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Ostrowski’s Type Inequalities for Complex Functions
Defined on Unit Circle with Applications for Unitary
Operators in Hilbert Spaces

S.S. Dragomir!»?

ABSTRACT. Some Ostrowski’s type inequalities for the Riemann-Stieltjes inte-
gral fab f (%) du (t) of continuous complex valued integrands f : C (0,1) — C
defined on the complex unit circle C (0, 1) and various subclasses of integrators
u : [a,b] C [0,27] — C of bounded variation are given. Natural applications
for functions of unitary operators in Hilbert spaces are provided as well.

1. Introduction

The problem of approximating the Riemann-Stieltjes integral fab f () du(t) by
the quantity f (z) [u (b) — u (a)], which is a natural generalization of the Ostrowski
problem analyzed in 1937 (see [17]), was apparently first considered in the literature
by the author in 2000 (see [9]) where he obtained the following result:

b

(1.1) [u(b) —u(a)] f(x) = [ [f(t)du(t)
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if p>1, L+1=1;

a T\ /b
[ 0—a)+[e— 2] Vo ()
for each = € [a,b], provided f is of bounded variation on [a,b], \/Z (f) is its total

variation on [a,b], while u : [a,b] — R is r — H-Holder continuous, i.e., we recall
that:

SHXA (@ =)+ 0 -2 (Vi) + (Vi f)p} %

(1.2) lu(z) —u(y)| < H|z—y|" for each z,y € [a,b].
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2 S.S. DRAGOMIR™?
The dual case, i.e., when the integrand f is ¢ — K—Holder continuous and the

integrator u is of bounded variation was obtained by the author in 2001 and can
be stated as [10]

b
(1.3) [ (b) — u (a)] f () — / £ (t) du (1)

br\:/w)

for each = € [a, b].
The above inequalities provide, as important consequences, the following mid-
point inequalities:

o) @l 7 () - [ 10w <

L b-a) HV.(f)
L (b—a) KV (u),

which can be numerically implemented and provide a quadrature rule for approxi-
mating the Riemann-Stieltjes integral f; F@)du(t).

For other inequalities for the Riemann-Stieltjes integral, see [1]-[5], [6]-[12] and
the edited book [15].

Let U be a selfadjoint operator on the complex Hilbert space (H, (., .)) with the
spectrum Sp (U) included in the interval [m, M| for some real numbers m < M and
let {Ex}, be its spectral family. Then for any continuous function f : [m, M] — R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral:

(1.5 G@aa) = [ F0 ).

for any x,y € H. The function g, , () := (Exx,y) is of bounded variation on the
interval [m, M] and

(1.4)

Gzy (m—0) =0and g, , (M) = (2,y)

for any x,y € H. It is also well known that g, (A) := (E\x, z) is monotonic nonde-
creasing and right continuous on [m, M].

On utilizing the spectral representation and the Ostrowski’s type inequal-
ity we obtained the following result for continuous functions of selfadjoint
operators (see [14} p. 35]):

THEOREM 1 ([11]). Let A be a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M] for some real numbers m < M and let {E\}, be its
spectral family. If f : [m, M] — R is r — H-Hélder continuous on [m, M|, then we
have the inequality

(16) £(5) (1) — (F (A).0)
M 1 T
\/ (Eyz,y)) {2(M—m)+ s }

<H||x||y||[ (01 )+ [s - 2524
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for any z,y € H and s € [m, M].

The following result for functions of bounded variation also holds (see [14, p.
36)):

THEOREM 2 ([12]). Let A be a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M] for some real numbers m < M and let {E\}, be its
spectral family. If f : [m, M] — R is a continuous function of bounded variation on
[m, M), then we have the inequality

(1.7) I (s) (@, y) = (f (A) 2, )]

< (Byx,2)"? (B, )\ (f)

M
+{(lg — B w, o) ((Lg — By, ) 2\ (f)

S

< llz] Iyl (;\/m V-V ) <l Iyl \/ ()

for any z,y € H and for any s € [m, M|, where 1 is the identity operator on H.

For various recent inequalities for functions of selfadjoint operators on Hilbert
spaces see the books [13] and [14].
Motivated by the above results, we investigate in the current paper the magni-
tude of the difference
b

F(€°) fu (b) — u(a)] - / f (") du(t) with s € [a,8] < [0, 27]

a
for continuous complex valued function f : C (0,1) — C defined on the complex unit
circle € (0, 1) and various subclasses of functions u : [a,b] C [0, 27] — C of bounded
variation. Natural applications for functions of unitary operators in Hilbert spaces
are provided as well.

