HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR DIFFERENTIABLE m-PREINVEX AND (α, m)-PREINVEX FUNCTIONS

M. A. LATIF AND M. SHOAIB

Abstract

In this paper, the notion of m-preinvex and (α, m)-preinvex functions is introduced and then several inequalities of Hermite-Hadamard type for differentiable m-preinvex and (α, m)-preinvex functions are established. The obtained inequalities for m-convex and (α, m)-convex functions, are then extended to functions of several variables.

1. Introduction

A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

holds for every $x, y \in I$ and $t \in[0,1]$.
The following celebrated double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

holds for convex functions and is well-known in literature as the Hermite-Hadamard inequality. Both of the inequalities in (1.1) hold in reversed direction if f is concave.

The inequality (1.1) has been a subject of extensive research since its discovery and a number of papers have been written providing noteworthy extensions, generalizations and refinements see for example [6], [7], [25], [26] and [33].

The classical convexity that is stated above was generalized as m-convexity by G. Toader in [30] as follows:

Definition 1. The function $\left[0, b^{*}\right], b^{*}>0$, is said to be m-convex , where $m \in[0,1]$, if we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

for all $x, y \in\left[0, b^{*}\right]$ and $\left.t \in 0,1\right]$. We say that f is m-concave if $-f$ is m-convex.
Obviously, for $m=1$ the Definition 1 recaptures the concept of standard convex functions on $\left[0, b^{*}\right]$.

The notion of m-convexity has been further generalized in [14] as it is stated in the following definition:

[^0]Definition 2. The function $\left[0, b^{*}\right], b^{*}>0$, is said to be (α, m)-convex, where $(\alpha, m) \in[0,1]^{2}$, if we have

$$
f(t x+m(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)
$$

for all $x, y \in\left[0, b^{*}\right]$ and $\left.t \in 0,1\right]$.
It can easily be seen that for $\alpha=1$, the class of m-convex functions are derived from the above definition and for $\alpha=m=1$ a class of convex functions are derivived.

For several results concerning Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions we refer the interested reader to [8] and [9].

More recently, a number of mathematicians have attempted to generalize the concept of classical convexity. For example in [10], Hason gave the notion of invexity as significant generalization of classical convexity. Ben-Israel and Mond [4] introduced the concept of preinvex functions, which is a special case of invex functions. Let us first recall the definition of preinvexity and some related results.

Let K be a subset in \mathbb{R}^{n} and let $f: K \rightarrow \mathbb{R}$ and $\eta: K \times K \rightarrow \mathbb{R}^{n}$ be continuous functions. Let $x \in K$, then the set K is said to be invex at x with respect to $\eta(\cdot, \cdot)$, if

$$
x+t \eta(y, x) \in K, \forall x, y \in K, t \in[0,1] .
$$

K is said to be an invex set with respect to η if K is invex at each $x \in K$. The invex set K is also called a η-connected set.

Definition 3. [24] The function f on the invex set K is said to be preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+t f(v), \forall u, v \in K, t \in[0,1] .
$$

The function f is said to be preconcave if and only if $-f$ is preinvex.
It is to be noted that every convex function is preinvex with respect to the map $\eta(x, y)=x-y$ but the converse is not true see for instance [23].

In a recent paper, Noor [17] obtained the following Hermite-Hadamard inequalities for the preinvex functions:

Theorem 1. [17] Let $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be a preinvex function on the interval of the real numbers K° (the interior of K) and $a, b \in K^{\circ}$ with $a<$ $a+\eta(b, a)$. Then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{2 a+\eta(b, a)}{2}\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

Barani, Ghazanfari and Dragomir in [3], presented the following estimates of the right-side of a Hermite- Hadamard type inequality in which some preinvex functions are involved.

