K&

q
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Moreover, by using basic calculus we have

1 1 1
/|1—2t\pdt:/ (1—2t)pdt+/ (2t —1)Pdt
0 0 I
1

p+1°

A usage of the last two inequalities in (2.8) gives the desired result. This completes
the proof of theorem 5. (]

Corollary 2. If we take n(b,a) = b — a in theorem 5, then (2.7) becomes the
following inequality:
(2.9)

’ q

boa [[F @ +m]r )]
(p+1)7 2

fl@+fe 1 f°
5 —b_a/af(x)dm

<
2

A similar result may be stated as follows:

Theorem 6. Let K C [0,b*], b* > 0 be an open invex subset with respect to
n: KxK — Randa, b € K witha < a+ n(b,a). Suppose f : K — R is

a differentiable mapping on K such that f € L([a,a+n(b,a)]). If ‘f/‘q is m-

preinver on K for ¢ > 1, then we have the following inequality:

a a a atn(b,a)
(2.10) f()+f(2+77(b, ))_n(;a)/ f(z) da

Proof. For ¢ = 1, the proof is the same as that of theorem 4. Suppose now that
q > 1. Using lemma 1 and the well-known power-mean integral inequality, we have

1 (b, a)

(/01|1—2t|dt>1}1 (/01|1—2t i (a—&—tn(b,a)))th);.

a a a a+n(b,a)
(2.11) ‘f()+f( +n(ba) 1 / f (@) de

2
< N(ba)
=3
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/19
Applying the m-preinvex convexity of ‘ f ‘ on K in the second integral on the right
side of (2.11), we have

dt

‘ q

(2.12) /0 11— 2t )f’ (a +tn (b,a))

! N NEANE
g/ 11— 2t [(1—t)‘f (a)) —l—mt’f () ]dt
0 m
, q 1 , b q 1
:f(a)‘ / |1—2t|(1—t)dt+m’f () /t|1—2t|dt
0 m 0
1 ’ q m ’ b a
1 f (a) +4'f <m> .
Utilizing inequality (2.12) in (2.11), we get the inequality (2.10). This completes
the proof of the theorem. O

Corollary 3. Suppose n(b,a) = b— a , then one has the following inequality:

a b I (%)
(2.13) ‘f()Jrf(b)—bia/f(m)dx

1
99 q

b—a ‘f'(a)’q+m
4 2

<
2 >

Remark 2. For ¢ = 1, (2.18) reduces to the inequality proved in theorem 4. If
q= z% (p > 1), we have 4 > p+ 1 for p > 1 and accordingly

1 1

< —
420+ )7

This reveals that the inequality (2.10) is better than the one given by (2.7) in theorem
5.

Now we give our results for (o, m)-preinvex functions.

Theorem 7. Let K C [0,b*], b* > 0 be an open invex subset with respect to
n: KxK —Randa, b€ K witha < a+n(b,a). Suppose [ : K — R is a
differentiable mapping on K such that f € L(la,a+n(b,a)]). If ‘f" is (o, m)-

preinver on K, then we have the following inequality:

a a a atn(b,a)
(ZM)‘f<>+f<+nw,» 1 / f (@) de

2 1 (b, a)

< o) [V2

/

£ (@)] 4 mn

2

G

14+o-2¢

—1_
mandl/Q— V.

where v, = 3

Proof. From lemma 1, we have

a a a a+n(b,a)
(zw)‘f()+f(+n®7ﬂ 1)/ f (@) de

2 7 (b,a

1 (b, a)
2

<

1
/0 L= 21l (a+ 1 (b, )|



8 M. A. LATIF AND M. SHOAIB

Since ‘ f /

is (a, m)-preinvex on K, we have for every ¢ € [0,1] that
1 ’
(2.16) / |1—2t|)f (a—l—tn(b,a))‘dt
0
’ 1 , b 1
f (a)‘/ 1 — 2 (1—t"‘)dt+m‘f ()‘/ £ |1 — 2t dt
0 m 0

()l (2)

<

)

where )
l+a-2¢
1 — 2t t¥dt = =v
/0‘ | 2 (1+a)2+a)
and )
1 1+ a-2¢ 1
1 -2t (1 —tY)dt = = — = — — 1.
/0| I V= e it era 2

Utilizing (2.15) in (2.14), we get the required inequality and hence the proof of the
theorem is completed. (I

Corollary 4. If n(b,a) = b — a in theorem 7, the we have the inequality:

fl@+fe) 1 " b—a / (b
(2.17) 3 7b—a/a f(x)dz| < 3 Vg’f (a)’erl/l f —
whereylzw(lligi)'?;_m)andygzé—yl.