2. Scalar Ostrowski’s Type Inequalities

THEOREM 3. Assume that f : C(0,1) — C satisfies the following Holder’s type
condition

(2.1) [f (2) = f(w)| < H|z —w]"
for any w,z € C(0,1), where H > 0 and r € (0,1] are given.
If [a,b] C [0,27] and the function u : [a,b] — C is of bounded variation on

[a,b], then
sin (1
2

b

(2.2) |f (eis) [u(b) —u(a)] — / f (eit) du (t)

a

r

< 2"H max
te(a,b]

b
V(@)

for any s € [a,b].

PROOF. Observe that

b b
23)  f () ub) —u(a)] - / £ () du () = / [ (%) — £ (¢)] du (1)

for any s € [a,b].
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It is known that if p : [¢,d] — C is a continuous function and v : [¢,d] — C is

of bounded variation, then the Riemann-Stieltjes integral f p(t)dv (t) exists and
the following inequality holds

d
[ prav )] < max b0 |\/

Applying the property (2.4) to the identity (2.3]) and utilizing the Holder’s type
condition ([2.1)) we have successively

(2.4)

(2.5) |f@”HUWW—uwH—/1f@ﬂduw

b

= max |f (”)—f(e”)|\/( ) < H max |e”—e”| \/

te(a,b] t€la,b)

a

Since

|€is_eit|2 _ |€i5|2_2Re(ei(sft))+|€it‘2

—t
= 2-—2cos(s—t)=4sin? (52>

. s—t\|"
sin
2
for any t,s € R.

Now, by (2.5) and (2.6) we deduce the desired result (2.2]). O

for any t,s € R, then

(2.6) e —et|" =27

REMARK 1. If a = 0 and b = 271' then for any s € [0,27] there exists a
unique t € [0,2n] such that L |t —s| = %, therefore max,co 2q [sin (551)| = 1 for
all s € 10,27] and we deduce from (-) the following mequalzty of interest

2m 27
(2.7) f () [u2m) —u(0)] — /0 f(e") du (t)‘ < QTH\/ (u)
0

that holds for each s € [0, 2] .

REMARK 2. If [a,b] C [0,27] and 0 < b —a < 7 then for all t,s € [a,b] we
have % [t —s] < %(b —a) < §. Since the function sin is increasing on [ g] then
we have successively that

sin [ 2= t sin | ma |t s|
) = x =t —
2 tela,b] 2

1
= sin (2 max {b—s,s — a}>

1 1 b

2.8
(2:8) 2

for any s € [a,b].
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Therefore, under the assumptions of Theorem [§ and if [a,b] C [0,2n] with
0<b—a<m, then

(2.9) £ (@) [u(b) - u(a)] - / £ (") du (t)

ST

1

1
< 2"H sin” L (b—a)+

b
§2THsin’“{ ba}\/

for all s € [a,b].
In particular, the best inequality we can get from (@) 18 incorporated in

(2.10) 7 () fu®) = u @) - / TPy duto

a

b

< 2"H sin” B (b— a)} V (@).

a

The case when f : C (0,1) — C satisfies the Lipschitz condition | f (z) — f (w)] <
L |z — w| for any w,z € C(0,1), where L > 0 is given, is of interest due to various
examples one can consider. Also in this case we can show that the corresponding
version of the inequality is sharp.

COROLLARY 1. Assume that f : C(0,1) — C is Lipschitzian with the constant
L > 0 on the circle C(0,1). If [a,b] C [0,27] with 0 < b—a < 7 and the function
w: [a,b] — C is of bounded variation on [a,b], then we have

< 2Lsin [i (b— a)} \i/(u)

The constant 2 cannot be replaced by a smaller quantity.

@11) |7 () [w () — u (o) - / () du )

a

PROOF. We need to prove only the sharpness of the constant 2.

If we consider the function f : C — C, f(z) = z, then obviously f is Lip-
schitzian with the constant L = 1. Also, consider in (2.11)) ¢ = 0 and b = 7 to
get

(2.12)

i[u(w)—u(m]—[ citdu (¢ ’<\f\/

Utilising the integration by parts formula for the Riemann-Stieltjes integral we have

/Oe”du(t) = e”u(t)’o—i/o eu (t) dt
_ —u(ﬁ)—u(O)—i/O it (£) dt

and replacing into the inequality (2.12]) we deduce

i[u(w)—u(O)]—i—u(w)—}—u(O)—i—i/oﬂe u(t) dt’<\f\/



6 S.S. DRAGOMIR!:2

which is equivalent with

(2.13)

(i—l)u(ﬂ)—l-(H—l)u(O)—/Oﬂe“u(t)dt’S\f?\/(u)
0

that holds for any functions of bounded variation u : [0,7] — C and is of interest
in itself.
Now, assume that there exists a constant C' > 0 such that

(2.14)

(i—1)u(7r)+(i+1)u(0)—/Oﬂe“u(t)dt‘ <c\/ ()

for any functions of bounded variation u : [0, 7] — C.
Consider the function u : [0, 7] — R with

oifo<t<m

u(t) :=

lift=m.

