HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR n-TIMES DIFFERENTIABLE m-PREINVEX FUNCTIONS

M. A. LATIF AND S. S. DRAGOMIR ${ }^{1,2}$

Abstract

In this paper we establish inequalities of Hermite-Hadamard type for functions whose nth derivatives in absolute value are m-preinvex functions. The established results generalize several recent results proved for functions whose derivatives in absolute value are m-convex functions.

1. Introduction

A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

holds for every $x, y \in I$ and $t \in[0,1]$.
The following celebrated double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} . \tag{1.1}
\end{equation*}
$$

holds for convex functions and is known as the Hermite-Hadamard inequality. Both of the inequalities in (1.1) hold in reversed direction if f is concave.

The inequalities Hermite-Hadamard inequalities (1.1) have been a source of inspiration for many mathematicians and hence its various refinements and its variant forms have been obtained in the literature by many researchers (see $[6,7,11,12$, $28,29]$ and [37]) and the references therein.

The classical convexity that is stated above was generalized as m-convexity by G. Toader in [33] as follows:

Definition 1. [33] The function $\left[0, b^{*}\right], b^{*}>0$, is said to be m-convex, where $m \in[0,1]$, if we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

for all $x, y \in\left[0, b^{*}\right]$ and $\left.t \in 0,1\right]$. We say that f is m-concave if $-f$ is m-convex.
Obviously, for $m=1$ the Definition 1 recaptures the concept of standard convex functions on $\left[0, b^{*}\right]$.

The notion of m-convexity has been further generalized in [17] as it is stated in the following definition:

[^0]Definition 2. [17] The function $\left[0, b^{*}\right], b^{*}>0$, is said to be (α, m)-convex, where $(\alpha, m) \in[0,1]^{2}$, if we have

$$
f(t x+m(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)
$$

for all $x, y \in\left[0, b^{*}\right]$ and $\left.t \in 0,1\right]$.
It can easily be seen that for $\alpha=1$, the class of m-convex functions are derived from the above definition and for $\alpha=m=1$ a class of convex functions are derived.

For several results concerning Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions we refer the interested reader to $[5,8,9,23,24,25$, $26,31,32,34]$ and [36].

More recently, a number of mathematicians have attempted to generalize the concept of classical convexity. For example in [10], Hason gave the notion of invexity as significant generalization of classical convexity. Ben-Israel and Mond [4] introduced the concept of preinvex functions, which is a special case of invex functions.

Let us first restate the definition of preinvexity as follows:
Definition 3. [35] Let K be a subset in \mathbb{R}^{n} and let $f: K \rightarrow \mathbb{R}$ and $\eta: K \times K \rightarrow \mathbb{R}^{n}$ be continuous functions. Let $x \in K$, then the set K is said to be invex at x with respect to $\eta(\cdot, \cdot)$, if

$$
x+t \eta(y, x) \in K, \forall x, y \in K, t \in[0,1] .
$$

K is said to be an invex set with respect to η if K is invex at each $x \in K$. The invex set K is also called a η-connected set.

Definition 4. [35] The function f on the invex set K is said to be preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+t f(v), \forall u, v \in K, t \in[0,1]
$$

The function f is said to be preconcave if and only if $-f$ is preinvex.
It is to be noted that every convex function is preinvex with respect to the map $\eta(x, y)=x-y$ but the converse is not true see for instance [35].

For several new results on Hermite-Hadamard type inequalities for preinvex functions, we refer the interested reader to $[2,3,14,15,21,22]$ and [30], and the references therein.

In the present paper, we first give the concept of m-preinvex and (α, m)-preinvex functions in Section 2, which generalize the concept of preinvex functions and then we will present new inequalities of Hermite-Hadamard for functions whose derivatives in absolute value are m-preinvex. It can be viewed that our results generalize those results presented in recent paper [15] and some of the results given in [11] concerning Hermite-Hadamard type inequalities for functions whose nth derivatives in absolute value are m-convex functions and convex functions respectively. It can also be observed that some the the results from [15] have also been extended.

