
BOUNDS FOR A µCEBY�EV TYPE FUNCTIONAL IN TERMS OF
RIEMANN-STIELTJES INTEGRAL

S. S. DRAGOMIR1;2

Abstract. Upper and lower bounds for a µCeby�ev type functional in terms of
Riemann-Stieltjes integral are given. Applications for functions of selfadjoint
operators in Hilbert spaces are also provided.

1. Introduction

In [16], the authors have considered the following functional:

(1.1) D (f ;u) :=

Z b

a

f (x) du (x)� [u (b)� u (a)] � 1

b� a

Z b

a

f (t) dt;

provided that the Riemann-Stieltjes integral
R b
a
f (x) du (x) and the Riemann inte-

gral
R b
a
f (t) dt exist.

In [16], the following result in estimating the above functional has been obtained:

Theorem 1. Let f; u : [a; b]! R be such that u is Lipschitzian on [a; b] ; i.e.,

(1.2) ju (x)� u (y)j � L jx� yj for any x; y 2 [a; b] (L > 0)

and f is Riemann integrable on [a; b] :
If m;M 2 R are such that

(1.3) m � f (x) �M for any x 2 [a; b] ;

then we have the inequality

(1.4) jD (f ;u)j � 1

2
L (M �m) (b� a) :

The constant 12 is sharp in the sense that it cannot be replaced by a smaller quantity.

In [15], the following result complementing the above has been obtained:

Theorem 2. Let f; u : [a; b] ! R be such that u is of bounded variation on [a; b]
and f is Lipschitzian with the constant K > 0: Then we have

(1.5) jD (f ;u)j � 1

2
K (b� a)

b_
a

(u) :

The constant 12 is sharp in the above sense.
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For a function u : [a; b]! R; de�ne the associated functions �;� and � by:

� (t) :=
(t� a)u (b) + (b� t)u (a)

b� a � u (t) ; t 2 [a; b] ;(1.6)

� (t) := (t� a) [u (b)� u (t)]� (b� t) [u (t)� u (a)] ; t 2 [a; b]
and

�(t) :=
u (b)� u (t)

b� t � u (t)� u (a)
t� a ; t 2 (a; b) :

In [9], the following subsequent bounds for the functionalD (f ;u) have been pointed
out:

Theorem 3. Let f; u : [a; b]! R.
(i) If f is of bounded variation and u is continuous on [a; b] ; then

(1.7) jD (f ;u)j �

8>>>>>>>>>><>>>>>>>>>>:

sup
t2[a;b]

j� (t)j
_b

a
(f) ;

1
b�a sup

t2[a;b]
j� (t)j

_b

a
(f) ;

1
b�a sup

t2(a;b)
[(t� a) (b� t) j�(t)j]

_b

a
(f) :

(ii) If f is L�Lipschitzian and u is Riemann integrable on [a; b] ; then

(1.8) jD (f ;u)j �

8>>>>><>>>>>:

L
R b
a
j� (t)j dt;

L
b�a

R b
a
j� (t)j dt;

L
b�a

R b
a
(t� a) (b� t) j�(t)j dt:

(iii) If f is monotonic nondecreasing on [a; b] and u is continuous on [a; b] ; then

(1.9) jD (f ;u)j �

8>>>>><>>>>>:

R b
a
j� (t)j df (t) ;

1
b�a

R b
a
j� (t)j df (t) ;

1
b�a

R b
a
(t� a) (b� t) j�(t)j df (t) :

The case of monotonic integrators is incorporated in the following two theorems
[9]:

Theorem 4. Let f; u : [a; b]! R be such that f is L�Lipschitzian on [a; b] and u
is monotonic nondecreasing on [a; b] ; then

jD (f ;u)j � 1

2
L (b� a) [u (b)� u (a)�K (u)](1.10)

� 1

2
L (b� a) [u (b)� u (a)] ;

where

(1.11) K (u) :=
4

(b� a)2
Z b

a

u (x)

�
x� a+ b

2

�
dx � 0:
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The constant 12 in both inequalities is sharp.

Theorem 5. Let f; u : [a; b] ! R be such that u is monotonic nondecreasing on
[a; b] ; f is of bounded variation on [a; b] and the Stieltjes integral

R b
a
f (x) du (x)

exists. Then

jD (f ;u)j � [u (b)� u (a)�Q (u)]
b_
a

(f)(1.12)

� [u (b)� u (a)]
b_
a

(f) ;

where

(1.13) Q (u) :=
1

b� a

Z b

a

sgn

�
x� a+ b

2

�
u (x) dx � 0:

The �rst inequality in (1.12) is sharp.