Then u is of bounded variation, [ e"u (t)dt = 0, \/ (u) =1 and from (2.14]) we
0

get C' > /2 showing that (2.14) is sharp and therefore (2.11)) is sharp. O

REMARK 3. The case of Riemann integral, namely when u (t) = t,t € [a,b] C
[0,27], is as follows
. <s - t>
sin | ——
2
for any s € [a,b] provided that f : C (0,1) — C satisfies the Hélder’s type condition

.

When w is an integral, then the following weighted integral inequality also holds.

T

< 2"H max
t€la,b]

b
(2.15) |f(eis)bia / £ () dt

REMARK 4. If w : [a,b] C [0,27] — C is Lebesgue integrable on [a,b] and
f:C(0,1) — C satisfies the Hélder’s type condition , then

b b
(2.16) ’f (eis)/ w(t)dt —/ f(e")w(t)dt

rob
sin (S’;t) / w (£)] dt
for any s € [a,b].

In particular, if w(t) > 0 fort € [a,b] and f:w (t)dt > 0 then

sin Si_t
2

< 2"H max
te€(a,b]

T

1

- < 2"H max
[ w(t)dt

b
(2.17) ‘f (eis) _ / f (eit) w (t) dt R

for any s € [a,b].
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THEOREM 4. Assume that f : C(0,1) — C is Lipschitzian with the constant

-
L > 0 on the circle C(0,1). If [a,b] C [0,27] and the function u : [a,b] — C is
Lipschitzian with the constant K > 0 on [a,b], then

(2.18) ‘ £ (@) [w(®) - u(a)] - / £ (") du (t)

_ h— h—
< ALK [sin2 <S 4a> + sin? (45>} SSLKsirP( 4a>

for any s € [a,b].

PrOOF. It is well known that if p : [a,b] — C is a Riemann integrable func-
tion and v : [a,b] — C is M-Lipschitzian, then the Riemann-Stieltjes integral

b p(t) dv (t) exists and the following inequality holds
a g

b b
(2.19) [ r®dow)| <ar [ ipo)a

Utilising the property (2.19)), we have from ([2.3) that

(2.20) ‘f (¢°) [u () — u(a)] / F(e) du(t)

[ 1) =@

b b
<K [ 1f() <1 ()| de < KL [ |e - e

for any s € [a,b].
Since, by 1) {eis — e“| =2 fsin (37_75)} for any t,s € R, then

b
(2.21) /‘eis—e“‘dt
b
s—t
:2 31
/a 51n< 5 )‘dt
[ ;s . b o
=2 /sin(s t>dt+/ sin<ts>dt1
a 2 S 2
[ s—a b—s
= 1— —
2_ cos( 2 )}—1—2[1 cos( 5 ﬂ
:4-sin2 5—a + sin? b—s
| 4 4
b—a
< 8sin?
< 8sin ( 1 )

for any s € [a,b] C [0,27], and the inequality (2.18)) is proved. O

The best inequality we can get from (2.18]) is incorporated in
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COROLLARY 2. With the assumptions in Theorem[J] we have the inequality

< 8L K sin? (b ; a) .

The multiplicative constant 8 cannot be replaced by a smaller quantity.

(2.22) ‘f () wip) - w(@) - | e du

a

PRrROOF. We need to prove only the sharpness of the constant.

If we consider the function f : C — C, f(z) = z, then obviously f is Lip-
schitzian with the constant L = 1. Also, consider in (2.22) a = 0 and b = 27 to
get

(2.23) ‘— [u (27) — u (0)] — /027r e du (t)‘ < 4K.

Utilising the integration by parts formula for the Riemann-Stieltjes integral, we
have

27 27
/ etdu (t) = e'u(t) (Q)W - 7,/ et (t) dt
0 0
2m )
—w(@2r) —u(0) —i / citu (t) dt.
0
which inserted in (2.23)) produces the inequality
2
’—2 [u(27) — u (0)] +i/ e (t) dt‘ <4K
0

which is equivalent with

(2.24)

that holds for any K-Lipschitzian function w : [0, 27r] — C and is of interest in itself.
Now, assume that the inequality (2.24) holds with a constant D > 0, namely

27
(2.25) /0 it (t) dt — % [ (27) — u (0)]’ < DK

for any K-Lipschitzian function u : [0, 27] — C.

Consider u : [0,27] — R, u (t) = [t — «w|. Then, by the continuity property of
the modulus we have that u is Lipschitzian with the constant K = 1.