2. Main Results

To establish our main results we first give the following essential definitions and a Lemma:

Definition 5. Let $K \subseteq\left[0, b^{*}\right]^{n} \subseteq[0, \infty)^{n}$, $b^{*}>0$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$. A function $f: K \rightarrow[0, \infty)^{n}$ is said to be m-preinvex with respect to η on K if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+m t f\left(\frac{v}{m}\right)
$$

holds for all $u, v \in K, t \in[0,1]$ and $m \in(0,1]$. The function f is said to be m preconcave if and only if $-f$ is m-preinvex.

Definition 6. Let $K \subseteq\left[0, b^{*}\right]^{n} \subseteq[0, \infty)^{n}$, $b^{*}>0$ be an invex set with respect to $\eta: K \times K \rightarrow \mathbb{R}^{n}$. A function $f: K \rightarrow[0, \infty)^{n}$ is said to be (α, m)-preinvex with respect to η if

$$
f(u+t \eta(v, u)) \leq\left(1-t^{\alpha}\right) f(u)+m t^{\alpha} f\left(\frac{v}{m}\right)
$$

holds for all $u, v \in K, t \in[0,1]$ and $(\alpha, m) \in(0,1] \times(0,1]$. The function f is said to be (α, m)-preconcave if and only if $-f$ is (α, m)-preinvex.

Remark 1. If in Definition 5, $m=1$, then one obtain the usual definition of preinvexity. If $\alpha=m=1$, then Definition 6 recaptures the usual definition of the the preinvex functions. It is to be noted that every m-preinvex function and (α, m)preinvex functions are m-convex and (α, m)-convex with respect to $\eta(v, u)=v-u$ respectively.

Lemma 1. [15] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K for $n \in \mathbb{N}, n \geq 1$ and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$, we have the following equality:

$$
\begin{align*}
& -\frac{f(a)+f(a+\eta(b, a))}{2}+\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \tag{2.1}\\
& \quad+\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \\
& \quad=\frac{(-1)^{n-1}(\eta(b, a))^{n}}{2 n!} \int_{0}^{1} t^{n-1}(n-2 t) f^{(n)}(a+t \eta(b, a)) d t
\end{align*}
$$

where the sum above takes 0 when $n=1$ and $n=2$.
Now we establish results for functions whose derivatives in absolute values raise to some certain power are m-preinvex.

Theorem 1. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 2$. If $\left|f^{(n)}\right|^{q}$ is m-preinvex on K for $n \in \mathbb{N}, n \geq 2, q \in[1, \infty)$, we have
the following inequality:

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.2}\\
& \left.\quad-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \quad \leq \frac{(\eta(b, a))^{n}(n-1)^{1-\frac{1}{q}}}{2(n+1)!}\left[\frac{n\left|f^{n}(a)\right|^{q}+m\left(n^{2}-2\right)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{n+2}\right]^{\frac{1}{q}}
\end{align*}
$$

Proof. From Lemma 1 and the Hölder integral inequality, we obtain

$$
\begin{equation*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.3}
\end{equation*}
$$

$$
\left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\,
$$

$$
\leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\int_{0}^{1} t^{n-1}(n-2 t) d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t^{n-1}(n-2 t)\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}}
$$

Since $\left|f^{\prime}\right|^{q}$ is m-preinvex on $K, q \geq 1$, for every $a, b \in K, t \in[0,1]$ and $m \in(0,1]$, we have

$$
\begin{equation*}
\left|f^{n}(a+t \eta(b, a))\right|^{q} \leq(1-t)\left|f^{n}(a)\right|^{q}+m t\left|f^{n}\left(\frac{b}{m}\right)\right|^{q} \tag{2.4}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
& \int_{0}^{1} t^{n-1}(n-2 t)\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t \tag{2.5}\\
& \leq \int_{0}^{1} t^{n-1}(n-2 t)\left[(1-t)\left|f^{n}(a)\right|^{q}+m t\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}\right] d t \\
= & \left|f^{n}(a)\right|^{q} \int_{0}^{1}(1-t) t^{n-1}(n-2 t) d t+m\left|f^{n}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1} t^{n}(n-2 t) d t \\
& =\frac{n\left|f^{n}(a)\right|^{q}}{(n+1)(n+2)}+\frac{m\left(n^{2}-2\right)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{(n+1)(n+2)}
\end{align*}
$$

By using (2.5) and the fact

$$
\int_{0}^{1} t^{n-1}(n-2 t) d t=\frac{n-1}{n+1}
$$

we get the desired inequality from (2.3). This completes the proof of theorem 1.