In the case of convex integrators, the following result may be stated [11]:

Theorem 6. Let u : [a; b] ! R be a convex function on [a; b] and f : [a; b] ! R a
monotonic nondecreasing function on [a; b] : Then

0 � D (f ;u)(1.14)

� 2 �
u0� (b)� u0+ (a)

b� a

Z b

a

�
t� a+ b

2

�
f (t) dt

�

8>>>>>>><>>>>>>>:

1
2

�
u0� (b)� u0+ (a)

�
max fjf (a)j ; jf (b)jg (b� a) ;

1

(q+1)
1
q

�
u0� (b)� u0+ (a)

�
kfkp (b� a)

1
q

if p > 1; 1
p +

1
q = 1;�

u0� (b)� u0+ (a)
�
kfk1 :

The following result may be stated as [11]:

Theorem 7. Let u : [a; b] ! R be a continuous convex function on [a; b] and
f : [a; b]! R a function of bounded variation on [a; b] : Then

(1.15) jD (f ;u)j � 1

4

�
u0� (b)� u0+ (a)

�
(b� a)

b_
a

(f) ;

where
_b

a
(f) denotes the total variation of f on [a; b] :

For other related results for the functional D (�; �) ; see [1]-[5], [7]-[14] and [18].
In this paper some new lower and upper bounds for D (�; �) are provided. Ap-

plications for functions of selfadjoint operators on complex Hilbert spaces are also
given.

2. Some New Bounds

The following lemma may be stated:

Lemma 1. Let g : [a; b] ! R and l; L 2 R with L > l: The following statements
are equivalent:



4 S. S. DRAGOMIR1;2

(i) The function g� l+L
2 �`; where ` (t) = t; t 2 [a; b] is 12 (L� l)�Lipschitzian;

(ii) We have the inequalities

(2.1) l � g (t)� g (s)
t� s � L for each t; s 2 [a; b] with t 6= s;

(iii) We have the inequalities

(2.2) l (t� s) � g (t)� g (s) � L (t� s) for each t; s 2 [a; b] with t > s:

Following [18], we can introduce the de�nition of (l; L)-Lipschitzian functions:

De�nition 1. The function g : [a; b] ! R which satis�es one of the equivalent
conditions (i) �(iii) from Lemma 1 is said to be (l; L)-Lipschitzian on [a; b] :
If L > 0 and l = �L; then (�L;L)�Lipschitzian means L-Lipschitzian in the

classical sense.

Utilising Lagrange�s mean value theorem, we can state the following result that
provides examples of (l; L)-Lipschitzian functions.

Proposition 1. Let g : [a; b] ! R be continuous on [a; b] and di¤erentiable on
(a; b) : If �1 < l = inft2(a;b) g

0 (t) and supt2(a;b) g
0 (t) = L < 1; then g is (l; L)-

Lipschitzian on [a; b] :

We have the following result:

Theorem 8. Let u : [a; b] ! R be a convex function on [a; b] and f : [a; b] ! R a
(l; L)-Lipschitzian function on [a; b] : Then

(2.3) l

"
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

#
� D (f ;u)

� L
"
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

#
:

The inequalities in (2.3) are sharp.

Proof. Consider the auxiliary function fL : [a; b] ! R, fL = L` � f; where ` is
the identity function ` (t) = t; t 2 [a; b] : Since f : [a; b] ! R a (l; L)-Lipschitzian
function on [a; b] then f (t)�f (s) � L (t� s) for each t; s 2 [a; b] with t > s which
shows that fL is monotonic nondecreasing on [a; b] :
Utilizing the �rst inequality in (1.14) we have

0 � D (L`� f; u) = LD (`; u)�D (f; u)

showing that

(2.4) D (f; u) � LD (`; u) :

A similar argument applied for the auxiliary function fl : [a; b] ! R, fL = f � l`
produces the reverse inequality

(2.5) lD (`; u) � D (f; u) :
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On the other hand, integrating by parts in the Riemann-Stieltjes integral we
have