Theorem 2. [3] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|$ is preinvex on K, for
every $a, b \in K$ with $\eta(b, a) \neq 0$, then the following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)}\right. & f(x) d x \mid \tag{1.3}\\
& \leq \frac{|\eta(b, a)|}{8}\left(\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right)
\end{align*}
$$

Theorem 3. [3] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$. Suppose that $f: K \rightarrow \mathbb{R}$ is a differentiable function. Assume $p \in \mathbb{R}$ with $p>1$. If $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is preinvex on K then, for every $a, b \in K$ with $\eta(b, a) \neq 0$, the following inequality holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{1.4}\\
& \quad \leq \frac{|\eta(b, a)|}{2(1+p)^{\frac{1}{p}}}\left[\frac{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}}+\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}}{2}\right]^{\frac{p-1}{p}}
\end{align*}
$$

For several new results on inequalities for preinvex functions, we refer the interested reader to [3] and [27] and the references therein.

In the present paper we first give the concept of m-preinvex and (α, m)-preinvex functions, which generalize the concept of preinvex functions, and then we will present new inequalities of Hermite-Hadamard for functions whose derivatives in absolute value are m-preinvex and (α, m)-preinvex. Our results generalize those results presented in very recent paper [3] concerning Hermite-Hadamard type inequalities for preinvex functions. We also present extensions to sveral variables of some inequalities for m-convex and (α, m)-convex functions which are special cases of our established results.

2. Main Results

To establish our main results we first give the following essential definitions and Lemmas:

Definition 4. The function f on the invex set $K \subseteq\left[0, b^{*}\right], b^{*}>0$, is said to be m-preinvex with respect to η if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+m t f\left(\frac{v}{m}\right)
$$

holds for all $u, v \in K, t \in[0,1]$ and $m \in(0,1]$. The function f is said to be m preconcave if and only if $-f$ is m-preinvex.

Definition 5. The function f on the invex set $K \subseteq\left[0, b^{*}\right], b^{*}>0$, is said to be (α, m)-preinvex with respect to η if

$$
f(u+t \eta(v, u)) \leq\left(1-t^{\alpha}\right) f(u)+m t^{\alpha} f\left(\frac{v}{m}\right)
$$

holds for all $u, v \in K, t \in[0,1]$ and $(\alpha, m) \in(0,1] \times(0,1]$.The function f is said to be (α, m)-preconcave if and only if $-f$ is (α, m)-preinvex.

Remark 1. If in definition 4, $m=1$, then one obtain the usual definition of preinvexity. If $\alpha=m=1$, then definition 5 recaptures the usual definition of the the preinvex functions. It is to be noted that every m-preinvex function and (α, m)preinvex functions are m-convex and (α, m)-convex with respect to $\eta(v, u)=v-u$ respectively.

Lemma 1. [3] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$, then the following equality holds:

$$
\begin{align*}
-\frac{f(a)+f(a+\eta(b, a))}{2}+\frac{1}{\eta(b, a)} & \int_{a}^{a+\eta(b, a)} f(x) d x \tag{2.1}\\
& =\frac{\eta(b, a)}{2} \int_{0}^{1}(1-2 t) f^{\prime}(a+t \eta(b, a)) d t
\end{align*}
$$

Now we establish results for functions whose derivatives in absolute values raise to some certain power are m-preinvex and (α, m)-preinvex.

Theorem 4. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|$ is m-preinvex on K, then we have the following inequality:

$$
\begin{align*}
&\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.2}\\
& \leq \frac{\eta(b, a)}{8}\left[\left|f^{\prime}(a)\right|+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|\right]
\end{align*}
$$

Proof. From lemma 1, we obtain

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.3}\\
& \leq \frac{\eta(b, a)}{2} \int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right| d t
\end{align*}
$$

Since $\left|f^{\prime}\right|$ is m-preinvex on K, for every $a, b \in K$ and $t \in[0,1], m \in(0,1]$, we have

$$
\begin{equation*}
\left|f^{\prime}(a+t \eta(b, a))\right| \leq(1-t)\left|f^{\prime}(a)\right|+m t\left|f^{\prime}\left(\frac{b}{m}\right)\right| . \tag{2.4}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.5}\\
& \quad \leq \frac{\eta(b, a)}{2}\left[\left|f^{\prime}(a)\right| \int_{0}^{1}|1-2 t|(1-t) d t+m\left|f^{\prime}\left(\frac{b}{m}\right)\right| \int_{0}^{1}|1-2 t| t d t\right]
\end{align*}
$$

Since

$$
\begin{aligned}
\int_{0}^{1}|1-2 t|(1-t) d t & =\int_{0}^{1}|1-2 t| t d t \\
& =\int_{0}^{\frac{1}{2}}(1-2 t)(1-t) d t-\int_{\frac{1}{2}}^{1}(1-2 t)(1-t) d t=\frac{1}{4} .
\end{aligned}
$$

We get the desired inequality from (2.5). This completes the proof of theorem 4.