Corollary 1. Under the assumptions of Theorem 1, If $q=1$, we have

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.6}\\
& \left.\quad-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \\
& \leq \frac{(\eta(b, a))^{n}}{2(n+1)!}\left[\frac{n\left|f^{n}(a)\right|+m\left(n^{2}-2\right)\left|f^{n}\left(\frac{b}{m}\right)\right|}{n+2}\right]
\end{align*}
$$

If $n=2$, we obtain the following result:

$$
\begin{align*}
&\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.7}\\
& \leq \frac{(\eta(b, a))^{2}\left[\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|\right]}{24} .
\end{align*}
$$

Corollary 2. Under the assumptions of Theorem 1, if $m=1$, we have

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.8}\\
& \left.\quad-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \quad \leq \frac{(\eta(b, a))^{n}(n-1)^{1-\frac{1}{q}}}{2(n+1)!}\left[\frac{n\left|f^{n}(a)\right|^{q}+\left(n^{2}-2\right)\left|f^{n}(b)\right|^{q}}{n+2}\right]^{\frac{1}{q}}
\end{align*}
$$

Corollary 3. Under the assumptions of Theorem 1, if $n=2$, we have

$$
\begin{array}{r}
\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.9}\\
\leq \frac{(\eta(b, a))^{2}}{12}\left[\frac{\left|f^{n}(a)\right|^{q}+m\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{2}\right]^{\frac{1}{q}}
\end{array}
$$

Theorem 2. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 2$. If $\left|f^{(n)}\right|^{q}$ is m-preinvex on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have
the following inequality:

$$
\begin{align*}
& \quad \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.10}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\frac{q-1}{n q-1}\right)^{1-\frac{1}{q}}\left\{\left[\frac{n^{q+1}(2 q-n+4)+(n-2)^{q+2}}{4(q+1)(q+2)}\right]\left|f^{n}(a)\right|^{q}\right. \\
& \left.+m\left[\frac{n^{q+2}-(n-2)^{q+2}(2 q+n+2)}{4(q+1)(q+2)}\right]\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}\right\}^{\frac{1}{q}} .
\end{align*}
$$

Proof. From Lemma 1 and the Hölder integral inequality, we have

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.11}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
\leq & \frac{(\eta(b, a))^{n}}{2 n!}\left(\int_{0}^{1} t^{\frac{q(n-1)}{q-1}} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}(n-2 t)^{q}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}} .
\end{align*}
$$

By the m-preinvexity of $\left|f^{(n)}\right|^{q}$ on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have

$$
\begin{align*}
& \int_{0}^{1}(n-2 t)^{q}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t \tag{2.12}\\
& \leq\left|f^{n}(a)\right|^{q} \int_{0}^{1}(n-2 t)^{q}(1-t) d t+m\left|f^{n}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1} t(n-2 t)^{q} d t \\
& \quad=\left[\frac{n^{q+1}(2 q-n+4)+(n-2)^{q+2}}{4(q+1)(q+2)}\right]\left|f^{n}(a)\right|^{q} \\
& \quad+m\left[\frac{n^{q+1}-(n-2)^{q+2}(2 q+n+2)}{4(q+1)(q+2)}\right]\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}
\end{align*}
$$

By (2.12) and

$$
\int_{0}^{1} t^{\frac{q(n-1)}{q-1}} d t=\frac{q-1}{n q-1}
$$

we get the required inequality from (2.11). This completes the proof of the Theorem.