D (`; u) =

Z b

a

tdu (t)� 1

b� a [u (b)� u (a)]
Z b

a

tdt

= bu (b)� au (a)�
Z b

a

u (t) dt� a+ b
2

[u (b)� u (a)]

=
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt;

which together with (2.4) and (2.5) produce the desired result (2.3).
If we take f0 (t) = t; and " 2 (0; 1) then for each t; s 2 [a; b] with t > s we have

(1� ") (t� s) � f0 (t)� f0 (s) = t� s � (1 + ") (t� s)

which shows that f is a (1� "; 1 + ")-Lipschitzian function on [a; b] :
Assume that there exists A;B > 0 such that

(2.6) lABD (`; u) � D (f; u) � LBD (`; u)

for u : [a; b]! R a convex function on [a; b] and f : [a; b]! R a (l; L)-Lipschitzian
function on [a; b] :
If we write the inequality (2.6) for f0 and u strictly convex, we get

(1� ")AD (`; u) � D (`; u) � (1 + ")BD (`; u)

and dividing by D (`; u) > 0 we get

(2.7) (1� ")A � 1 � (1 + ")B:

Letting " ! 0+ in (2.7) we get A � 1 � B; which proves the sharpness of the
inequality (2.3). �

Remark 1. The double inequality in (2.3) is equivalent with�����D (f ;u)� l + L2
 
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

!�����(2.8)

� 1

2
(L� l)

"
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

#
:

The constant 12 is best possible.

Corollary 1. Let f : [a; b]! R be continuous on [a; b] and di¤erentiable on (a; b) :
If �1 < l = inft2(a;b) f

0 (t) and supt2(a;b) f
0 (t) = L < 1: If u : [a; b] ! R is a

convex function on [a; b] ; then the inequality (2.8) holds true.
If kf 0k1 = supt2(a;b) jf 0 (t)j <1; then

(2.9) jD (f ;u)j � kf 0k1

"
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

#
:

The inequality is sharp.

The proof follows from (2.8) by taking L = kf 0k1 and l = �kf 0k1 :
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For two Lebesgue integrable functions f and g we can de�ne the µCeby�ev func-
tional:

C (f; g) :=
1

b� a

Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt � 1

b� a

Z b

a

g (t) dt:

Corollary 2. Let w : [a; b] ! R be a monotonic nondecreasing function on [a; b]
and f : [a; b]! R a (l; L)-Lipschitzian function on [a; b] : Then

(2.10)
l

b� a

Z b

a

�
t� a+ b

2

�
w (t) dt � C (f; w) � L

b� a

Z b

a

�
t� a+ b

2

�
w (t) dt:

The inequalities in (2.10) are sharp.

Proof. Choose u (t) :=
R t
a
w (s) ds; t 2 [a; b] : Since w : [a; b] ! R is a monotonic

nondecreasing function on [a; b] ; then u is convex on [a; b] :
We also have

u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt(2.11)

=
1

2
(b� a)

Z b

a

w (s) ds�
"
t

Z t

a

w (s) ds

����b
a

�
Z b

a

sw (s) ds

#

=

Z b

a

�
s� a+ b

2

�
w (s) ds:

Writing the inequalities (2.3) for these functions we deduce the desired result
(2.10). �

Remark 2. The inequalities (2.10) are equivalent with�����C (f; w)� l + L2 1

b� a

Z b

a

�
t� a+ b

2

�
w (t) dt

�����(2.12)

� 1

2
(L� l) 1

b� a

Z b

a

�
t� a+ b

2

�
w (t) dt:

The constant 12 is best possible.
If kf 0k1 = supt2(a;b) jf 0 (t)j <1; then

(2.13) jC (f; w)j � kf 0k1
1

b� a

Z b

a

�
t� a+ b

2

�
w (t) dt:

The inequality is sharp.

De�nition 2. For two constants �;� with � < �; we say that the function g :
[a; b]! R is (�;�)-convex (see also [6] for more general concepts) if g � 1

2�`
2 and

1
2�`

2 � g are convex functions on [a; b] :

It is easy to see that, if g is twice di¤erentiable on (a; b) and the second derivative
satis�es the condition

� � g00 (t) � � for any t 2 (a; b) ;

then g is (�;�)-convex.
The following result also holds:
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Theorem 9. Let f : [a; b] ! R be a monotonic nondecreasing function on [a; b]
and for �;� with � < �; a (�;�)-convex function u : [a; b]! R. Then we have the
double inequality

(2.14) �

Z b

a

�
t� a+ b

2

�
f (t) dt � D (f ;u) � �

Z b

a

�
t� a+ b

2

�
f (t) dt:

The inequalities are sharp.