Corollary 1. If $\eta(b, a)=b-a$ in theorem 4, then (2.2) reduces to the following inequality:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{8}\left[\left|f^{\prime}(a)\right|+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|\right] . \tag{2.6}
\end{equation*}
$$

Theorem 5. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|^{q}$ is m preinvex on K for $q>1$, then we have the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.7}\\
& \quad \leq \frac{\eta(b, a)}{2(p+1)^{\frac{1}{p}}}\left[\frac{\left|f^{\prime}(a)\right|^{q}+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right]^{\frac{1}{q}} .
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. By lemma 1 and using the well known Hölder's integral inequality, we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.8}\\
& \quad \leq \frac{\eta(b, a)}{2}\left(\int_{0}^{1}|1-2 t|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}} .
\end{align*}
$$

Since $\left|f^{\prime}\right|^{q}$ is m-preinvex on K, for every $a, b \in[a, b]$ with $a<a+\eta(b, a)$ and $m \in(0,1]$, we have

$$
\left|f^{\prime}(a+t \eta(b, a))\right|^{q} \leq(1-t)\left|f^{\prime}(a)\right|^{q}+m t\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q} .
$$

Hence

$$
\begin{aligned}
\int_{0}^{1}\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t & \leq \int_{0}^{1}\left[(1-t)\left|f^{\prime}(a)\right|^{q}+m t\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}\right] d t \\
& =\frac{1}{2}\left|f^{\prime}(a)\right|^{q}+\frac{m}{2}\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q} .
\end{aligned}
$$

Moreover, by using basic calculus we have

$$
\begin{aligned}
\int_{0}^{1}|1-2 t|^{p} d t & =\int_{0}^{\frac{1}{2}}(1-2 t)^{p} d t+\int_{\frac{1}{2}}^{1}(2 t-1)^{p} d t \\
& =\frac{1}{p+1}
\end{aligned}
$$

A usage of the last two inequalities in (2.8) gives the desired result. This completes the proof of theorem 5 .

Corollary 2. If we take $\eta(b, a)=b-a$ in theorem 5, then (2.7) becomes the following inequality:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{2(p+1)^{\frac{1}{p}}}\left[\frac{\left|f^{\prime}(a)\right|^{q}+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right]^{\frac{1}{q}} \tag{2.9}
\end{equation*}
$$

A similar result may be stated as follows:

Theorem 6. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|^{q}$ is m preinvex on K for $q \geq 1$, then we have the following inequality:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)}\right. & \int_{a}^{a+\eta(b, a)} f(x) d x \mid \tag{2.10}\\
& \leq \frac{\eta(b, a)}{4}\left[\frac{\left|f^{\prime}(a)\right|^{q}+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right]^{\frac{1}{q}}
\end{align*}
$$

Proof. For $q=1$, the proof is the same as that of theorem 4. Suppose now that $q>1$. Using lemma 1 and the well-known power-mean integral inequality, we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.11}\\
& \quad \leq \frac{\eta(b, a)}{2}\left(\int_{0}^{1}|1-2 t| d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}}
\end{align*}
$$

Applying the m-preinvex convexity of $\left|f^{\prime}\right|^{q}$ on K in the second integral on the right side of (2.11), we have

$$
\begin{align*}
& \int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t \tag{2.12}\\
& \quad \leq \int_{0}^{1}|1-2 t|\left[(1-t)\left|f^{\prime}(a)\right|^{q}+m t\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}\right] d t \\
& =\left|f^{\prime}(a)\right|^{q} \int_{0}^{1}|1-2 t|(1-t) d t+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1} t|1-2 t| d t \\
& \\
& \quad=\frac{1}{4}\left|f^{\prime}(a)\right|^{q}+\frac{m}{4}\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}
\end{align*}
$$

Utilizing inequality (2.12) in (2.11), we get the inequality (2.10). This completes the proof of the theorem.