Theorem 8. Let K C [0,b*], b* > 0 be an open invex subset with respect to
n: KxK —Randa, b€ K witha < a+n(b,a). Suppose [ : K — R is a

differentiable mapping on K such that f € L([a,a+ n(b,a)]). If |f
preinver on K, g > 1, then we have the following inequality:

a a a atn(b,a)
(2.18) ‘f( )+ i e+ ))n(g@/ f (@) da

q
is (o, m)-

Q=

’

aay |7 @ +mlr )
2(p+1)% 1+«

‘ q

1,1 _
where;—&—a—l.

Proof. Using lemma 1 and the Holder’s integral inequality, we have

a a a atn(b,a)
219) ‘f()Jrf( +n(ba) 1 / f (@) de

2 1 (b, a)

< ”(’;’“) </011—2t|”dt)é (Al‘f’ (a+tn(b,a))’th>é.

.14
By the (o, m)-preinvexity of ’f ’ , we have for every t € [0, 1]

()

f (a+tnb,0)| < (1-)

7 (@) +mte
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for (a,m) € (0,1] x (0,1]. Hence
/01 £ @+t .0 at <|f (a)]q/O1 (1 t“)dt+m‘f’ (:;)
20l

An application of the above inequality in (2.19) and the fact

! 1
/ 1 -2t dt = ——
0 p+1

gives the desired inequality. O

q pl
/ tdt
0

’ ‘q_i_ m
1+«

Corollary 5. If in theorem 8, we take 1 (b,a) = b—a, we get the following inequal-
ity:

’

I @[ +m|f (%)
T 2(p 1) l+a

1
9949

1,1 _

where 5 + & = 1.

Theorem 9. Let K C [0,b*], b* > 0 be an open invex subset with respect to
n:KxK —Randa, b€ K witha < a+mn(b,a). Suppose f : K — R is a

’ ;14
differentiable mapping on K such that f € L([a,a+n(b,a)]). If |f ‘ is (a,m)-
preinver on K, ¢ > 1, then we have the following inequality:

a a a a+n(b,a)
(2.21) f( )+f(2+77(b7 ) n(;a)/ f (@) da

ba) [1\ 4 T a7
Sn(2 ><2> [Vz)f (a)’ +ml/1‘f (b)H ;
where vy = 3 — vy and v = ATt

Proof. For ¢ =1, the proof is similar to that of theorem 7. Suppose that
q > 1. Using lemma 1, we have that the following inequality holds:

1 (b, a)

(/01|1—2t|dt>1}1 (/01|1—2t i (a—&—tn(b,a)))th);.

a a a a+n(b,a)
(229 ‘f()+f( +n(ba) 1 / f (@) de

2
< N(ba)
=3
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/|4
By the (o, m)-preinvexity of ‘f ‘ on K, for every ¢t € [0, 1] and (a,m) € (0,1]x(0, 1]

we have

(2.23) /O1 11— 2| )f’ (a+tn (b, a))’q dt

sAWl—%[u—w“

AN N T N
:’f (a)’ /O 11— 2t (1) dt+m‘f (b)‘ /0 11— 2t] tdt
= w|f @] +mn|£ ®)

Using (2.23) in (2.22), we get the required inequality (2.21). This completes the
proof of the theorem. O

7 (@) +mte

7 (b)m dt

‘ q

Corollary 6. Suppose n(b,a) = b— a in theorem 9, then one has the inequality:

b
(2.24) ‘f(a)—i_f(b)—bia/f(a:)dx
b

2
1—1
—a 1 q ’
2 (2) [VQ)f (@)
1+a-2%
2¢(1+a)(24a) "

q
<

1
749
"

| (b)

where vy = % — 11 and vy =

Remark 3. If we take m =1 in theorem 4 an theorem 5 or if we take « = m =1
in theorem 7 and theorem 8 we get those results proved in theorem 2 and theorem 3
respectively. This shows that our results are more general than those proved in [3].

Remark 4. If we take m =1 in theorem 4 and theorem 5 or if we take « = m =1
in theorem 7 and theorem 8 with n(b,a) = b — a, we get those results proved in [6]
and [25].

3. AN EXTENSION TO FUNCTIONS OF SEVERAL VARIABLES

In this section we will extend Corollary 1 and corollary 4 to functions of several
variables defined on an invex subset of R™. To this end, we need the following
property of invex functions.

Condition C [34]: Let K C R™ be an open invex subset with respect to
n: K x K —R" Forany z,y € K and any t € [0,1] ,

n(y,y+tn(z,y) = —tn(z,y)
and
W(mvy'i't??(%y)) = (1_t)77(x’y)'

It is to be noted from Condition C that for every z,y € K and every t1,t2 € [0, 1],
we have

(3.1) n(y+tan (z,y),y +tin(z,y) = (t2 — t1) n (2, y) .

