Received 30/09/13

BOUNDS FOR A CEBYSEV TYPE FUNCTIONAL IN TERMS OF
RIEMANN-STIELTJES INTEGRAL

S. S. DRAGOMIR!:2

ABSTRACT. Upper and lower bounds for a Cebysev type functional in terms of
Riemann-Stieltjes integral are given. Applications for functions of selfadjoint
operators in Hilbert spaces are also provided.

1. INTRODUCTION

In [16], the authors have considered the following functional:

b b
1) D)= [ f@du@) - O -u@] s [ @

provided that the Riemann-Stieltjes integral f(f f () du(x) and the Riemann inte-

gral f; f(t) dt exist.
In [16], the following result in estimating the above functional has been obtained:

Theorem 1. Let f,u: [a,b] — R be such that u is Lipschitzian on [a,b], i.e.,
(1.2) lu(@) —u(y)| < Llz—y| forany z,y€la,b] (L>0)

and f is Riemann integrable on [a,b] .
If m, M € R are such that

(1.3) m< f(x) <M forany z € [a,b],
then we have the inequality
1
(1.49) D (f5)| < 5L (M = m) (b~ ).
The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
In [15], the following result complementing the above has been obtained:

Theorem 2. Let f,u : [a,b] — R be such that u is of bounded variation on [a,b]
and f is Lipschitzian with the constant K > 0. Then we have

b
1
(1.5) 1D (f;u)] < §K(b—a)\/(u)-
The constant % s sharp in the above sense.
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For a function u : [a,b] — R, define the associated functions ®,T" and A by:

(16)  ®(1) = (t_a)“(bgfib_t)“(“) —u(), telab:

I@)=0C—-a)fu®)—u®)] - (b-1)ul)-u(@)], telab]

. (b)) —u(t) u(t)—u(a)
u(b) —u(t u(t) —u(a
A(t) = — t b).
®) b—t t—a € (a,0)
n [9], the following subsequent bounds for the functional D (f;u) have been pointed
out:

Theorem 3. Let f,u: [a,b] — R.
(i) If f is of bounded variation and u is continuous on [a,b], then

up 191/ (7

t€la,b)

(1.7) D (f;u) < { =5 sup IF(t>|\/Z (f)

t€la,b]

(ii) If f is L—Lipschitzian and u is Riemann integrable on [a,b], then
Lf |D ()] dt,

(1.8) ID(fiw)] < 5L [7I0 (8] dt,

ﬁff (t—a) (b— ) |A(t)] dt.

(iii) If f is monotonic nondecreasing on [ ,b] and u is continuous on [a,b] , then

f | (t)| df (t
(1.9) ID(fiuw) < 2L [P0 )] df (1)
ﬁumwmw—MAwww.

The case of monotonic integrators is incorporated in the following two theorems
[9):

Theorem 4. Let f,u: [a,b] — R be such that f is L— Lipschitzian on [a,b] and u
is monotonic nondecreasing on [a,b], then

(1.10) 1D (Fu)] < 3L (b~ a)[u(b)  u(a) ~ K (u)]
< 3L0-a) ) - u (@],
where

(1.11) K (u) ;_(bfa)z/abu(x) <xa;rb>dx20.
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The constant % in both inequalities is sharp.

Theorem 5. Let f,u : [a,b] — R be such that u is monotonic nondecreasing on

[a,b], f is of bounded variation on [a,b] and the Stieltjes integral f;f(x) du ()
exists. Then

b
(1.12) 1D (f;w)] < [u(b) —ula) = Q)] \/ (/)

where

(1.13) Q(u) = 5o | sen

The first inequality in (1.12) is sharp.
In the case of convex integrators, the following result may be stated [11]:

Theorem 6. Let u : [a,b] — R be a convex function on [a,b] and f : [a,b] = R a
monotonic nondecreasing function on [a,b]. Then

(1.14) 0<D(f;u)

SQ.W/; (t_a;b>f(t)dt

L[ (b) — o ()] max {|f (a)|.|f (B)]} (b~ a):

i [ () - ol @) 11, - o)
if p>1, 5+

IN

1 _ 1.
=5

[u” (b) = w)y ()] [I£1ly -
The following result may be stated as [11]:
Theorem 7. Let u : [a,b] — R be a continuous convex function on [a,b] and
f:a,b] = R a function of bounded variation on [a,b]. Then
b

[u” (b) = ()] (b—a) \/ (/).

a

(1.15) 1D (f;u)l <

1 =

b
where \/ (f) denotes the total variation of f on [a,b].