Corollary 3. Suppose $\eta(b, a)=b-a$, then one has the following inequality:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{4}\left[\frac{\left|f^{\prime}(a)\right|^{q}+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}}{2}\right]^{\frac{1}{q}} \tag{2.13}
\end{equation*}
$$

Remark 2. For $q=1$, (2.13) reduces to the inequality proved in theorem 4. If $q=\frac{p}{p-1}(p>1)$, we have $4^{p}>p+1$ for $p>1$ and accordingly

$$
\frac{1}{4}<\frac{1}{2(p+1)^{\frac{1}{p}}}
$$

This reveals that the inequality (2.10) is better than the one given by (2.7) in theorem 5.

Now we give our results for (α, m)-preinvex functions.
Theorem 7. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|$ is (α, m) preinvex on K, then we have the following inequality:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)}\right. & \int_{a}^{a+\eta(b, a)} f(x) d x \mid \tag{2.14}\\
& \leq \frac{\eta(b, a)}{2}\left[\nu_{2}\left|f^{\prime}(a)\right|+m \nu_{1}\left|f^{\prime}\left(\frac{b}{m}\right)\right|\right]
\end{align*}
$$

where $\nu_{1}=\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}$ and $\nu_{2}=\frac{1}{2}-\nu_{1}$.
Proof. From lemma 1, we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.15}\\
& \quad \leq \frac{\eta(b, a)}{2} \int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right| d t
\end{align*}
$$

Since $\left|f^{\prime}\right|$ is (α, m)-preinvex on K, we have for every $t \in[0,1]$ that

$$
\begin{align*}
& \int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right| d t \tag{2.16}\\
& \begin{aligned}
\leq\left|f^{\prime}(a)\right| \int_{0}^{1}|1-2 t|\left(1-t^{\alpha}\right) d t & +m\left|f^{\prime}\left(\frac{b}{m}\right)\right| \int_{0}^{1} t^{\alpha}|1-2 t| d t \\
& =\left(\frac{1}{2}-\nu_{1}\right)\left|f^{\prime}(a)\right|+m \nu_{1}\left|f^{\prime}\left(\frac{b}{m}\right)\right|
\end{aligned}
\end{align*}
$$

where

$$
\int_{0}^{1}|1-2 t| t^{\alpha} d t=\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}=\nu_{1}
$$

and

$$
\int_{0}^{1}|1-2 t|\left(1-t^{\alpha}\right) d t=\frac{1}{2}-\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}=\frac{1}{2}-\nu_{1}
$$

Utilizing (2.15) in (2.14), we get the required inequality and hence the proof of the theorem is completed.

Corollary 4. If $\eta(b, a)=b-a$ in theorem 7, the we have the inequality:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{2}\left[\nu_{2}\left|f^{\prime}(a)\right|+m \nu_{1}\left|f^{\prime}\left(\frac{b}{m}\right)\right|\right] \tag{2.17}
\end{equation*}
$$

where $\nu_{1}=\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}$ and $\nu_{2}=\frac{1}{2}-\nu_{1}$.
Theorem 8. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|^{q}$ is $(\alpha, m)-$ preinvex on $K, q>1$, then we have the following inequality:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\right. & \left.\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{2.18}\\
& \leq \frac{\eta(b, a)}{2(p+1)^{\frac{1}{p}}}\left[\frac{\alpha\left|f^{\prime}(a)\right|^{q}+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}}{1+\alpha}\right]^{\frac{1}{q}}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. Using lemma 1 and the Hölder's integral inequality, we have

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.19}\\
& \quad \leq \frac{\eta(b, a)}{2}\left(\int_{0}^{1}|1-2 t|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}}
\end{align*}
$$

By the (α, m)-preinvexity of $\left|f^{\prime}\right|^{q}$, we have for every $t \in[0,1]$

$$
\left|f^{\prime}(a+t \eta(b, a))\right|^{q} \leq\left(1-t^{\alpha}\right)\left|f^{\prime}(a)\right|^{q}+m t^{\alpha}\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}
$$

for $(\alpha, m) \in(0,1] \times(0,1]$. Hence

$$
\begin{aligned}
\int_{0}^{1}\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t & \leq\left|f^{\prime}(a)\right|^{q} \int_{0}^{1}\left(1-t^{\alpha}\right) d t+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1} t^{\alpha} d t \\
& =\frac{\alpha}{1+\alpha}\left|f^{\prime}(a)\right|^{q}+\frac{m}{1+\alpha}\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}
\end{aligned}
$$

An application of the above inequality in (2.19) and the fact

$$
\int_{0}^{1}|1-2 t|^{p} d t=\frac{1}{p+1}
$$

gives the desired inequality.