Proof. Since the function f is monotonic nondecreasing and u � 1
2�`

2 is convex,
then from the �rst inequality in (1.14) we have

D

�
f ;u� 1

2
�`2
�
� 0;

which is equivalent with
1

2
�D
�
f ; `2

�
� D (f ;u) :

From the convexity of 12�`
2 � g we also have

D (f ;u) � 1

2
�D

�
f ; `2

�
:

However

D
�
f ; `2

�
=

Z b

a

f (t) d`2 (t)� `
2 (b)� `2 (a)
b� a

Z b

a

f (t) dt

= 2

Z b

a

f (t) d (t)� (b+ a)
Z b

a

f (t) dt

= 2

Z b

a

�
t� a+ b

2

�
f (t) dt:

If we take u0 (t) := 1
2 t
2; and " 2 (0; 1) ; then for � = 1 � " and � = 1 + " we have

that u0 is (1� "; 1 + ")-convex on [a; b] :
Assume that there exists the constants P;Q > 0 such that

(2.15) �P

Z b

a

�
t� a+ b

2

�
f (t) dt � D (f ;u) � �Q

Z b

a

�
t� a+ b

2

�
f (t) dt;

for f : [a; b] ! R a monotonic nondecreasing function on [a; b] and (�;�)-convex
function u : [a; b]! R.
Since

D (f ;u0) =

Z b

a

�
t� a+ b

2

�
f (t) dt

then by replacing u0; � = 1� " and � = 1 + " in (2.15) we get

(1� ")P
Z b

a

�
t� a+ b

2

�
f (t) dt �

Z b

a

�
t� a+ b

2

�
f (t) d(2.16)

� (1 + ")Q
Z b

a

�
t� a+ b

2

�
f (t) dt;

which by division with
R b
a

�
t� a+b

2

�
f (t) dt that is positive for many functions f

(for instance f (t) = t� a+b
2 ), we obtain

(1� ")P � 1 � (1 + ")Q:
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Letting " ! 0+ we deduce P � 1 � Q; and the sharpness of the inequalities are
proved. �

Remark 3. Integrating by parts in the Riemann-Stieltjes integral we have

D (f ;u)(2.17)

= f (b)u (b)� f (a)u (a)�
Z b

a

u (t) df (t)

� u (b)� u (a)
b� a

Z b

a

f (t) dt

= u (b)

 
f (b)� 1

b� a

Z b

a

f (t) dt

!
+ u (a)

 
1

b� a

Z b

a

f (t) dt� f (a)
!

�
Z b

a

u (t) df (t) :

The inequality (2.3) is then equivalent with

l

"
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

#
(2.18)

� u (b)
 
f (b)� 1

b� a

Z b

a

f (t) dt

!
+ u (a)

 
1

b� a

Z b

a

f (t) dt� f (a)
!

�
Z b

a

u (t) df (t)

� L
"
u (a) + u (b)

2
(b� a)�

Z b

a

u (t) dt

#
:

while (2.14) is equivalent with

�

Z b

a

�
t� a+ b

2

�
f (t) dt(2.19)

� u (b)
 
f (b)� 1

b� a

Z b

a

f (t) dt

!
+ u (a)

 
1

b� a

Z b

a

f (t) dt� f (a)
!

�
Z b

a

u (t) df (t)

� �
Z b

a

�
t� a+ b

2

�
f (t) dt:

3. Applications for Selfadjoint Operators

Let A 2 B (H) be selfadjoint and let '� de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator
(3.1) E� := '� (A)
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is a projection which reduces A:
The properties of these projections are summed up in the following fundamental

result concerning the spectral decomposition of bounded selfadjoint operators in
Hilbert spaces, see for instance [17, p. 256]

Theorem 10 (Spectral Representation Theorem). Let A be a bonded selfadjoint
operator on the Hilbert space H and let m = min f� j� 2 Sp (A)g =: minSp (A) and
M = max f� j� 2 Sp (A)g =: maxSp (A) : Then there exists a family of projections
fE�g�2R, called the spectral family of A; with the following properties

a) E� � E�0 for � � �0;
b) Em�0 = 0; EM = 1H and E�+0 = E� for all � 2 R;
c) We have the representation

(3.2) A =

Z M

m�0
�dE�:

More generally, for every continuous complex-valued function ' de�ned on R
and for every " > 0 there exists a � > 0 such that

(3.3)






' (A)�
nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � "
whenever

(3.4)

8>>>><>>>>:
�0 < m = �1 < ::: < �n�1 < �n =M;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n
this means that

(3.5) ' (A) =

Z M

m�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.