We also have that

2m 2m
/ ey (t) dt = / et |t — x| dt
0 0

27
:/ |t — 7| (cost + isint)dt
0

2 2m
:/ |t77r|costdt+i/ [t — 7| sin tdt.
0 0
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Observe that, by symmetry reasons, fo% |t — 7| sintdt = 0 and

2m ™
/ |t77r|costdt:2/ (m —1t) costdt
0 0
=2 [(w—t)sinﬂg—&—/ Sintdt] =4
0

and by (2.25) we get D > 4 which proves the desired sharpness of the constant 8
in (222). O

REMARK 5. If u(t) = t,t € [a,b], then we get from and the

following inequalities for the Riemann integral

b
(2.26) f(e®)(b—a)— / f(e")at

— b—s b—a
< .2 fS—0a .2 < . 2
< 4L [Sln (4 )—i—sm (4 )} < 8L sin ( 1 )

for any s € [a,b] and
b—a
< 8Lsin? ,
< sm( 3 >

provided that f : C(0,1) — C is Lipschitzian with the constant L > 0 on the circle
C(0,1).

b

) (b—a)—/ £ (e™)dt

a

(2.27) ‘ f (e

REMARK 6. If w : [a,b] C [0,27] — C is essentially bounded on [a,b] and
f:C(0,1) — C is Lipschitzian with the constant L > 0 on the circle C(0,1), then
we have the following weighted integral inequality

b b
(2.28) ‘f () / w(t)dt — / f(e®)w(t)dt

_ b—
<AL |jwl [Sin2 <T> + sin? ( 1 S)}
b—
< 8Ll sin? (“ %)

for any s € [a,b] where [|wl|, := esssup,ciq ) [w ()]
In particular, we have

(2.29) ‘f(e*) /abw(t)dt—/abf(e“)w(t)dt <8L||woosin2<b;a).

The case of monotonic integrators is as follows:

THEOREM 5. Assume that f : C(0,1) — C is Lipschitzian with the constant
L > 0 on the circle C(0,1). If [a,b] C [0,2n] and the function u : [a,b] — R is
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monotonic nondecreasing on [a,b], then

(2.30) ‘f (e”) [u(b) —u(a)] — / f (e”) du (t)

<2L [sin (b;S> u (b) — sin (‘7“) u(a)}

+L/absgn(s—t)cos(8;t>u(t)dt

for any s € [a,b].
In particular, we have

b

(2.31) |f () [w )~ u(@) - / F(e") dut)

a

b—a

< 2Lsin ( ) [w (b) — u(a)]

b atb _ ¢
+L/ sgn(a;b—t>cos< 22 )u(t)dt.

PrOOF. It is well known that if p : [a,b] — C is a continuous function and
v : [a,b] — R is monotonic nondecreasing on [a,b], then the Riemann-Stieltjes

integral f; p(t) dv (1) exists and the following inequality holds

b b
(232) [ roao| < [ o,
Utilising the property , we have from that
b
(2.33) |f (") [u(b) —u(a)] — / f(e") du(t)

b b
< [l @) -l [ e eanty

for any s € [a,b].
Since, by (2.6), |¢'* — €| = 2|sin (25%)| for any ¢,s € R, then

b
(2.34) / |eis — e”’ du (t)

b
s—t
:2 1
/a sm< 5 )

for any s € [a, D]

N

[0, 27].
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Utilising the integration by parts formula for the Riemann-Stieltjes integral, we

have
[t )me
_ sin(52t>u(t):+;/:cos(52t>u(t)dt
~ _sin (H>u(a)+;/:cos(sgt)u(t)dt
and

\
| =
r/\

(=l
o
o
wn
Y

~

o |

»
N~~~
IS
—
N
S
~

which, by (2.34)), produce the equality

b
(2.35) / e — eit} du (t)
B s—a (a)
sin 2 u( sin 5 )ula
—t b t—s
+ cos( )u /cos( 5 )u(t)dt
- (5 - (152 )
sin u (b) — sin u(a)
2
t
+ / sgn (s —t)cos (2> u (t) dt.
Utilising we deduce the desired result . |

REMARK 7. We remark that if a = 0 and b = 27, then we get from and

that

2
(2.36) 'f (e") [u(2m) — u (0)] — /0 f(e") du (t)‘
< 2Lsin (g) [u (27) — u (0)]
JrL/O%sgn(st)cos <S;t> u (t) dt

for any s € [a,b].
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In particular, we have

(2.37) \f(—l) wizn) —u )] = [ 7 () au <t>]
< V3L [u(27) — u (0)

+ L/O% sgn (x — ) sin (;) w(t) dt.

COROLLARY 3. Assume that f and u are as in Theorem@ then for any [a,b] C
[0, 27] with 0 < b —a < 7 we have the sequence of inequalities

(2.38) ‘f(ew) [u(b)—u(a)]—/ f (") du(t)

<2L {Sm <b;5) u (b) — sin <s 3 a) u(a)}

e

for any s € [a,b].
In particular, we have

(2.39) |f(e“¥’”') [u(b) —u(a)] - / f(e") du(t)

b a+b
b o =t
+L/ sgn(i—t)cos( 22 )u(t)dt

where

GOt

M < 2Lsin(

PROOF. Since 0 < b — a <, then % < 3 for s,t € [a,b].
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Utilising the fact that u is monotonic nondecreasing on [a, b] and cos (%) >0
for s,t € [a,b], then

(2.40) /:cos <52_t>u(t)dt§u(s)/:cos<8;t> dt
= 2u(s) sin (s 3 a)

u(s)/sbcos<52t>dt

. (b—s
= 2u(s)sm< 5 )
ie.,

(2.41) _ /Sb cos <32—t> w(t)dt < —2u(s) sin <b > s) .

