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Abstract. The aim of this paper is to provide some inequalities starting from
several classical inequalities like Young’s inequality, Bergstrom’s inequality,

Radon’s inequality, Heinz’s inequality, by using power series.

1. Introduction

In order to prove several inequalities starting from several classical inequalities
like Young’s inequality, Bergstrom’s inequality, Radon’s inequality, Heinz’s inequal-
ity, by using power series we need to recall the following results.

If xi ∈ R+ then a particularization of a theorem given in [10] can be formulated
as below and will be used in next section.

Theorem 1. ([10]) If n ∈ N , n ≥ 2, x1, x2, ..., xn ∈ R+, and a1, a2, ..., an ∈ R\{0}
with a1 + a2 + ...+ an ̸= 0 then,

x2
1

a1
+

x2
2

a2
+ ...+

x2
n

an
− (x1 + x2 + ...+ xn)

2

a1 + a2 + ...+ an
=

=
1

a1 + a2 + ...+ an

∑
1≤i<j≤n

(aixj − ajxi)
2

aiaj
.

The scalar Young inequality says that if a, b ≥ 0 and 0 ≤ ν ≤ 1 then we have

aνb1−ν ≤ νa+ (1− ν)b

with equality if and only if a = b.
The scalar Heinz’s inequality says that if a, b ≥ 0 and 0 ≤ ν ≤ 1 then,

aνb1−ν + a1−νbν ≤ a+ b.

The next result is a reverse of an inequality obtained by Kittaneh and Manasrah,
see [5] or [2], who obtained a refinement of Heinz inequality.

Theorem 2. ([2]) If a, b ≥ 0 and 0 ≤ ν ≤ 1, then

(2.3) (a+ b)2 ≤ (aνb1−ν + a1−νbν)2 + 2s0(a− b)2,

where s0 = max{ν, 1− ν}.
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Theorem 3. ([2]) If a, b ≥ 0 and 0 ≤ ν ≤ 1 then

(2.2) (νa+ (1− ν)b)2 ≤ (aνb1−ν)2 + s20(a− b)2,

where s0 = max{ν, 1− ν}.

In the next section we will use the following inequality, see [6]:

Proposition 1. ([6]) If {x1, x2, ..., xp}, xi ∈ R+ and p are real, positive numbers
and m ∈ N then we have:

p∑
i=1

xm
i − (p− 1)am ≤

(
p∑

i=1

xi − (p− 1)a

)m

,

where a = min{x1, x2, ..., xp}.

It is necessary also to recall a refinement of the Kittaneh-Manasrah inequality
given by N. Minculete in [7], in some special cases as an application:

Proposition 2. For 0 < a, b ≤ 1 and λ ∈ (0, 1) we have:

r(
√
a−

√
b)2 +A(λ)ab log2

(a
b

)
≤ λa+ (1− λ)b− aλb1−λ ≤

≤ (1− r)(
√
a−

√
b)2 +B(λ)ab log2

(a
b

)
,

where r = min{λ, 1− λ}, A(λ) = λ(1−λ)
2 − r

4 and B(λ) = λ(1−λ)
2 − 1−r

4 .

The last result which will be used below was given in [1].

Theorem 4. ([1]) If n ∈ N∗ − {1}, a, b, xk ∈ R∗
+, k ∈ {1, ..., n}, Xn =

∑n
k=1 xk

and m, t, u ∈ [1,∞), such that aXt
n > bmax1≤k≤n x

t
k, then:

(3)
n∑

k=1

xm
k

(aXt
n − bxt

k)
u ≥ n−m+tu+1

(ant − b)
uX

m−tu
n .

2. Some inequalities deduced using a power series method

Using Theorem 1, see [10] we will give below two inequalities for power series.

Proposition 3. Let xi > 0, for all i = 1, n and ai ∈ R+ − {0} with
∑n

i=1 ai ̸= 0.
If xi < 1 for all i = 1, n then the following inequality holds:

n∑
i=1

1

ai
· 1

1− x2
i

≥ 1∑n
i=1 ai

·
∑

1≤i<j≤n

(
ai
aj

· 1

1− x2
j

+
aj
ai

· 1

1− x2
i

− 2 · 1

1− xixj

)
+

+
1∑n

i=1 ai
· n2

1−
(∑n

i=1 xi

n

)2 .
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Proof. Replacing xi by xl
i when xi > 0 for i = 1, n, in equality

x2
1

a1
+
x2
2

a2
+...+

x2
n

an
− (x1 + x2 + ...+ xn)

2

(a1 + a2 + ...+ an
=

1

a1 + a2 + ...+ an

∑
1≤i<j≤n

(aixj − ajxi)
2

aiaj
,

see [10], we obtain,

x2l
1

a1
+
x2l
2

a2
+...+

x2l
n

an
− (xl

1 + xl
2 + ...+ xl

n)
2

(a1 + a2 + ...+ an
=

1

a1 + a2 + ...+ an

∑
1≤i<j≤n

(aix
l
j − ajx

l
i)

2

aiaj

or
x2l
1

a1
+

x2l
2

a2
+ ...+

x2l
n

an
=

=
(xl

1 + xl
2 + ...+ xl

n)
2

(a1 + a2 + ...+ an
+

1

a1 + a2 + ...+ an

∑
1≤i<j≤n

(
ai
aj

x2l
j +

aj
ai

x2l
i − 2xl

jx
l
i

)
.