Corollary 4. Under the assumptions of Theorem 2, if $m=1$, we have

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.13}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\frac{q-1}{n q-1}\right)^{1-\frac{1}{q}}\left\{\left[\frac{n^{q+1}(2 q-n+4)+(n-2)^{q+2}}{4(q+1)(q+2)}\right]\left|f^{n}(a)\right|^{q}\right. \\
& \left.+\left[\frac{n^{q+2}-(n-2)^{q+2}(2 q+n+2)}{4(q+1)(q+2)}\right]\left|f^{n}(b)\right|^{q}\right\}^{\frac{1}{q}} .
\end{align*}
$$

Corollary 5. If assumptions of the Theorem 2 are satisfied and $n=2$, we have the following inequality:

$$
\begin{align*}
& \left.\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \tag{2.14}\\
& \quad \leq \frac{(\eta(b, a))^{2}}{2}\left(\frac{q-1}{2 q-1}\right)^{1-\frac{1}{q}}\left[\frac{(q+1)\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{4(q+1)(q+2)}\right] .
\end{align*}
$$

A similar result may be stated as follows:
Theorem 3. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 2$. If $\left|f^{(n)}\right|^{q}$ is m-preinvex on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have the following inequality:

$$
\begin{equation*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.15}
\end{equation*}
$$

$$
\left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\,
$$

$$
\leq \frac{(\eta(b, a))^{n}}{2 n!}\left[\frac{(q-1)\left(n^{\frac{2 q-1}{q-1}}-(n-2)^{\frac{2 q-1}{q-1}}\right)}{2(2 q-1)}\right]^{1-\frac{1}{q}}\left[\frac{\left|f^{n}(a)\right|^{q}+m(n q-q+1)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{(n q-q+1)(n q-q+2)}\right]^{\frac{1}{q}}
$$

Proof. From Lemma 1 and the Hölder integral inequality, we have

$$
\begin{align*}
& \text { 16) } \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.16}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\int_{0}^{1}(n-2 t)^{\frac{q}{q-1}} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t^{(n-1) q}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}} .
\end{align*}
$$

By the m-preinvexity of $\left|f^{(n)}\right|^{q}$ on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have

$$
\begin{align*}
& \int_{0}^{1} t^{(n-1) q}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t \tag{2.17}\\
& \begin{aligned}
\leq\left|f^{n}(a)\right|^{q} \int_{0}^{1} t^{(n-1) q}(1-t) & +m\left|f^{n}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1} t^{(n-1) q+1} d t \\
& =\frac{\left|f^{n}(a)\right|^{q}+m(n q-q+1)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{(n q-q+1)(n q-q+2)}
\end{aligned}
\end{align*}
$$

Applying (2.17) and

$$
\int_{0}^{1}(n-2 t)^{\frac{q}{q-1}} d t=\frac{(q-1)\left(n^{\frac{2 q-1}{q-1}}-(n-2)^{\frac{2 q-1}{q-1}}\right)}{2(2 q-1)}
$$

in (2.16), we get the required inequality. This completes the proof of the Theorem.

Corollary 6. Under the assumptions of Theorem 3, if $m=1$, we get the following inequality:

$$
\begin{equation*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.18}
\end{equation*}
$$

$$
\left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\,
$$

$$
\leq \frac{(\eta(b, a))^{n}}{2 n!}\left[\frac{(q-1)\left(n^{\frac{2 q-1}{q-1}}-(n-2)^{\frac{2 q-1}{q-1}}\right)}{2(2 q-1)}\right]^{1-\frac{1}{q}}\left[\frac{\left|f^{n}(a)\right|^{q}+(n q-q+1)\left|f^{n}(b)\right|^{q}}{(n q-q+1)(n q-q+2)}\right]^{\frac{1}{q}}
$$

Corollary 7. Under the assumptions of Theorem 3, if $n=2$, we get the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.19}\\
& \leq \frac{(\eta(b, a))^{2}}{2}\left[\frac{q-1}{2 q-1}\right]^{1-\frac{1}{q}}\left[\frac{\left|f^{\prime \prime}(a)\right|^{q}+m(q+1)\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{(q+1)(q+2)}\right]^{\frac{1}{q}}
\end{align*}
$$