For other related results for the functional D (-;-), see [1]-[5], [7]-[14] and [18].

In this paper some new lower and upper bounds for D (+;-) are provided. Ap-
plications for functions of selfadjoint operators on complex Hilbert spaces are also
given.

2. SOME NEwW BOUNDS
The following lemma may be stated:

Lemma 1. Let g : [a,b] — R and I, L € R with L > I. The following statements
are equivalent:
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(i) The function g— 5L -0, where €(t) = t, t € [a,b] is & (L — 1) —Lipschitzian;
(ii) We have the inequalities

9(t) —g(s)

. <
(2.1) 1<t

< L foreach t,s € [a,b] with t+#s;

(iii) We have the inequalities
(22) I(t—s)<g(t)—g(s)<L(t—s) foreach t,s€ [a,b] with t>s.
Following [18], we can introduce the definition of (I, L)-Lipschitzian functions:

Definition 1. The function g : [a,b] — R which satisfies one of the equivalent
conditions (i) — (iii) from Lemma 1 is said to be (I, L)-Lipschitzian on [a,b].

If L >0 and | = —L, then (—L, L) — Lipschitzian means L-Lipschitzian in the
classical sense.

Utilising Lagrange’s mean value theorem, we can state the following result that
provides examples of (I, L)-Lipschitzian functions.

Proposition 1. Let g : [a,b] — R be continuous on [a,b] and differentiable on
(a,b). If —00 < I = infie(ap) g’ (t) and sup,e(qp) g’ (t) = L < oo, then g is (I, L)-
Lipschitzian on [a,b].

We have the following result:

Theorem 8. Let u : [a,b] — R be a convex function on [a,b] and f : [a,b] > R a
(I, L)-Lipschitzian function on [a,b]. Then

u(a) +u(b)

(2.3) 1 < D(f;u)

u(a);u(b)(b—a)—/abu(t)dt].

b
(b—a)—/ u (t) dt

<L

The inequalities in (2.3) are sharp.

Proof. Consider the auxiliary function fr : [a,b] — R, fr, = L{ — f, where £ is
the identity function £(t) = t, ¢ € [a,b]. Since f : [a,b] — R a (I, L)-Lipschitzian
function on [a, b] then f (t) — f (s) < L (t — s) for each ¢, s € [a,b] with ¢ > s which
shows that fr, is monotonic nondecreasing on [a, b] .

Utilizing the first inequality in (1.14) we have

0<D(LlL— f,u)=LD(¢,u) — D (f,u)
showing that
(2.4) D (f,u) < LD (4,u).

A similar argument applied for the auxiliary function f; : [a,0] = R, fr = f —l{
produces the reverse inequality

(2.5) ID (¢,u) < D (f,u).
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On the other hand, integrating by parts in the Riemann-Stieltjes integral we
have
b

b
D(lu) = /tdu(t)fbia[u(b)fu(a)]/ tdt

a

b a
_ bu(b)—au(a)—/u(t)dt— ;b[u(b)—u(a)]

- W(b—a)—/abu(t)dt,

which together with (2.4) and (2.5) produce the desired result (2.3).
If we take fy (t) =t, and € € (0,1) then for each ¢,s € [a,b] with ¢ > s we have

(I—e)(t=s)<fo(t)=fo(s) =t —s<(L+e)(t—s)

which shows that f is a (1 — ¢, 1 + €)-Lipschitzian function on [a, b].
Assume that there exists A, B > 0 such that

(2.6) IABD (£,u) < D (f,u) < LBD (¢,u)

for w : [a,b] — R a convex function on [a,b] and f : [a,b] — R a (I, L)-Lipschitzian
function on [a, b].
If we write the inequality (2.6) for fy and w strictly convex, we get

(1—e)AD (4,u) < D l,u) < (1+4¢€)BD (4,u)
and dividing by D (¢,u) > 0 we get
(2.7) (1-e)A<1<(1+¢)B.