Corollary 5. If in theorem 8, we take $\eta(b, a)=b-a$, we get the following inequality:

$$
\begin{align*}
&\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.20}\\
& \leq \frac{b-a}{2(p+1)^{\frac{1}{p}}}\left[\frac{\alpha\left|f^{\prime}(a)\right|^{q}+m\left|f^{\prime}\left(\frac{b}{m}\right)\right|^{q}}{1+\alpha}\right]^{\frac{1}{q}}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 9. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a differentiable mapping on K such that $f^{\prime} \in L([a, a+\eta(b, a)])$. If $\left|f^{\prime}\right|^{q}$ is (α, m) preinvex on $K, q \geq 1$, then we have the following inequality:

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}\right. & \left.-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{2.21}\\
& \leq \frac{\eta(b, a)}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}}\left[\nu_{2}\left|f^{\prime}(a)\right|^{q}+m \nu_{1}\left|f^{\prime}(b)\right|^{q}\right]^{\frac{1}{q}}
\end{align*}
$$

where $\nu_{2}=\frac{1}{2}-\nu_{1}$ and $\nu_{1}=\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}$.
Proof. For $q=1$, the proof is similar to that of theorem 7. Suppose that $q>1$. Using lemma 1 , we have that the following inequality holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.22}\\
& \quad \leq \frac{\eta(b, a)}{2}\left(\int_{0}^{1}|1-2 t| d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}}
\end{align*}
$$

By the (α, m)-preinvexity of $\left|f^{\prime}\right|^{q}$ on K, for every $t \in[0,1]$ and $(\alpha, m) \in(0,1] \times(0,1]$ we have

$$
\begin{align*}
& \int_{0}^{1}|1-2 t|\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t \tag{2.23}\\
& \quad \leq \int_{0}^{1}|1-2 t|\left[(1-t)^{\alpha}\left|f^{\prime}(a)\right|^{q}+m t^{\alpha}\left|f^{\prime}(b)\right|^{q}\right] d t \\
& =\left|f^{\prime}(a)\right|^{q} \int_{0}^{1}|1-2 t|(1-t)^{\alpha} d t+m\left|f^{\prime}(b)\right|^{q} \int_{0}^{1}|1-2 t| t^{\alpha} d t \\
& \\
& =\nu_{2}\left|f^{\prime}(a)\right|^{q}+m \nu_{1}\left|f^{\prime}(b)\right|^{q}
\end{align*}
$$

Using (2.23) in (2.22), we get the required inequality (2.21). This completes the proof of the theorem.

Corollary 6. Suppose $\eta(b, a)=b-a$ in theorem 9, then one has the inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.24}\\
& \quad \leq \frac{b-a}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}}\left[\nu_{2}\left|f^{\prime}(a)\right|^{q}+m \nu_{1}\left|f^{\prime}(b)\right|^{q}\right]^{\frac{1}{q}}
\end{align*}
$$

where $\nu_{2}=\frac{1}{2}-\nu_{1}$ and $\nu_{1}=\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}$.
Remark 3. If we take $m=1$ in theorem 4 an theorem 5 or if we take $\alpha=m=1$ in theorem 7 and theorem 8 we get those results proved in theorem 2 and theorem 3 respectively. This shows that our results are more general than those proved in [3].
Remark 4. If we take $m=1$ in theorem 4 and theorem 5 or if we take $\alpha=m=1$ in theorem 7 and theorem 8 with $\eta(b, a)=b-a$, we get those results proved in [6] and [25].