Summing (2.40) with (2.41)) we deduce that

/ab sqn (s — ) cos <“°’;t> w(t) dt

_ h—
< 2u(s)sin ) 9y (s)sin i
2 2
giving that

oL [sin (Z’;S) u (b) — sin (S 3 a) u(a)]
+L/:sgn(s—t)cos (S;t> w(t) dt
<2L {sin <b25) [ (b) — u(s)] +sin(

which proves the second inequality in (2.38)).
The bounds for B (s) follows from the elementary property stating that

and

Y]

/Sbcos<s2t>u(t)dt

sS—a

) o) - uta

az + By < max{a, B} (z +y)

where a, 5, z,y > 0. The details are omitted. O

3. A Quadrature Rule
We consider the following partition of the interval [a, b]
AN,:a=20< 21 < ... <Tp_1<Tp=02>=

and the intermediate points §;, € [xg,2k+1] where 0 < k < n — 1. Define hy :=
Tpt1 — 2k, 0 <k <n—1and v(A,) =max{hy : 0 <k <n— 1} the norm of the
partition A,,.
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For the continuous function f : C(0,1) — C and the function u : [a,b] C
[0,27] — C of bounded variation on [a, b], define the quadrature rule

n—1

(3.1) On (fu, D, ) = f (€%5) [u (wh41) — u ()]

k=0

and the remainder R,, (f,u,A,,§) in approximating the Riemann-Stieltjes integral
[P F (€) du () by On (f,u, A, €). Then we have

b
(3.2) / f (eit) du (t) = On (f,u, Ap, &) + Ry (f,u, Ay, E) .

The following result provides a priory bounds for R, (f,u,A,,§) in several in-
stances of f and u as above.

PROPOSITION 1. Assume that f : C(0,1) — C satisfies the following Hélder’s
type condition

[f () = f(w)| < H|z —w|
for any w,z € C(0,1), where H > 0 and r € (0,1] are given.
If [a,b] C [0,27] and the function u : [a,b] — C is of bounded variation on
[a,b], then for any partition A, :a =9 < 1 < ... < Tp_1 < T, = b with the
norm v (A,) <7 we have the error bound

B9 1Bl A
1 T+ A
<2THme [ xk+1—xk)+2§k_ k 2k+1] Y(u)
Th41
< 2THZsm [ (Tht1 —xk)} \/ (u)
Tk
n—1 Th+41 b
SHY (zrp—a) \/ (w) <HV (A (w)
k=0 Tk a

for any intermediate points &, € [xg, xgpr1] where 0 <k <n—1.

PROOF. Since v (A,) < m, then on writing inequality (2.9) on each interval
[z, zr+1] and for any intermediate points &, € [zk, k1] where 0 < k <n — 1, we
have

B |7 e - u@ - [

ety du <t>\

k

) 1 1 Tk + Tht1 o
< 2"H sin” [4 (Thg1 — ) + ) §p — 9 ] \/ ()
) Tpi1 o Th41
< 2"H sin” [2 (Tpy1 — $k)] \/ (u) < H (zpq1 — mk)r \/ (u)
T Tk

where for the last inequality we have used the fact that sinz < x for z € [0, 2]
Summing over k from 0 to n — 1 in (3.4) and utilizing the generalized triangle
inequality, we deduce the first part of (3.3). The second part is obvious. [
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COROLLARY 4. Assume that f,u and A, are as in Theorem [1 Define the
midpoint trapezoid type quadrature rule by

n—1
(3.5) T (o, 80) = >0 F (€750 [u (@) — w (@)

k=0

and the error E,, (f,u,A,) b

b
(3.6) [ FE) du®) =T (0. 80) + B (0, 80).
Then we have the error bounds
(3.7) |En (f,u, Ay
Tk+1
QTHZmn { (Tht1 —ask)} \/ (u)
Tk
n—1 Th41 1 b
< 2THZ v — k)" \/ (u) < o HV (An) \ (w)
Tk a

The case of both integrator and integrand being Lipschitzian is incorporated
in the following result:

PROPOSITION 2. Assume that f : C(0,1) — C is Lipschitzian with the constant
L > 0 on the circle C(0,1). If [a,b] C [0,27] and the function u : [a,b] — C is
Lipschitzian with the constant K > 0 on [a,b], then for any partition A, : a =
To <1 < oo < Ty_1 < xp, = b we have the error bound

(3.8) |Ry (f5 1y A, €]
n—1 f é.
< ALK E k+1 — Sk
< ]; [sm < 1 > + sin ( 1
n—1 z _ n—1
< SLKZSin2 <k+14) < LKZ (g1 — xk)2
k=0 k=0

< SLK (b a)v ()

for any intermediate points &, € [xg, xpr1] where 0 <k <n—1.
In particular, we have

n—1
(3.9) By (fou, )| < 8LK Y sin? (M)

k=0 8

LK (b—a)v(A,).