Letting ¢ — 0+ in (2.7) we get A < 1 < B, which proves the sharpness of the
inequality (2.3). O

Remark 1. The double inequality in (2.3) is equivalent with

(2.8) ‘D(f;u)—“;L (“(“);“(b) (b—a)—/ u(t)dt)‘
b
<L) W(b—a)—/u u(t)dt].

The constant % is best possible.

Corollary 1. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) .
If —oo <l = infie(ap) f'(t) and sup,e(op) f' (1) = L < oo. If u: [a,b] — R is a
convez function on [a,b], then the inequality (2.8) holds true.
1 oo = supteap | ()] < 00, then
u(a) +u(b) ’
(2.9) 1D (fs)l < 11l [2 (b—a)— [ u(t)di].

The inequality is sharp.
The proof follows from (2.8) by taking L = || f'||, and | = — || f'[| . -
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For two Lebesgue integrable functions f and g we can define the Cebysev func-
tional:

b b ,
bia/a f(t)g(t)dt—ﬁ/a f(t)dt.ﬁ/a g (t)dt.

Corollary 2. Let w : [a,b] — R be a monotonic nondecreasing function on [a,b]
and f :[a,b] = R a (I, L)-Lipschitzian function on [a,b]. Then

(2.10) bia/b <ta;rb>w(t)dt§0(f,w)§ bfa/ab (ta;b)w(t)dt.

The inequalities in (2.10) are sharp.

C(f’g) =

Proof. Choose u (t) := fatw(s) ds, t € [a,b]. Since w : [a,b] — R is a monotonic
nondecreasing function on [a,d], then u is convex on [a, ] .
We also have

(2.11) M(b—a) —/ w(t) dt

I
N | =
—
>~
|
=)
=
s\

o
g
—
o
S~—
QL
&
I
| — |
~
T~
2
g
—
Y
N
QL
5

[ (55

Writing the inequalities (2.3) for these functions we deduce the desired result
(2.10). O

Remark 2. The inequalities (2.10) are equivalent with

b
c(f,w)—HTLbia/ (t—a;b>w(t)dt

g;(L—Z)bia/ab(t—a;rb>w(t)dt.

The constant % 18 best possible.
If 1 lloo = SUPse(anp) I (#)] < 00, then

b a
(2.13) CGal <l leyt [ (1= 50w a

(2.12)

The inequality is sharp.

Definition 2. For two constants §, A with § < A, we say that the function g :
[a,b] — R is (8, A)-convex (see also [6] for more general concepts) if g — £6¢% and
LAL? — g are convex functions on [a,b] .

It is easy to see that, if ¢ is twice differentiable on (a,b) and the second derivative
satisfies the condition

§ < g"(t) <A for any t € (a,b),

then g is (0, A)-convex.
The following result also holds:
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Theorem 9. Let f : [a,b] — R be a monotonic nondecreasing function on [a,b]
and for 0, A with § < A, a (§,A)-convex function u : [a,b] — R. Then we have the
double inequality

(2.14) 5/: (t—a;b)f(t)dth(f;u)gA/ab (t—a;b>f(t)dt.

The inequalities are sharp.

Proof. Since the function f is monotonic nondecreasing and u — %(562 is convex,
then from the first inequality in (1.14) we have

D(f;ué(?ﬁ) >0

50D (1:2) < D(fsu).

which is equivalent with

From the convexity of $A¢? — g we also have

D(f;u) < %AD (f;0%).

D(f;ez)—/bf@)dmt) EOZLW [
—2/f b+a/f £) dt
:2/11 (t—a;b)f(t)dt.

If we take ug (t) := £t?, and € € (0,1), then for § =1 —¢ and A =1+ ¢ we have
that ug is (1 — e, 1 + €)-convex on [a, b] .
Assume that there exists the constants P, Q > 0 such that

(2.15) 6P/ (t—a+b)f()dt<D(f, <AQ/< a+b>f(t)dt,

for f : [a,b] — R a monotonic nondecreasing function on [a,b] and (J, A)-convex
function w : [a,b] — R.