3. An Extension to Functions of Several Variables

In this section we will extend Corollary 1 and corollary 4 to functions of several variables defined on an invex subset of \mathbb{R}^{n}. To this end, we need the following property of invex functions.

Condition C [34]: Let $K \subseteq \mathbb{R}^{n}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$. For any $x, y \in K$ and any $t \in[0,1]$,

$$
\eta(y, y+t \eta(x, y))=-t \eta(x, y)
$$

and

$$
\eta(x, y+t \eta(x, y))=(1-t) \eta(x, y)
$$

It is to be noted from Condition \mathbf{C} that for every $x, y \in K$ and every $t_{1}, t_{2} \in[0,1]$, we have

$$
\begin{equation*}
\eta\left(y+t_{2} \eta(x, y), y+t_{1} \eta(x, y)\right)=\left(t_{2}-t_{1}\right) \eta(x, y) \tag{3.1}
\end{equation*}
$$

Proposition 1. Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$ and $f: K \rightarrow \mathbb{R}$ is a function. Suppose that f satisfies Condition C on K. Then
for every $x, y \in K$ the function f is m-preinvex with respect to η on η-path $P_{x v}$, $v=x+\eta(x, y)$, if and only if the function $\varphi:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi(t):=f(x+t \eta(y, x))
$$

is m-convex on $[0,1], m \in(0,1]$.
Proof. Suppose that φ is m-convex on $[0,1]$ and $z_{1}:=x+t_{1} \eta(y, x) \in P_{x v}$ and $z_{2}:=x+t_{2} \eta(y, x) \in P_{x v}$. Fix $\lambda \in[0 ; 1]$. Since f satisfies Condition C, by (3.1) we have

$$
\begin{aligned}
f\left(z_{1}+\lambda \eta\left(z_{2}, z_{1}\right)\right) & =f\left(x+\left((1-\lambda) t_{1}+\lambda t_{2}\right)\right) \eta(y, x) \\
& =\varphi\left((1-\lambda) t_{1}+\lambda t_{2}\right) \\
& \leq(1-\lambda) \varphi\left(t_{1}\right)+m \lambda \varphi\left(\frac{t_{2}}{m}\right) \\
& =(1-\lambda) f\left(z_{1}\right)+m \lambda f\left(\frac{z_{2}}{m}\right)
\end{aligned}
$$

Conversely, let $x, y \in K$ and the function f be m-preinvex with respect to η on η-path $P_{x v}$. Suppose that $t_{1}, t_{2} \in[0,1]$. Then for every $\lambda \in[0,1], m \in(0,1]$ and using (3.1), we have

$$
\begin{aligned}
\varphi\left((1-\lambda) t_{1}+\lambda t_{2}\right) & =f\left(x+\left((1-\lambda) t_{1}+\lambda t_{2}\right) \eta(y, x)\right) \\
& =f\left(x+t_{1} \eta(y, x)+\lambda\left(t_{2}-t_{1}\right) \eta(y, x)\right) \\
& =f\left(x+t_{1} \eta(y, x)+\lambda \eta\left(x+t_{2} \eta(x, y), x+t_{1} \eta(x, y)\right)\right) \\
& \leq(1-\lambda) f\left(x+t_{1} \eta(y, x)\right)+m \lambda f\left(\frac{x+t_{2} \eta(x, y)}{m}\right) \\
& =(1-\lambda) \varphi\left(t_{1}\right)+m \lambda \varphi\left(\frac{t_{2}}{m}\right)
\end{aligned}
$$

Hence φ is m-preinvex function on $[0,1]$.

Proposition 2. Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$ and $f: K \rightarrow \mathbb{R}$ is a function. Suppose that η satisfies Condition \boldsymbol{C} on K. Then for every $x, y \in K$ the function f is (α, m)-preinvex with respect to η on η-path $P_{x v}$, $v=x+\eta(x, y)$, if and only if the function $\varphi:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi(t):=f(x+t \eta(y, x))
$$

is (α, m)-convex on $[0,1],(\alpha, m) \in(0,1] \times(0,1]$.
Proof. The proof is similar to that of the proof of proposition 1, therefore we omit the details.