OO\F--l
0| =

n—1
KZ (zpr1 —21)° <
k=0

The proof follows by Theorem [4] and the details are omitted.

PROPOSITION 3. Assume that f : C(0,1) — C is Lipschitzian with the constant
L > 0 on the circle C(0,1). If [a,b] C [0,2n] and the function u : [a,b] — R is
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monotonic nondecreasing on [a,b], then for any partition A, :a=xz¢ < z1 < ..
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Tp—1 < Tp = b with the norm v (A,,) < m we have the error bound

(3.10)

| R, (f,u An, &)l

<2L Z {sm < uam 5’“) u (zp11) — sin (g’“ ; xk) u (xk)]

+LZ/
<2L Z [sm ( A 5'“) [w(@rs1) = uw ()]

+ sin (@ﬂ;) (€0 - (o]

Th+1

sgn (&, —t) cos (gk; t) w(t)dt

n—1
< ngsm B (Tpe1 — k) + % ¢ — % } [u(zrg1) — ()]
n—1 ) 1
<2L Z sin {2 (Tgt1 — xk)} [u (1) — u ()]
k=0
<SLY (w1 — ) [u (@) — u ()] < v (An) Lu(b) - u(a))
k=0

for any intermediate points &, € [Tk, Tp4+1] where 0 <k <n — 1.
In particular, we have

(3.11)

|En (f,u, Ag)

n—1

<2L Z sin ( Rl xk) [u (1) — u ()]

Th41 Tip+Tp41 —t
+LZ/ (W—t)cos(%)u(t)dt

n—1

<2L Z sin <$k+14xk> [u (1) — u ()]
k=0
n—1

< =) > (g1 — ) [ (Trg) — u (k)]
k=0

=N

< SLv(An) [u(6) — u(a)].

The proof follows by Corollary [3| and the details are omitted.

4. Applications for Functions of Unitary Operators

. <

We recall that the bounded linear operator U on the Hilbert space H is unitary
iff U* =U"%
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It is well known that (see for instance [16l p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {E)} Ae[0,27]> called the spectral
family of U with the following properties

a) Ex <E, for 0 <X <p<2m

b) Ey =0 and Ea, = 1y (the identity operator on H);

C) EA+0:E)\ for0§)\<27r;

d) U= fozw e'*dE) where the integral is of Riemann-Stieltjes type.

Moreover, if {Fy} A€[0,27] 1S @ family of projections satisfying the requirements
a)-d) above for the operator U, then F = E) for all A € [0, 27].

Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle, we have

(4.1) Fw= [ 1) aps

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(4.2) fO)z= /0 ' f (eM) dE\x,
(4.3) V) z.y) = / " () d (B, )
and

(4.4) I )l = / 1 (™)) dl| Exal?

for any z,y € H.
We consider the following partition of the interval [a, b]

Ap:0=X < AN <..< 1<\, =27
and the intermediate points &, € [Ag, Ag+1] where 0 < k < n — 1. Define hy :=
M1 — M, 0 <k <nm—1and v(A,) =max{hg : 0 <k <n— 1} the norm of the
partition A,,.
If U is a unitary operator on the Hilbert space H and {EA}A€[07QW], the spectral
family of U, then we can introduce the following sums

n—1
(4.5) On (.U, An & 2,y) = > f (%) ((Brgy, — Bay) 2,)
k=0
and
! Aer1tAg
(4.6) T (£,U Awiwy) = D f (775 ) (B, = Bx) 2,)
k=0

where z,y € H.

THEOREM 6. With the above assumptions for U, {Ex} (g a7 » An withv (Ay) <
7w and if f: C(0,1) — C satisfies the Hélder’s type condition |f (z) — f (w)] <
H |z —w|" for any w,z € C(0,1), where H > 0 and r € (0,1] are given, then we
have the representation



18 S.S. DRAGOMIR™?
with the error Ry, (f,U, Ay, & x,y) satisfying the bounds

(4'8) ‘Rn (fa UvAn7£§$7y)|

n—1 Ak+1
. N 1 Ak + A
<2 HkZ:OSIH {4 Ak = M) + 5 (&, — % } }{ (Eyz,v))
n—1 1 Ak+1
<oy [ 0w = 20|V (Boe)
k=0 Ak
n—1 Ak+1 27
<SHY (=) (Bozy) < H (80) \/ (B, y))
k=0 Ak 0