Theorem 4. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}, n \geq 2$. If $\left|f^{(n)}\right|^{q}$ is m-preinvex on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have
the following inequality:
$\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right.$ $\left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\,$
$\leq \frac{(\eta(b, a))^{n}(n-1)}{2 n!}\left[\frac{(q-1)(n q-2)}{(n q-1)(n q+q-2)}\right]^{1-\frac{1}{q}}\left[\frac{(3 n-2)\left|f^{n}(a)\right|^{q}+m(3 n-4)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{6}\right]^{\frac{1}{q}}$.
Proof. From Lemma 1 and the Hölder integral inequality, we have

$$
\begin{align*}
& \text { (2.21) } \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.21}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\int_{0}^{1}(n-2 t) t^{\frac{q(n-1)}{q-1}} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}(n-2 t)\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}} .
\end{align*}
$$

By the m-preinvexity of $\left|f^{(n)}\right|^{q}$ on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have

$$
\begin{align*}
& \int_{0}^{1} t^{(n-1) q}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t \tag{2.22}\\
& \begin{aligned}
\leq\left|f^{n}(a)\right|^{q} \int_{0}^{1}(n-2 t)(1-t)+m\left|f^{n}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1}(n-2 t) t d t
\end{aligned} \\
& \\
& =\frac{(3 n-2)\left|f^{n}(a)\right|^{q}+m(3 n-4)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{6}
\end{align*}
$$

Using (2.22) and

$$
\int_{0}^{1}(n-2 t)^{\frac{q}{q-1}} d t=\frac{(q-1)(n q-2)(n-1)}{(n q-1)(n q+q-2)}
$$

in (2.21), we get the required inequality. This completes the proof of the Theorem.

Corollary 8. Under the assumptions of Theorem 4, if $m=1$, we have

$$
\begin{align*}
& \text { (2.23) } \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.23}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}(n-1)}{2 n!}\left[\frac{(q-1)(n q-2)}{(n q-1)(n q+q-2)}\right]^{1-\frac{1}{q}}\left[\frac{(3 n-2)\left|f^{n}(a)\right|^{q}+(3 n-4)\left|f^{n}(b)\right|^{q}}{6}\right]^{\frac{1}{q}} .
\end{align*}
$$

Corollary 9. Under the assumptions of Theorem 4, if $n=2$, we obtain the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.24}\\
& \quad \leq \frac{(\eta(b, a))^{2}}{4}\left[\frac{2(q-1)^{2}}{(2 q-1)(3 q-2)}\right]^{1-\frac{1}{q}}\left[\frac{2\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{3}\right]^{\frac{1}{q}}
\end{align*}
$$

Theorem 5. Let $K \subseteq\left[0, b^{*}\right], b^{*}>0$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $a, b \in K$ with $a<a+\eta(b, a)$. Suppose $f: K \rightarrow \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a+\eta(b, a)]$ for $n \in \mathbb{N}$, $n \geq 2$. If $\left|f^{(n)}\right|^{q}$ is m-preinvex on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have the following inequality:

$$
\begin{equation*}
\left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.25}
\end{equation*}
$$

$$
\left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\,
$$

$$
\begin{gathered}
\leq \frac{(\eta(b, a))^{n}}{2 n!}\left\{\frac{(q-1)\left[(q-1) n^{\frac{3 q-2}{q-1}}-(n(q-1)-2(3 q-2))(n-2)^{\frac{2 q-1}{q-1}}\right]}{4(2 q-1)(3 q-2)}\right\}^{1-\frac{1}{q}} \\
\times\left[\frac{\left|f^{n}(a)\right|^{q}+m(n q-2 q+2)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{(n q-2 q+2)(n q-2 q+3)}\right]^{\frac{1}{q}}
\end{gathered}
$$

Proof. From Lemma 1 and the Hölder integral inequality, we have

$$
\begin{align*}
& (2.26) \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.26}\\
& \left.-\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\, \\
& \leq \frac{(\eta(b, a))^{n}}{2 n!}\left(\int_{0}^{1} t(n-2 t)^{\frac{q}{q-1}} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} t^{n q-2 q+1}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}}
\end{align*}
$$