Theorem 10. Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$ and $f: K \rightarrow \mathbb{R}^{+}$is a function. Suppose that η satisfies Condition C on K. Suppose that for every $x, y \in K$ the function f is m-preinvex with respect to η on η-path $P_{x v}, m \in(0,1]$. Then for every $a, b \in(0,1)$ with $a<b$ the following inequality
holds:

$$
\begin{align*}
\left\lvert\, \frac{1}{2}\left[\int_{0}^{a} f(x+s \eta(y, x)) d s\right.\right. & \left.+\int_{0}^{b} f(x+s \eta(y, x)) d s\right] \tag{3.2}\\
-\frac{1}{b-a} & \int_{a}^{b}\left(\int_{0}^{s} f(x+t \eta(y, x)) d t\right) d s \\
& \leq \frac{b-a}{8}\left[f(x+a \eta(y, x))+m f\left(x+\frac{b}{m} \eta(y, x)\right)\right] .
\end{align*}
$$

Proof. Let $x, y \in K$ and $a, b \in(0,1)$ with $a<b$. Since $f: K \rightarrow \mathbb{R}^{+}$is m preinvex with respect to η on η-path $P_{x v}, m \in(0,1]$, by proposition 1 the function $\varphi:[0,1] \rightarrow \mathbb{R}^{+}$defined by

$$
\varphi(t):=f(x+t \eta(y, x))
$$

is m-convex on $[0,1]$. Now we define function $\phi:[0,1] \rightarrow \mathbb{R}^{+}$as

$$
\phi(t):=\int_{0}^{t} \varphi(s) d s=\int_{0}^{t} f(x+s \eta(y, x)) d s
$$

It is clear that for every $t \in(0,1)$ we have

$$
\phi^{\prime}(t)=\varphi(t)=f(x+t \eta(y, x)) \geq 0
$$

hence $\left|\phi^{\prime}(t)\right|=\phi^{\prime}(t)$. Applying corollary 1 to the function ϕ, we get

$$
\begin{equation*}
\left|\frac{\phi(a)+\phi(b)}{2}-\frac{1}{b-a} \int_{a}^{b} \phi(s) d s\right| \leq \frac{b-a}{8}\left[\left|\phi^{\prime}(a)\right|+m\left|\phi^{\prime}\left(\frac{b}{m}\right)\right|\right] \tag{3.3}
\end{equation*}
$$

we deduce from (3.3) that (3.2) holds. This completes the proof of the theorem.
Theorem 11. Let $K \subseteq \mathbb{R}^{n}$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$ and $f: K \rightarrow \mathbb{R}^{+}$is a function. Suppose that η satisfies Condition C on K. Suppose that for every $x, y \in K$ the function f is (α, m)-preinvex with respect to η on η-path $P_{x v},(\alpha, m) \in(0,1]$. Then for every $a, b \in(0,1)$ with $a<b$ the following inequality holds:

$$
\begin{align*}
& \left\lvert\, \frac{1}{2}\left[\int_{0}^{a} f(x+s \eta(y, x)) d s+\int_{0}^{b} f(x+s \eta(y, x)) d s\right]\right. \tag{3.4}\\
& -\frac{1}{b-a} \int_{a}^{b}\left(\int_{0}^{s} f(x+t \eta(y, x)) d t\right) d s \\
& \quad \leq \frac{b-a}{8}\left[\nu_{2} f(x+a \eta(y, x))+m \nu_{1} f\left(x+\frac{b}{m} \eta(y, x)\right)\right]
\end{align*}
$$

where $\nu_{1}=\frac{1+\alpha \cdot 2^{\alpha}}{2^{\alpha}(1+\alpha)(2+\alpha)}$ and $\nu_{2}=\frac{1}{2}-\nu_{1}$.
Proof. The proof of is similar to that of theorem 10 using corollary 4 so we omit the details to the readers.

Remark 5. Let $\varphi(t):[0,1] \rightarrow \mathbb{R}^{+}$be a function and q be a positive real number. Then φ is m-convex or (α, m)-convex function if and only if $\varphi(t)^{q}:[0,1] \rightarrow \mathbb{R}^{+}$ is m-convex or (α, m)-convex respectively. Hence similar results can be stated as
those of proposition 1 and proposition 2 by using corollary 2, corollary 3, corollary 5 and corollary 6 and we omit the details for the interested reader.