< Hv" (An) [z [yl

for any x,y € H and the intermediate points &;, € [Ag, Aiy1] where 0 <k <mn — 1.
In particular we have

(49) <f (U) m,y} =T, (fa U, An; x,y) +E, (fa U, An;xay)

with the error

(4.10) |En (f,U, A, y)
n—1 1 Akt1
<2'H Zsmr [4 (Akg1 — )\k):| \/ (B2, y))
k=0 Ak
1 n—1 Ak41
< LS =20V (o)
k=0 Ak
1 ¥ 1
< L @)V (Boms) < =80 (A0 el o]
0

for any x,y € H.

PrOOF. For given z,y € H, define the function u (\) := (Exz,y), A € [0,27].
We will show that u is of bounded variation and

(4.11) V () =\ (Eoyz,y)) < =] lyll -

It is well known that, if P is a nonnegative selfadjoint operator on H, i.e., (Px,z) >
0 for any = € H, then the following inequality is a generalization of the Schwarz
inequality in H

(4.12) [(Pz,y)|> < (Pz,z) (Py,y),

for any z,y € H.
Now, ifd: 0=ty < t; < ... < tp—1 < t, = 27 is an arbitrary partition of
the interval [0, 27 , then we have by Schwarz’s inequality for nonnegative operators
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that
413)  \ (Eyey))
0

= sgp {nzol |<(Et7:+1 - Eti) m,y>|}
< sup {nz_: [<(Etz'+1 - Eti) s x>1/2 <(Et¢+1 - Eti) y7y>1/2:| } =1

d i=o

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

n—1 1/2 n—1 1/2
(4.14) I< sup lz ((By,,y — E) :E7:c>] l {(By., — Ev,) y,y>1

=0

n—1 1/2 rpq 1/2
<ol [ (B 2n)] S (@ - B )]
27 1/2 ron 1/2
- \0/<<E<->x’w>>] \O/<<E<.>y,y>>] el ol

for any z,y € H.

On making use of (4.13)) and (4.14)) we deduce the desired result (4.11)).

Now, applying Proposition [1|to the spectral representation (4.3)) we deduce the
desired result (4.7) with the error bound (4.8). The details are omitted. O

REMARK 8. In the case when the partition reduces to the whole interval [0, 27] ,
then utilizing the inequality we deduce the bound

2m
(4.15) |1 (€2) (w.y) = (F )z, )| <27HN\/ ((Boyz,y)) < 27H || |1y
0

for any s € [0,27] and any vectors x,y € H.
In the case when the division is

AQZOZ/\0<>\1:7T</\2=27T

and we take the intermediate points u € [0,7] and v € [m, 27|, then we get from
Theorem [d that

(4.16) | () (Exa,y) + f (") (L — Ex) z,y) — (f (U) ,y)]

<ot [Jro - 3] ¥ @@oma)
0

} V (<E<~)fﬂ7y>)]

™

e [ 37
Sin 471' 2U 5

for any vectors x,y € H.



20 S.S. DRAGOMIR "2

The best inequality we can get from is obtained for u =5 and v = 37”,
namely

(4.17) |f (i) (Er,y) + f (=) (le — Ex) z,y) = (f (U) 2,9)]|

27
<251\ ((Eqyoy)) < 28 H ol o]
0

for any vectors x,y € H.

If U is a unitary operator on the Hilbert space H and {EA}Ae[o 2] the spectral

family of U, then we can introduce the following sums depending only of one vector
rxeH

n—1

(4.18) On (f,U, Ay, & 1) = Z f (e’f’“) ((Expsr — Bxy) z,2)

k=0
and

A1tk .

V{(Brs — Br) w.3).

n—1
(419) T (fUAwzy) = f (e
k=0

THEOREM 7. With the above assumptions for U, {E/\})\E[O,27r] A withv (Ay) <
7w and, if f : C(0,1) — C is Lipschitzian with the constant L > 0 on the circle
C(0,1), then we have the representation

(4.20) (f () z,x) = O (f,U, A, &) + Ry, (f, U, A, € )
with the error R, (f,U, Ay, & x) satisfying the bounds

(4.21) ‘Rn(f,U,An,g;x)‘

< 2L Z [sm ( UAR 5’“) (B, @) —sin <§’€ ; A’“) <E>\kx,x)}
+LZ/: sgn(gkt)cos<5k2t) (Eyz, ) dt

+sin (“;’“) ((Be, ~ Ba) .0)]

<2L Zbln [ (Me+1 — ) +

< QLZsln[ (Meg1 — )\k)} {((Expys — Bxy) o)

n—1

< LY ki = M) ((Bagyr — Bxy) w,7) <v(A,) L
k=0

for any © € H and the intermediate points &;, € [Ag, Ak+1] where 0 < k <n — 1.
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In particular we have