Using as in [8], inequality(
x1 + x2 + ...+ xn

n

)k

≤ 1

n
(xk

1 + xk
2 + ...+ xk

n)

which takes place when xi ≥ 0, k ∈ N∗ we have,

x2l
1

a1
+

x2l
2

a2
+ ...+

x2l
n

an
≥ n2

a1 + a2 + ...+ an

(∑n
i=1 xi

n

)2l

+

+
1

a1 + a2 + ...+ an

∑
1≤i<j≤n

(
ai
aj

x2l
j +

aj
ai

x2l
i − 2xl

jx
l
i

)
.

Summing when l ∈ {1, 2, ..., p} and then considering in last inequality p → ∞, we
find the inequality from the conclusion, taking into account that 0 < xi < 1, i ∈
{1, 2, ..., n} involves x1+x2+...+xn

n < 1 and that warrants the convergence of the
respective series.

Theorem 5. Let the power series
∑∞

n=1 a
′

nx
n with a

′

n ≥ 0, (∀) n ∈ N∗ which is

convergent and has the sum f(x), when x ∈ (−R,R), where R = limn→∞
a
′
n

a
′
n+1

and

R ̸= 0. If 0 < xi <
√
R, i ∈ {1, ..., n} then it holds

n∑
i=1

1

ai
· f(x2

i ) ≥
1∑n

i=1 ai
·
∑

1≤i<j≤n

[
ai
aj

· f(x2
j ) +

aj
ai

· f(x2
i )− 2f(xixj)

]
+

+
n2∑n
i=1 ai

f

((∑n
i=1 xi

n

)2
)
.

Proof. By the same reason we get,

a
′

lx
2l
1

a1
+

a
′

lx
2l
2

a2
+ ...+

a
′

lx
2l
n

an
≥ n2

a1 + a2 + ...+ an
a

′

l

(∑n
i=1 xi

n

)2l

+

+
1

a1 + a2 + ...+ an

∑
1≤i<j≤n

(
ai
aj

a
′

lx
2l
j +

aj
ai

a
′

lx
2l
i − 2a

′

lx
l
jx

l
i

)
.
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Summing when l ∈ {1, 2, ..., p} we can notice that the power series obtained are

convergent because x2
i ∈ (0, R), xixj ∈ (0, R) and

(∑n
i=1 xi

n

)2
< R.

The next result is based on the inequality from Proposition 1.

Theorem 6. Let the power series
∑∞

n=1 a
′

nx
n with a

′

n ≥ 0, (∀) n ∈ N∗ which is

convergent and has the sum f(x), when x ∈ (−R,R), where R = limn→∞
a
′
n

a
′
n+1

and

R ̸= 0. If {x1, x2, ..., xp}, xi ∈ R+ are p real, positive numbers with 0 < xi < R, i ∈
{1, ..., p} and

∑p
i=1 xi < (p− 1)a+R then we have:

p∑
i=1

f(xi)− (p− 1)f(a) ≤ f(

p∑
i=1

xi − (p− 1)a).

Proof. Using the inequality,
p∑

i=1

xm
i − (p− 1)am ≤

(
p∑

i=1

xi − (p− 1)a

)m

,

and summing then like below,

m∑
k=0

(
p∑

i=1

a
′

kx
k
i − (p− 1)a

′

ka
k

)
≤

m∑
k=0

a
′

k

(
p∑

i=1

xi − (p− 1)a

)k

we obtain
p∑

i=1

m∑
k=0

a
′

kx
k
i − (p− 1)

m∑
k=0

a
′

ka
k ≤

m∑
k=0

a
′

k

(
p∑

i=1

xi − (p− 1)a

)k

and then when m tends to infinity we have the inequality from the conclusion.