References

[1] T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473-1484.
[2] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequsiinvex functions, RGMIA Research Report Collection, 14(2011), Article 48, 7 pp .
[3] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Research Report Collection, 14(2011), Article 64, 11 pp.
[4] A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Ser. B, 28(1986), No. 1, 1-9.
[5] M. K. Bakula, M. E. Özdemir, J. Pečaric ${ }^{\prime}$, Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math. 9 (2008), no. 4, Art. 96, 12 pages.
[6] S. S. Dragomir, and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.
[7] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 42-56.
[8] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (2002) 45-55.
[9] S. S. Dragomir, G. Toader, Some inequalities for m-convex functions, Studia Univ. BabesBolyai Math. 38 (1993) 21-28.
[10] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[11] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007) 8287.
[12] M. A. latif, Some inequalities for differentiable prequasiinvex functions with applications. (to appear)
[13] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
[14] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993. (Romania)
[15] Muhammad Mudassar, Muhammad Iqbal Bhatti and Wajeeha Irshad, Generalization of integral inequalities of Hermite-Hadamard type through convexity, Bulletin of the Australian Mathematical Society, available on CJO2012. doi:10.1017/S0004972712000937.
[16] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.
[17] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.
[18] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl.,11(2006),165171
[19] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007), No. 3, 1-14.
[20] M.E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via mconvexity, Appl. Math. Lett. 23 (9) (2010) 1065-1070.
[21] M.E. Özdemir, H. Kavurmaci, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Math. J. 50 (2010) 371-378.
[22] M.E. Özdemir, M. Avcı and H. Kavurmacı, Hermite-Hadamard-type inequalities via (α, m)convexity, Comput. Math. Appl., 61 (2011), 2614-2620.
[23] M.E. Özdemir, E. Set and M.Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Hacettepe J. of. Math. and Ist., 40, 219-229, (2011).
[24] R. Pini, Invexity and generalized convexity, Optimization 22 (1991) 513-525.
[25] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., $13(2)(2000), 51-55$.
[26] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
[27] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, arXiv:1203.4759v1.
[28] E. Set, M. Sardari, M.E. Özdemir and J. Rooin, On generalizations of the Hadamard inequality for (α, m)-convex functions, Kyungpook Math. J., Accepted.
[29] M.Z. Sarıkaya, M.E. Özdemir and E. Set, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are m-convex, RGMIA Res. Rep. Coll. 13 (2010) Supplement, Article 5.
[30] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338.
[31] T. Weir, and B. Mond, Preinvex functions in multiple bjective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
[32] B.-Y. Xi, R.-F. Bai, F. Qi, Hermite-Hadamard type inequalities for the m - and (α, m)geometrically convex functions, Aequationes Math. 39 (2012), in press; Available online at http://dx.doi.org/10.1007/s00010-011-0114-x.
[33] B.-Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438, 14 pages; Available online at http://dx.doi.org/10.1155/2012/980438.
[34] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001), 229-241.
[35] X.M. Yang, X.Q. Yang and K.L. Teo, Characterizations and applications of prequasiinvex functions, properties of preinvex functions, J. Optim. Theo. Appl. 110 (2001) 645-668.
[36] X. M. Yang, X. Q. Yang, K.L. Teo, Generalized invexity and generalized invariant monotonocity, Journal of Optimization Theory and Applications 117 (2003) 607-625.

Faculty of Sciences, Department of Mathematics, University of Hail, PO BOX 2440, Kingdom of Saudi Arabia

E-mail address: m_amer_latif@hotmail.com
Faculty of Sciences, Department of Mathematics, University of Hail, PO BOX 2440, Kingdom of Saudi Arabia

E-mail address: safridi@gmail.com

[^0]: Date: Today.
 2000 Mathematics Subject Classification. 26D15, 26D20, 26D07.
 Key words and phrases. Hermite-Hadamard's inequality, invex set, preinvex function, mpreinvex function, (α, m)-preinvex function, Hölder's integral inequality, power-mean inequality.

 This paper is in final form and no version of it will be submitted for publication elsewhere.