(4.22) (f U)z,2) = T (f.U, An; @) + By (f,U, Ay @)

with the error

(4.23) ‘En (f.U, A w)‘

A
<2LZSIH< Rl = k) <(E,\kJrl —E,\k)x,x>
_ = AktAk41
k1 A+ A —t
+L Z/ sgn <k+2k+1 = t) cos <22> (Byx,x) dt

n—1

< 2L251n< i /\k) <(E)\k+1 - E)\k) J;,x>

n—1

S a ()\k+1 _)\k‘)<(E)\)€+1 —E)\k)x,l'>
k=0

SLv(A) ||z

| —

IN
M| =

for any x € H.

The proof follows by Proposition [3| applied for the monotonic nondecreasing
function w (t) := (Eyx,z) ,t € [0, 27] .

REMARK 9. We remark that if the partition reduces to the whole interval [0, 27]
then we get from that

(21) [ ()l - (F @) 2.))
< 2Ls1n( ) lz* + L/27r sgn (s —t) cos <S2_t> (B, x)dt

for any s € [a,b] and x € H.
In particular, we have

(4.25) £ (D 2l - ( ©) )|
< V2L || + L/OQW sgn (m — t) sin (;) (B, x) dt

for any x € H.
EXAMPLE 1. In order to provide some simple examples for the inequalities
above we choose two complex functions as follows.

a) Consider the power function f : C\{0} — C, f(z) = 2™ where m is a
nonzero integer. Then, obviously, for any z,w belonging to the unit circle
C (0,1) we have the inequality

1f (2) = f(w)] < [m| [z — w]
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(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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which shows that f is Lipschitzian with the constant L = |m| on the circle
C(0,1). Then from , we get for any unitary operator U that

27

\eims (z,y) — (Umx,y>| <2|m| \/ (<E(.)x,y>) < 2|m| ||z ||yl
0

for any s € [0,27] and z,y € H.
Also, from and the intermediate points u € [0,7] and v €
[, 27], we have for any unitary operator U

"™ (Erx,y) + ™ (1 — Ex) m,y) — (U2, y)|

< 2|m| [Sin BW + % u- ;TH \;r/ ((Eyz.y))

} i} (<E<->$7y>)]

™

1

. [1 37
+sin |—-m7m+ —

v - —

4 2 2

for any vectors x,y € H, where {E,\})\G[O’27r 1s the spectral family of U.
The best inequality we can get from is obtained for v = 5 and
3

=, namely

i (Erz,y) + (=) (1g — Ex) x,y) — (U, y)]

< V2|ml\/ ((Eyz,y)) < V2|m| |z |yl
0

v =

for any vectors x,y € H.
For a # +1,0 consider the function f : C(0,1) — C, fo(2) = 2.
Observe that

laf [z — w|

[fa (2) = fa ()| =

|1 —az||1 — aw]

for any z,w € C(0,1).
If z = €™ with t € [0,27], then we have

I1—azl> = 1-2aRe(2)+a?|2]> =1—2acost + a”
> 1-2Jal+d® = (1—]a|)?
therefore
1 1 1 1
< and <
[1—az[ ~ [1—lal| 1 —aw| = [1 —al

for any z,w € C(0,1).
Utilising and we deduce
lal
[fa (2) = fa (W)| £ ———= |z — v
(1—al)?
for any z,w € C(0,1), showing that the function f, is Lipschitzian with

the constant L, = (1_“‘1‘)2 on the circle C (0,1) .
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Applying the inequality , we get for any unitary operator U that

(4.32) ‘(1 - aeis)_l (x,y) — <(1H —aU)! x,y>‘
2o b2
T \/ < o I vl

for any s € [0,27] and z,y € H.
Also, from and the intermediate points u € [0,7] and v €
[m,27], we have for any unitary operator U

(4.33) ‘(1 - aei“)_1 (Exz,y) + (1 - ae“’)_1 ((1g — Ex)x,y)

—<(1H —aU)flx,y>’

< 2l [ 3= 3]V B

AT Ty

] i} (Eyz,y))

for any vectors x,y € H, where {E)\})\E[O,%r 1s the spectral family of U.
(i)

. [1 1‘ 3T
+ sin |-7 + -

Zhe best inequality we can get from ( is obtained for v =% and
s

v = =r, namely

(4.34) ((1 — i) N Erz,y) + (1 + i) (g — Ex) 2, y) — <(1H —aU)™t $y>‘

V2la|

_V2la|
\/ (1 —lal)

T (1~ a))?

) < —— = lelllyl

for any vectors x,y € H.

The interested reader may apply the above results for other divisions of the
interval [0, 27], for instance

A4:0:A0<A1:%<A2:w<A3:3§<A4:2w.

However, the details are omitted.
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