By the m-preinvexity of $\left|f^{(n)}\right|^{q}$ on K for $n \in \mathbb{N}, n \geq 2, q \in(1, \infty)$, we have

$$
\begin{align*}
& \int_{0}^{1} t^{(n-1) q}\left|f^{(n)}(a+t \eta(b, a))\right|^{q} d t \tag{2.27}\\
& \begin{aligned}
& \leq\left|f^{n}(a)\right|^{q} \int_{0}^{1} t^{n q-2 q+1}(1-t)+m\left|f^{n}\left(\frac{b}{m}\right)\right|^{q} \int_{0}^{1} t^{n q-2 q+2} d t \\
&=\frac{\left|f^{n}(a)\right|^{q}+m(n q-2 q+2)\left|f^{n}\left(\frac{b}{m}\right)\right|^{q}}{(n q-2 q+2)(n q-2 q+3)}
\end{aligned}
\end{align*}
$$

Utilizing (2.27) and

$$
\int_{0}^{1} t(n-2 t)^{\frac{q}{q-1}} d t=\frac{(q-1)\left[n^{\frac{3 q-2}{q-1}}(q-1)-(n-2)^{\frac{2 q-1}{q-1}}(n(q-1)-2(3 q-2))\right]}{4(2 q-1)(3 q-2)}
$$

in (2.26), we get the required inequality. This completes the proof of the Theorem.

Corollary 10. If in theorem 5, we take $m=1$, we get the following inequality:

$$
\begin{align*}
& \left\lvert\, \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right. \tag{2.28}\\
&- \left.\sum_{k=2}^{n-1} \frac{(-1)^{k}(k-1)(\eta(b, a))^{k}}{2(k+1)!} f^{(k)}(a+\eta(b, a)) \right\rvert\,
\end{align*}
$$

$$
\begin{gathered}
\leq \frac{(\eta(b, a))^{n}}{2 n!}\left\{\frac{(q-1)\left[(q-1) n^{\frac{3 q-2}{q-1}}-(n(q-1)-2(3 q-2))(n-2)^{\frac{2 q-1}{q-1}}\right]}{4(2 q-1)(3 q-2)}\right\}^{1-\frac{1}{q}} \\
\times\left[\frac{\left|f^{n}(a)\right|^{q}+(n q-2 q+2)\left|f^{n}(b)\right|^{q}}{(n q-2 q+2)(n q-2 q+3)}\right]^{\frac{1}{q}}
\end{gathered}
$$

Corollary 11. Suppose the assumptions of Theorem 5 are fulfilled and $n=2$, we get the following inequality:

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \tag{2.29}\\
& \quad \leq \frac{(\eta(b, a))^{2}}{2}\left\{\frac{(q-1)^{2}}{4(2 q-1)(3 q-2)}\right\}^{1-\frac{1}{q}}\left[\frac{\left|f^{\prime \prime}(a)\right|^{q}+2 m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}}{6}\right]^{\frac{1}{q}}
\end{align*}
$$

Remark 2. If we take $m=1$ in Theorem 1 and its related Corollaries, we get [15, Theorem 2.4] and the related Corollaries of [15, Theorem 2.4].

Remark 3. If we take $\eta(b, a)=b-a$ in all the results presented above, we get those results proved in [34].