Remark 1. Taking into account the expansions of some well-known power series
like ex, coshx, sinhx (for the last two x must be x < 1) we have for the numbers
{x1, x2, ..., xn}, xi ∈ R+ which are n real, positive numbers the inequalities:
n∑

i=1

1

ai
·cosh(x2

i ) ≥
1∑n

i=1 ai
·
∑

1≤i<j≤n

[
ai
aj

· cosh(x2
j ) +

aj
ai

· cosh(x2
i )− 2 cosh(xixj)

]
+

(1) +
n2∑n
i=1 ai

cosh

((∑n
i=1 xi

n

)2
)
.

n∑
i=1

1

ai
·sinh(x2

i ) ≥
1∑n

i=1 ai
·
∑

1≤i<j≤n

[
ai
aj

· sinh(x2
j ) +

aj
ai

· sinh(x2
i )− 2 sinh(xixj)

]
+

(2) +
n2∑n
i=1 ai

sinh

((∑n
i=1 xi

n

)2
)
.

n∑
i=1

1

ai
· exp(x2

i ) ≥
1∑n

i=1 ai
·
∑

1≤i<j≤n

[
ai
aj

· exp(x2
j ) +

aj
ai

· exp(x2
i )− 2 exp(xixj)

]
+
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(3) +
n2∑n
i=1 ai

exp

((∑n
i=1 xi

n

)2
)
.

The following result presents two inequalities for power series starting from in-
equalities from Theorem 2 and 3.

Theorem 7. Let the power series
∑∞

n=1 a
′

nx
n with a

′

n ≥ 0, (∀) n ∈ N∗ which is

convergent and has the sum f(x), when x ∈ (−R,R), where R = limn→∞
a
′
n

a
′
n+1

and

R ̸= 0. (i) If 0 ≤ a <
√
R, 0 ≤ b <

√
R and 0 ≤ ν ≤ 1 then

f(a2) + f(b2) ≤ f(a2νb2(1−ν)) + f(a2(1−ν)b2ν) + 2s0
(
f(a2) + f(b2)− 2f(ab)

)
,

and

4f(

(
a+ b

2

)2

) ≤ f(a2νb2(1−ν))+f(a2(1−ν)b2ν)+2s0
(
f(a2) + f(b2)

)
+2(1−s0)f(ab),

where s0 = max{ν, 1− ν}.
(ii) If 0 < a <

√
R, 0 < b <

√
R and 0 ≤ ν ≤ 1 then

ν2f(a2) + (1− ν)2f(b2) + 2ν(1− ν)f(ab) ≤

≤ f(a2νb2(1−ν)) + s20(f(a
2) + f(b2)− 2f(ab)),

where s0 = max{ν, 1− ν}.

Proof. We will use the same method as in previous theorems. (i) Therefore from

inequality (2.3) where we replace a and b by al and bl and multiply by a
′

l, l ∈
{1, 2, ..., n} we have,

n∑
l=0

a
′

l(a
l + bl)2 ≤

n∑
l=0

a
′

l(a
lνbl(1−ν) + al(1−ν)blν)2 +

n∑
l=0

2s0a
′

l(a
l − bl)2.

By computation we obtain,
n∑

l=0

a
′

l(a
2l + b2l) ≤

n∑
l=0

a
′

l(a
2lνb2l(1−ν) + a2l(1−ν)b2lν) + 2s0

n∑
l=0

a
′

l(a
2l + b2l − 2albl)

and when n tends to infinity, we find the first inequality. For the second one, using
the generalized means inequality, we find that

4
n∑

l=0

a
′

l

(
a+ b

2

)2l

≤
n∑

l=0

a
′

l(a
2lνb2l(1−ν)+a2l(1−ν)b2lν+2albl)+2s0

n∑
l=0

a
′

l(a
2l+b2l−2albl),

and when n tends to infinity, we obtain the second inequality.
(ii) We will use inequality (2.2) from Theorem 2.1(Theorem 4), see [2] with al

instead of a and bl instead of b, we multiply by a
′

l, l ∈ {1, 2, ..., n} (2.2) and then
summing when l = 1, n we will obtain:
n∑

l=0

a
′

l[ν
2a2l+(1−ν)2b2l+2ν(1−ν)albl] ≤

n∑
l=0

a
′

l[a
2lνb2l(1−ν)+s20(a

2l+b2l−2albl)].

From hypothesis, 0 < a <
√
R and 0 < b <

√
R it follows when n tends to infinity

the desired inequality.
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Remark 2. Taking into account the expansions of some well-known power series
like ex, coshx, sinhx, (for the last two x < 1) if {x1, x2, ..., xp}, xi ∈ R+ are p
real, positive numbers then we have:

(4)

p∑
i=1

exp(xi)− (p− 1) exp(a) ≤ exp(

p∑
i=1

xi − (p− 1)a).

(5)

p∑
i=1

cosh(xi)− (p− 1) cosh(a) ≤ cosh(

p∑
i=1

xi − (p− 1)a).

(6)

p∑
i=1

sinh(xi)− (p− 1) sinh(a) ≤ sinh(

p∑
i=1

xi − (p− 1)a).

