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TRAPEZOIDAL TYPE INEQUALITIES FOR
RIEMANN-STIELTJES INTEGRAL VIA CEBYSEV
FUNCTIONAL WITH APPLICATIONS

S. S. DRAGOMIR!:2

ABSTRACT. Some new inequalities for the functional

Er (f,u)
iif@)Gﬂw_g%ELzNﬂﬁ)+fﬁﬂ<g;;L%Nﬂﬁ_uW0

b
f/fmw@,

under various assumptions for the functions f and u are given. Applications
for functions of selfadjoint operators and unitary operators on complex Hilbert
spaces are also provided.

1. INTRODUCTION

For two Lebesgue integrable functions f,g : [a,b] — R, consider the Cebysev
functional:

1 b 1 b b
1) g [ swewa- —— [ wa [ g
—aJg (b - a) a a
In 1935, Griiss [28] showed that
1
(12) CF0)] < § (M —m) (N —n),
provided that there exists the real numbers m, M, n, N such that

(1.3) m<f@#) <M and n<g(t)<N forae. t€/ab].

The constant i is best possible in (1.1) in the sense that it cannot be replaced by
a smaller quantity.

Another, however less known result, even though it was obtained by Cebysev in
1882, [5], states that

(1.4) CU0)] < 75 17 g/l (0 — ),

provided that f’, g’ exist and are continuous on [a,b] and || f'||, = sup,¢jq4 [f' ()]
The constant % cannot be improved in the general case.

The Cebysev inequality (1.4) also holds if f,g : [a,b] — R are assumed to be
absolutely continuous and f', g" € Lo [a,b] while || f']| = esssup,e(q ) [ ()] -
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2 S.S. DRAGOMIRY2

A mixture between Griiss’ result (1.2) and Cebysev’s one (1.4) is the following
inequality obtained by Ostrowski in 1970, [39]:

(15) CUha)l < 5 (6= a) (M = m) g

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely con-
tinuous and ¢’ € L [a,b]. The constant 3 is best possible in (1.5).

The case of euclidean norms of the derivative was considered by A. Lupas in [32]
in which he proved that

(16) CUaI < 25 119N (b a),

provided that f, g are absolutely continuous and f’, ¢’ € Ly [a,b]. The constant =5
is the best possible.
Recently, P. Cerone and S.S. Dragomir [3] have proved the following results:

N
ﬁ>,

b
e [ r)ds

=1;p=1,qg=o00o0r

b
10 - [ 1)as

1 b
(1.7) IC(ﬂm|§g£|9—7M'b_a<A

Wherep>1and%—l—%:lorp:landq:oo,and

1
1. < inf ||g — —
(1.8) 1C(f.9) _WHEIRHQ gl b aess sup | f(t)

te(a,b]

)

provided that f € L,[a,b] and g € L [a,b] (p > 1, 1%4—

p=o00,q=1).
Notice that for ¢ = co,p = 1 in (1.7) we obtain

1
q

dt

b
0 - [ 1)as

1 b
. < inf |lg =) - ——
19 el <intlo- a5 [

1 b
<lgllee 5=

and if g satisfies (1.3), then

b
10 - 5 [ £)ds|ar

b
10 - 5 [ £)ds|dr

n+N 1 /b
g 2 w b—al/,

1 1 b
<Z(N-n) —
_2( n) b—a/a

The inequality between the first and the last term in (1.10) has been obtained by
Cheng and Sun in [6]. However, the sharpness of the constant %, a generalization
for the abstract Lebesgue integral and the discrete version of it have been obtained
in [4].

For other recent results on the Griiss inequality, see [30], [35] and [40] and the
references therein.

For some recent inequalities for Riemann-Stieltjes integral see [7]-[12] and [31].

1 b
. < i — —
110) (OG-l = [

dt

b
10 -5 [ )

b
£(t) - ﬁ/ F(s)ds| dt.
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In this paper some bounds for the functional

ET (fv u)

b b
= f(b) (u(b)bia/ u(t)dt)Jrf(a) (b—la/ u(t)dtu(a))
b
- [ 1@

under various assumptions for the functions f and u are obtained. Applications for

functions of selfadjoint operators and unitary operators on complex Hilbert spaces
are also provided.