Since ,
D(f;uo):/ (t— a;b)f(t)dt

then by replacing up,d =1 —¢ and A =1+ ¢ in (2.15) we get

(2.16) (1—5)P/ab <t—a;rb>f(t)dt§/ab (t—a;b>f(t)d

<(1+5)Q/ab (t—a;b>f(t)dt7

which by division with f;) (t — ”"QH’) f (t)dt that is positive for many functions f
(for instance f (t) =t — “E2), we obtain

1-¢gP<1<(14+¢)Q.

However
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Letting ¢ — 04 we deduce P < 1 < @, and the sharpness of the inequalities are
proved. ([l

Remark 3. Integrating by parts in the Riemann-Stieltjes integral we have

(217) D (f:w)
b
=ﬂ®M®—ﬂ@M@—/u@Mﬂﬂ

vl /bf(t>dt
:u(b)< /f dt>+u (b_ /f £ di — ))
—/abu(t)df(t).

The inequality (2.3) is then equivalent with

(2.18) z[“(“”“(b)(b—a)—/b (t) di

2
gu(b)< ——/f dt>+u (b_ /f b di — ))
b
- [uwar
<1 u(a);u(b)(b—a)—/abu(t)dt].

while (2.14) is equivalent with

(2.19) 6/ab<ta;b)f(t)dt
gu@( o [ r0a) e (31 [rwa- )

<A/( “*b) () dt.

3. APPLICATIONS FOR SELFADJOINT OPERATORS
Let A € B(H) be selfadjoint and let ¢, defined for all A € R as follows

{ 1, for —oo < s <A,

P (8) =
0, for A < s < 4o00.

Then for every A € R the operator
(3.1) B\ =, (A)
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is a projection which reduces A.

The properties of these projections are summed up in the following fundamental
result concerning the spectral decomposition of bounded selfadjoint operators in
Hilbert spaces, see for instance [17, p. 256]

Theorem 10 (Spectral Representation Theorem). Let A be a bonded selfadjoint
operator on the Hilbert space H and let m = min{\|X € Sp(A)} =: min Sp (A) and
M =max{A |\ € Sp(A)} =: max Sp(A). Then there exists a family of projections
{Ex} e, called the spectral family of A, with the following properties

a) Ex < Eyx for A <\

b) E,_o0=0,Ey =1y and E>\+0 =F), fOT all A € R;

c) We have the representation

M
(3.2) A:/ AE,.

n—0
More generally, for every continuous complex-valued function ¢ defined on R
and for every e > 0 there exists a § > 0 such that

(33) @ (A) - Z ® ()\;e) [EAk - E/\k—l} <e
k=1
whenever
<m=MM<..<A_1<A, =M,
(3.4) A — A1 <6 for1 <k <mn,

N € [Me—1, M) for1<k<n
this means that
M
(35) e = [ e(yap,

where the integral is of Riemann-Stieltjes type.

Corollary 3. With the assumptions of Theorem 10 for A, Ex and ¢ we have the
representations

M

(3.6) p(A)z = / (N dE\x for allz € H

m—0
and

M

(3.7) (p(A)x,y) = / B e (AN d(Exz,y ) forallz,y € H.
In particular,

M
(3.8) (p(A)z,x) = / . e\ d(Exz,x ) forallz e H.

Moreover, we have the equality

M
(3:9) el = [ loWFdIBal® for il € I
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Utilising the Spectral Representation Theorem we can prove the following in-
equalities for functions of selfadjoint operators:

Theorem 11. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min{A |\ € Sp(4)} =: minSp(A) and M = max{A|\ € Sp(A)}
=: max Sp (A) . Assume that the function f : I — R is differentiable on the inte-
rior of I denoted I and [m, M] C I. If the derivative f' is (0, A)-Lipschitzian with
0 < A, then

1
M—m
A(MleA)(AfmlH)

N =

IN

[f (M) (A—mlp)+ f(m)(Mlg — Al = f(A)

<

DO =

in the operator order of B(H).