Remark 3. Taking into account the expansions of some well-known power series
like ex, coshx, sinhx, (for the last two x < 1) we have for a, b > 0 the variant for
sinh, cosh of some generalizations of Young’s and Heinz’s inequalities:

(7) sinh(a2) + sinh(b2) ≤

≤ sinh(a2νb2(1−ν)) + sinh(a2(1−ν)b2ν) + 2s0
(
sinh(a2) + sinh(b2)− 2 sinh(ab)

)
,

The following result will give an inequality obtained for real power series by using
the inequality from Proposition 2.

Theorem 8. Let the power series
∑∞

n=1 a
′

nx
n with a

′

n ≥ 0, (∀) n ∈ N∗ which is

convergent and has the sum f(x), when x ∈ (−R,R), where R = limn→∞
a
′
n

a
′
n+1

and

R ̸= 0.
For 0 < a, b < R and λ ∈ (0, 1) the following inequality holds:

r[f(a) + f(b)− 2f(a
1
2 b

1
2 )] +A(λ)S(ab) log2

(a
b

)
≤

≤ λf(a) + (1− λ)f(b)− f(aλb1−λ) ≤

≤ (1− r)[f(a) + f(b)− 2f(a
1
2 b

1
2 )] +B(λ)S(ab) log2

(a
b

)
,

where r = min{λ, 1− λ}, A(λ) = λ(1−λ)
2 − r

4 , B(λ) = λ(1−λ)
2 − 1−r

4 and

S(x) = x(f
′
(x) + xf

′′
(x))

.

Proof. We put al instead of a and bl instead b in inequality from Proposition 2, see
[7] and obtain,

ra
′

l(
√
al −

√
bl)2 + a

′

l log
2
(a
b

)
A(λ)l2albl ≤

≤ λa
′

la
l + (1− λ)a

′

lb
l − a

′

la
lλbl(1−λ) ≤

≤ (1− r)a
′

l(
√
al −

√
bl)2 + a

′

l log
2
(a
b

)
B(λ)l2albl.

When l = 1, n we have,

r
n∑

l=0

a
′

l(
√
al −

√
bl)2 + log2

(a
b

)
A(λ)

n∑
l=0

a
′

ll
2albl ≤
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≤ λ
n∑

l=0

a
′

la
l + (1− λ)

n∑
l=0

a
′

lb
l −

n∑
l=0

a
′

la
lλbl(1−λ) ≤

≤ (1− r)
n∑

l=0

a
′

l(
√
al −

√
bl)2 + log2

(a
b

)
B(λ)

n∑
l=0

a
′

ll
2albl.

Therefore if n tends to infinity, we have

r[f(a) + f(b)− 2f(a
1
2 b

1
2 )] +A(λ)S(ab) log2

(a
b

)
≤

≤ λf(a) + (1− λ)f(b)− f(aλb1−λ) ≤

≤ (1− r)[f(a) + f(b)− 2f(a
1
2 b

1
2 )] +B(λ)S(ab) log2

(a
b

)
,

where S(x) is the sum of the series
∑∞

l=1 a
′

ll
2xl. This series has the same con-

vergence radius, R as the power series
∑∞

l=1 a
′

lx
l which has the sum f(x). In or-

der to compute this sum, we denote by D(x) the sum of the convergent series∑∞
l=1 a

′

ll
2xl−1 with the same radius R. Then

S(x) = xD(x)

and we denote by F (x), ∫
D(x)dx =

∞∑
l=1

a
′

llx
l.

We also denote by K(x) the sum of the convergent series
∑∞

l=1 a
′

llx
l−1 with the

same radius R and we notice that F (x) = xK(x). Because∫
K(x)dx =

∞∑
l=1

a
′

lx
l = f(x)

we have K(x) = f
′
(x) and thus F (x) = xf

′
(x). By derivation we have D(x) =

F
′
(x) = f

′
(x) + xf

′′
(x) and then S(x) = x(f

′
(x) + xf

′′
(x)).

Last result was obtained for power series starting from the inequality from The-
orem 4.

Theorem 9. Let the power series
∑∞

n=1 a
′

nx
n with a

′

n ≥ 0, (∀) n ∈ N∗ which is

convergent and has the sum f(x), when x ∈ (−R,R), where R = limn→∞
a
′
n

a
′
n+1

and

R ̸= 0.
If n ∈ N∗ − {1}, a, b, xk ∈ R∗

+, k ∈ {1, ..., n}, Xn =
∑n

k=1 xk and t, u ∈ [1,∞),
such that aXt

n > bmax1≤k≤n x
t
k, and xk < R, k ∈ {1, ..., n} then:

n∑
k=1

f(xk)

(aXt
n − bxt

k)
u ≥ ntu+1

(ant − b)
u
Xtu

n

f

(
Xn

n

)
.
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