Corollary 3. With the assumptions of Theorem 10 for A;E� and ' we have the
representations

(3.6) ' (A)x =

Z M

m�0
' (�) dE�x for all x 2 H

and

(3.7) h' (A)x; yi =
Z M

m�0
' (�) d hE�x; y i for all x; y 2 H:

In particular,

(3.8) h' (A)x; xi =
Z M

m�0
' (�) d hE�x; x i for all x 2 H:

Moreover, we have the equality

(3.9) k' (A)xk2 =
Z M

m�0
j' (�)j2 d kE�xk2 for all x 2 H:
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Utilising the Spectral Representation Theorem we can prove the following in-
equalities for functions of selfadjoint operators:

Theorem 11. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : Assume that the function f : I ! R is di¤erentiable on the inte-
rior of I denoted �I and [m;M ] � �I: If the derivative f 0 is (�;�)-Lipschitzian with
� < �; then

1

2
� (M1H �A) (A�m1H)(3.10)

� 1

M �m [f (M) (A�m1H) + f (m) (M1H �A]� f (A)

� 1

2
� (M1H �A) (A�m1H)

in the operator order of B (H) :

Proof. Let fE�g�2R the spectral family of A and x 2 H: Utilising the inequal-
ity (2.10) for the (�;�)-Lipschitzian function f 0 and the monotonic nondecreasing
function w (t) = hEtx; xi ; t 2 [m� ";M ] for a small positive "; we have

�

M �m+ "

Z M

m�"

�
t� m� "+M

2

�
hEtx; xi dt(3.11)

� 1

M �m+ "

Z M

m�"
f 0 (t) hEtx; xi dt

� 1

M �m+ "

Z M

m�"
f 0 (t) dt � 1

M �m+ "

Z M

m�"
hEtx; xi dt

� �

M �m+ "

Z M

m�"

�
t� a+ b

2

�
w (t) dt:

Letting "! 0+ in (3.11) we get

�

Z M

m�0

�
t� m+M

2

�
hEtx; xi dt(3.12)

�
Z M

m�0
f 0 (t) hEtx; xi dt�

1

M �m

Z M

m�0
f 0 (t) dt �

Z M

m�0
hEtx; xi dt

� �
Z M

m�0

�
t� a+ b

2

�
w (t) dt

for any x 2 H:
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Utilising the integration by parts formula for the Riemann-Stieltjes integral, we
have Z M

m�0

�
t� m+M

2

�
hEtx; xi dt(3.13)

=
1

2

Z M

m�0
hEtx; xi d

 �
t� m+M

2

�2!

=
1

2

24 hEtx; xi�t� m+M
2

�2�����
M

m�0

�
Z M

m�0

�
t� m+M

2

�2
d (hEtx; xi)

35
=
1

2

"
kxk2

�
M �m
2

�2
�
Z M

m�0

�
t� m+M

2

�2
d (hEtx; xi)

#

=
1

2

"Z M

m�0

"�
M �m
2

�2
�
�
t� m+M

2

�2#
d (hEtx; xi)

#

=
1

2

Z M

m�0
(M � t) (t�m) d (hEtx; xi) =

1

2
h(M1H �A) (A�m1H)x; xi

for any x 2 H:
We also haveZ M

m�0
f 0 (t) hEtx; xi dt = f (t) hEtx; xijMm�0 �

Z M

m�0
f (t) d (hEtx; xi)(3.14)

= f (M) kxk2 �
Z M

m�0
f (t) d (hEtx; xi)

=

Z M

m�0
[f (M)� f (t)] d (hEtx; xi)

= h[f (M) 1H � f (A)]x; xi
and, similarly

(3.15)
Z M

m�0
hEtx; xi dt = h(M1H �A)x; xi

for any x 2 H:
Utilising (3.14) and (3.15) we have

Z M

m�0
f 0 (t) hEtx; xi dt�

1

M �m

Z M

m�0
f 0 (t) dt �

Z M

m�0
hEtx; xi dt(3.16)