Proof. Let {Ex},cp the spectral family of A and z € H. Utilising the inequal-
ity (2.10) for the (d, A)-Lipschitzian function f’ and the monotonic nondecreasing
function w (t) = (Eyx, ), t € [m — €, M] for a small positive €, we have

4] M m—e+ M

M
! / ' (t) By, 7) dt

< - -
T M-m+4e )
1 M 1 M
/!
- - —_ E
M—m—i—&/m,af (t)dt M—m-i-E/m,E< v, x) dt

A M a+b
< — — .
_M_m+€[ne<t 5 >w(t)dt

Letting ¢ — 0+ in (3.11) we get

(3.12) 5/M (tm;M> (Byz, o) dt

m—0

/f (Byx, z) dt — Ml /Mf'(t)dt./M (Byx,z) dt

<A/ < a+b>w(t)dt_m B B

for any =z € H.
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Utilising the integration by parts formula for the Riemann-Stieltjes integral, we
have

(3.13) /mMO (t _m 7; M) (Byw, o) dt

_ ;/::(Etm,@d((t— m‘;M)Q

oM
m+ M
)

[ () [ e
/m]‘: KMQ m>2_ (t_ m-;—M)Q
1
2

(Eyz, ) (t -

for any z € H.
We also have

M M
gr) [ @@= o Eall, - [ FOd(E)

and, similarly

(3.15) / N B a) di = (M1 — A)a.a)

m—0
for any z € H.
Utilising (3.14) and (3.15) we have

M

(3.16) Of () - /n% (Byx,x) dt
(1 >1H f( )1 ) - “‘fw S )<(M1H A),z)
<[ E(M)—f( LIRS P
<[f ) (M1 — A )+ f (M) (A — mlH)f(A)}z,z>

for any z € H.
From (3.12) we deduce the desired result (3.10). O
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From Theorem 6, we have for h : [a,b] — R a convex function on [a,b] and
g : [a,b] — R a monotonic nondecreasing function on [a, b],

(3.17) 0<D(g;h)

gz.W/: (t—a;—b>g(t)dt.

Since, by (2.17) we have

(3.18) 0<D(g;h)

b b
= h(b) <g<b>—b_1a/ g(t)dt)+h<a> (bia/ g(t)dt—gw)

b b 2

_/a <t—a;b> dg(t)]
=§[[gw)—g(a)](b;”)Q—[lb(t—aéFb)ng@]
S
:2/ab(b—t)(t—a)dg(t),

then by (3.17) we have

N—
[\&]

b b
(3.20) o<h(b)<g(b)—b1a g(t)dt>+h(a)(b1a/g(t)dt—g(a))

- [nwar

gh(b;j”*“/ (b— 1) (t — a)dg ()

We can state the following result as well:

Theorem 12. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min{A |\ € Sp(4)} =: minSp(A) and M = max{A|A € Sp(A)}
=: max Sp (A). Assume that the function f : I — R is convex on the interior of I
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denoted I and [m,M] C I. Then

L [F (M) (A~ i) +  (m) (M1~ A] - £ (4)

L) — ()
- M—m

The proof follows by (3.20) by choosing h = f and g = (Ex,z), t € R, where
{Ex} g 1s the spectral family of A.

Consider the exponential function f : R — R, and let A be a bonded self-
adjoint operator on the Hilbert space H and let m = min{A|A € Sp(A)} and
M =max{\|\ € Sp(A)}. Then by (3.10) we have

. <
(3.21) 0< -

(MlH—A) (A—mlH)

(3.22) exp(m)(M1lg — A)(A—mly)

N |

IN

[exp (M) (A —mly)+exp(m)(Mlyg — Al —exp (A)

m

M —
%exp M)(Mlg —A)(A—mly).

IN

Consider the function f : [m, M]— R, f(t) = —Int and [m, M] C (0,00) . Then by
(3.10) we have

(3.23) 2]\142 (Mg — A) (A—mly)
<In(A) - 7 —m In(M)(A—mlg)+In(m)(Mlyg — 4]
< Q]-W(M]-H_A)(A_mlH)

If we take the power function f : [m, M]— R, f (¢t) = t*,p > 2 and [m, M] C [0, 00)
then by (3.10) we have

(3.24) 3P (p—1)mP=2 (M1y — A) (A —mlg)
< Mim [MP (A —mly)+mP(Mly — A] — AP
< %p (p— 1) MP2 (M1 — A)(A—mly).

Consider the convex function f : R =R, f(t) = ’t — w, . Utilizing the in-
equality (3.21) we have

Mf
(3.25) 0< 2’”—

‘Am;M'g 2 (Mg —A)(A—miy).

M—m
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