References

[1] T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473-1484.
[2] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequsiinvex functions, RGMIA Research Report Collection, 14(2011), Article 48, 7 pp.
[3] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Research Report Collection, 14(2011), Article 64, 11 pp.
[4] A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Ser. B, 28(1986), No. 1, 1-9.
[5] M. K. Bakula, M. E. Özdemir, J. Pečaric', Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math. 9 (2008), no. 4, Art. 96, 12 pages.
[6] S. S. Dragomir, and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.
[7] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 42-56.
[8] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (2002) 45-55.
[9] S. S. Dragomir, G. Toader, Some inequalities for m-convex functions, Studia Univ. BabesBolyai Math. 38 (1993) 21-28.
[10] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[11] D. -Y. Hwang, Some inequalities for n-times differenitable mappings and applications, Kyungpook Math. J., 43(2003), 335-343.
[12] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007) 8287.
[13] W. -D Jiang, D. -WNiu, Y. Hua and F. Qi, Generalizations of Hermite-Hadamard inequalities to n-times differenitable functions which are s-convex in the second sense, Analysis, 32: 209220, 2012.
[14] M. A. latif, Some inequalities for differentiable prequasiinvex functions with applications. (to appear)
[15] M. A. Latif, On Hermite-Hadamard type integral inequalities for n-times differentiable preinvex functions with applications. (to appear)
[16] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
[17] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993. (Romania)
[18] Muhammad Mudassar, Muhammad Iqbal Bhatti and Wajeeha Irshad, Generalization of integral inequalities of Hermite-Hadamard type through convexity, Bulletin of the Australian Mathematical Society, available on CJO2012. doi:10.1017/S0004972712000937.
[19] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.
[20] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.
[21] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl.,11(2006),165171
[22] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007), No. 3, 1-14.
[23] M.E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via mconvexity, Appl. Math. Lett. 23 (9) (2010) 1065-1070.
[24] M.E. Özdemir, H. Kavurmaci, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Math. J. 50 (2010) 371-378.
[25] M.E. Özdemir, M. Avcı and H. Kavurmacı, Hermite-Hadamard-type inequalities via (α, m)convexity, Comput. Math. Appl., 61 (2011), 2614-2620.
[26] M.E. Özdemir, E. Set and M.Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Hacettepe J. of. Math. and Ist., 40, 219-229, (2011).
[27] R. Pini, Invexity and generalized convexity, Optimization 22 (1991) 513-525.
[28] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., $13(2)(2000), 51-55$.
[29] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
[30] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, arXiv:1203.4759v1.
[31] E. Set, M. Sardari, M.E. Özdemir and J. Rooin, On generalizations of the Hadamard inequality for (α, m)-convex functions, Kyungpook Math. J., Accepted.
[32] M.Z. Sarıkaya, M.E. Özdemir and E. Set, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are m-convex, RGMIA Res. Rep. Coll. 13 (2010) Supplement, Article 5.
[33] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338.
[34] S. -H. Wang, B. -Y. Xi and F. Qi, Some new inequalities of Hermite-Hadamard type for n-times differentiable functions wich are m-convex, Analysis, 32: 247-262, (2012).
[35] T. Weir, and B. Mond, Preinvex functions in multiple bjective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
[36] B.-Y. Xi, R.-F. Bai, F. Qi, Hermite-Hadamard type inequalities for the m - and (α, m)geometrically convex functions, Aequationes Math. 39 (2012), in press; Available online at http://dx.doi.org/10.1007/s00010-011-0114-x.
[37] B.-Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438, 14 pages; Available online at http://dx.doi.org/10.1155/2012/980438.
[38] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001), 229-241.
[39] X.M. Yang, X.Q. Yang and K.L. Teo, Characterizations and applications of prequasiinvex functions, properties of preinvex functions, J. Optim. Theo. Appl. 110 (2001) 645-668.
[40] X. M. Yang, X. Q. Yang, K.L. Teo, Generalized invexity and generalized invariant monotonocity, Journal of Optimization Theory and Applications 117 (2003) 607-625.

Faculty of Sciences, Department of Mathematics, University of Hail, PO BOX 2440, Kingdom of Saudi Arabia

E-mail address: m_amer_latif@hotmail.com
${ }^{1}$ College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
${ }^{2}$ School of Computational and Applied Mathematics, University of the WitwaterSrand, Johannesburg, Private Bag 3, Wits, 2050, South Africa

E-mail address: sever.dragomir@vu.edu.au

[^0]: Date: September 6, 2013.
 2000 Mathematics Subject Classification. 26D15, 26D20, 26D07.
 Key words and phrases. Hermite-Hadamard's inequality, invex set, preinvex function, m preinvex function, (α, m)-preinvex function, Hölder's integral inequality, power-mean inequality.

 This paper is in final form and no version of it will be submitted for publication elsewhere.