= h[f (M) 1H � f (A)]x; xi �
f (M)� f (m)

M �m h(M1H �A)x; xi

=

��
(M �m) f (M) 1H � [f (M)� f (m)] (M1H �A)

M �m � f (A)
�
x; x

�
=

��
f (m) (M1H �A) + f (M) (A�m1H)

M �m � f (A)
�
x; x

�
for any x 2 H:
From (3.12) we deduce the desired result (3.10). �



12 S. S. DRAGOMIR1;2

From Theorem 6, we have for h : [a; b] ! R a convex function on [a; b] and
g : [a; b]! R a monotonic nondecreasing function on [a; b] ;

0 � D (g;h)(3.17)

� 2 �
h0� (b)� h0+ (a)

b� a

Z b

a

�
t� a+ b

2

�
g (t) dt:

Since, by (2.17) we have

0 � D (g;h)(3.18)

= h (b)

 
g (b)� 1

b� a

Z b

a

g (t) dt

!
+ h (a)

 
1

b� a

Z b

a

g (t) dt� g (a)
!

�
Z b

a

h (t) df (t)

and Z b

a

�
t� a+ b

2

�
g (t) dt(3.19)

=
1

2

Z b

a

g (t) d

"�
t� a+ b

2

�2#

=
1

2

24g (t)�t� a+ b
2

�2�����
b

a

�
Z b

a

�
t� a+ b

2

�2
dg (t)

35
=
1

2

"
[g (b)� g (a)]

�
b� a
2

�2
�
Z b

a

�
t� a+ b

2

�2
dg (t)

#

=
1

2

Z b

a

"�
b� a
2

�2
�
�
t� a+ b

2

�2#
dg (t)

=
1

2

Z b

a

(b� t) (t� a) dg (t) ;

then by (3.17) we have

0 � h (b)
 
g (b)� 1

b� a

Z b

a

g (t) dt

!
+ h (a)

 
1

b� a

Z b

a

g (t) dt� g (a)
!

(3.20)

�
Z b

a

h (t) df (t)

�
h0� (b)� h0+ (a)

b� a

Z b

a

(b� t) (t� a) dg (t)

We can state the following result as well:

Theorem 12. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min f� j� 2 Sp (A)g =: minSp (A) and M = max f� j� 2 Sp (A)g
=: maxSp (A) : Assume that the function f : I ! R is convex on the interior of I
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denoted �I and [m;M ] � �I: Then

0 � 1

M �m [f (M) (A�m1H) + f (m) (M1H �A]� f (A)(3.21)

�
f 0� (M)� f 0+ (m)

M �m (M1H �A) (A�m1H) :

The proof follows by (3.20) by choosing h = f and g = hEtx; xi ; t 2 R, where
fE�g�2R is the spectral family of A:
Consider the exponential function f : R! R, and let A be a bonded self-

adjoint operator on the Hilbert space H and let m = min f� j� 2 Sp (A)g and
M = max f� j� 2 Sp (A)g. Then by (3.10) we have

1

2
exp (m) (M1H �A) (A�m1H)(3.22)

� 1

M �m [exp (M) (A�m1H) + exp (m) (M1H �A]� exp (A)

� 1

2
exp (M) (M1H �A) (A�m1H) :

Consider the function f : [m;M ]! R, f (t) = � ln t and [m;M ] � (0;1) : Then by
(3.10) we have

1

2M2
(M1H �A) (A�m1H)(3.23)

� ln (A)� 1

M �m [ln (M) (A�m1H) + ln (m) (M1H �A]

� 1

2m2
(M1H �A) (A�m1H) :

If we take the power function f : [m;M ]! R, f (t) = tp; p � 2 and [m;M ] � [0;1)
then by (3.10) we have

1

2
p (p� 1)mp�2 (M1H �A) (A�m1H)(3.24)

� 1

M �m [Mp (A�m1H) +mp(M1H �A]�Ap

� 1

2
p (p� 1)Mp�2 (M1H �A) (A�m1H) :

Consider the convex function f : R! R, f (t) =
��t� m+M

2

�� : Utilizing the in-
equality (3.21) we have

(3.25) 0 � M �m
2

�
����A� m+M2

���� � 2

M �m (M1H �A) (A�m1H) :
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