Proposition 1. Let K C R™ be an invex set with respect ton : K x K — R"
and f: K — R is a function. Suppose that f satisfies Condition C on K. Then
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for every x,y € K the function f is m-preinvex with respect to n on n-path Py,
v=x+n(x,y), if and only if the function p : [0,1] — R defined by

p(t) == flx+tn(y,z))
is m-convez on [0,1] , m € (0,1].

Proof. Suppose that ¢ is m-convex on[0,1] and z; := z + t1n(y,z) € Py, and
zo = x + tan(y,x) € Pyy. Fix A € [0;1]. Since f satisfies Condition C, by (3.1)
we have
[z 4+ M (22, 21)) = [z + (1= A) by + M2)) n (y, @)
= (p((l — )\) tl + Atg)

<1 =XNp(t) +mip (Z)
= (1= N f ) +maf (2).

Conversely, let z,y € K and the function f be m-preinvex with respect to 1 on
n-path P,,. Suppose that t1,ty € [0,1]. Then for every A € [0,1], m € (0,1] and
using (3.1), we have

e((1 =Nt + Atz) = f(z+ (1= A) t1 + At2) n(y, x))
fl@+tin(y, =) + At — t) n(y, z))

(@4 tin(y,z) + A (x4 tan (2, y) , x + t1n (z,y)))
 + tan) (x,y)>

< (0= f (o + o))+ A

— (1= N plty) +mre 2

= Pl ¥ m)
Hence ¢ is m-preinvex function on [0, 1]. O

Proposition 2. Let K CR"™ be an invex set with respect ton : K x K — R™ and
f: K — R is a function. Suppose that n satisfies Condition C on K. Then for
every x,y € K the function f is (o, m)-preinvezr with respect to n on n-path Py,
v=a+n(x,y), if and only if the function ¢ : [0,1] — R defined by

p(t) = fz +tn(y,z))
is (a, m)-convezx on [0,1] , (a,m) € (0,1] x (0, 1].

Proof. The proof is similar to that of the proof of proposition 1, therefore we omit
the details. (]

Theorem 10. Let K C R” be an invex set with respect ton : K x K — R™ and
f: K — RT is a function. Suppose that 1 satisfies Condition C on K. Suppose
that for every x,y € K the function f is m-preinver with respect to n on n-path
Py, m € (0,1]. Then for every a,b € (0,1) with a < b the following inequality
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holds:

(3.2)

1 a b
: l | fasmapas+ [ f<x+sn(y,x>>ds]

b . a /ab (/0 fz +tn(y, :v))dt> ds

< % {f(x +an(y, =) + mf (‘” + nbz"(y’x))] '

Proof. Let z,y € K and a,b € (0,1) with @ < b. Since f : K — RT is m-
preinvex with respect to n on n-path Py, m € (0,1], by proposition 1 the function
¢ :[0,1] — RT defined by

p(t) = [z +tn(y,z))
is m~convex on [0, 1]. Now we define function ¢ : [0,1] — R™ as
t t
o (t) = / o(s)ds :/ flz+ sn(y,x))ds.
0 0
It is clear that for every ¢ € (0,1) we have
¢ (t) = o(t) = f(z +tn(y,z)) >0,

hence ‘(bl (t)‘ =¢ (t). Applying corollary 1 to the function ¢, we get

$(a)+o(b) bia/abqs(s)ds < b_Ta U¢> (a)}+m‘¢' <:;>H

2
we deduce from (3.3) that (3.2) holds. This completes the proof of the theorem. O

(3.3)

Theorem 11. Let K C R"™ be an wnvex set with respect ton : K x K — R" and
f: K — RT is a function. Suppose that n satisfies Condition C on K. Suppose
that for every x,y € K the function f is (o, m)-preinvex with respect to n on n-path
Py, (a,m) € (0,1]. Then for every a,b € (0,1) with a < b the following inequality
holds:

64 |5 [ " o+ snty s + Obf(x+8n(y,m))d51
1 b s
72 /a (/0 flz+ tn(y,a:))dt) ds
<! < ¢ [va(x +an(y,x)) +mw f (z + in(y,x))] ,
where v = 20(1113‘7)?;@ and vy = % — .

Proof. The proof of is similar to that of theorem 10 using corollary 4 so we omit
the details to the readers. (]

Remark 5. Let ¢(t) : [0,1] — RT be a function and q be a positive real number.
Then ¢ is m-convex or (o, m)-convex function if and only if p(t)? : [0,1] — RT
is m-convex or (a,m)-convex respectively. Hence similar results can be stated as
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those of proposition 1 and proposition 2 by using corollary 2, corollary 3, corollary
5 and corollary 6 and we omit the details for the interested reader.
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