2. SOME PRELIMINARY RESULTS

We start with the following representation:

Lemma 1. Let f : [a,b] — C be an absolutely continuous function and u : [a,b] — C
a function of bounded variation. Then we have the equalities

b —a a)(b—
o [[fO@0D g,

:bla[f(b) <u(b)_b1a bu(t)dt)
+f(a)<bia/b (t)dt —u(a )] —a/f t) du (t
_a/ £t dt——/ F(t dt—/ u(t)dt

=C(f9)
Proof. Integrating by parts, we have

b_a/f dt——/f dt/bu(t)dt
=bﬂiﬂme—Lf@u®4

SCEVICH Y

u — fla)u(a b
ﬂ@(%_g)()bimlfwuwd
_f(bl))_i”( ).bia/ oL
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which proves the second equality in (2.1).
Integrating again by parts, we have

b
w(b) — bia/ w(t) dt

b
bia [u(t)ﬂfl—/a tdu(t)}

w(®) (b—a) —u®)b+u(a)a+ [ tdu(t)

b—a
b U —a|u —ul\a b
[ tdu(?) b—[a(b) ()]:bia/a (t = a) du (1)
and
b
bia/ w(t) dt — u (a)
b
- ﬁ [u(t)ﬂz —/ tdu(t)] —u(a)
_u®)b—u(a)a— [} tdu(t) —u(a) (b—a)
b—a
w(b) —ula) — P tdu b
_ V0 ) - fyu <t>:b1a/a (b—1)du ().
Then

b
bia lf(b) (u(b)—bia/a u(t)dt)
b b
+f(a) (bia/ u(t)dt—u(a))] —bia/ £ () du(t)
b
:bia[f(b)bia/a (t — a) du (¢)
b b
Oy <b—t>du<t>] s [T

:bla/ab [f(b)(t—az+i‘(a)(b—t) —f(t)} du (1)

and the first equality in (2.1) is also proved.

O

Now, for v,I' € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

U[a,b] (v, [) = {f : [a, 0] — C|Re [(I‘ —f@®) (m—ﬁ)} >0 for each t¢€ [a7b]}

and

_ + T 1
Aoy (1) = { £: 0,81~ €] \f<t>”2 < 109 for cach 1€ [a,1]}.



TRAPEZOIDAL TYPE INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL 5

The following representation result may be stated.

Proposition 1. For any~v,T' € C, v # I, we have that U[a,b] (v,T) and A[a’b] (v,T)
are nonempty, convex and closed sets and

(22) U[a,b] (’771—‘) = A[a,b] (’V?F) .
Proof. We observe that for any z € C we have the equivalence

T 1
e
2 2

if and only if
Re (T - 2) (2 — 9)] > 0.
This follows by the equality

1 v+T 2 _
D=9 = |z = 5—| =Re[(—2)(z—7)]
4 2
that holds for any z € C.
The equality (2.2) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 1. For any v,I" € C, v # I',we have that
(2.3) Uy (1, T) ={f :[a,b] = C| (ReT' —Re [ (t)) (Re f (t) — Re)
+(ImT —Im f (¢)) (Im f (¢) —Im~y) > 0 for each t € [a,b]}.

Now, if we assume that Re (I') > Re () and Im (I") > Im (vy) , then we can define
the following set of functions as well:

(24) Sy (nT) = {f : [,b] = C | Re(T) > Re f (t) > Re ()
and Im (T') > Im f (¢) > Im (y) for each t € [a,b]}.

One can easily observe that S’[a,b] (7,T) is closed, convex and

(25) 0 7é S[a,b] (,Y?F) - U[a,b] (7’F) :

Lemma 2. Let f,g: [a,b] — C be Lebesgue measurable functions. Then

(2.6) |C(f9)l

i b € Lila,bl,
inface lg — 1l - esssupieios [£0) = s [7 F(9)as] 47T

gGLq[a,b],
f e Lyab],
p>1,

1,1 _
lyl=a

IN
—_

f) -+ f;f(s) ds‘p dt)i

. b
o infiec [lg — ’Y”q : (fa

f(t) - ﬁfabf(s) ds‘ dt ?Eijo[gf}f])]a

b
a

infyec llg = Vlloo - |
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Follows by the Sonin’s identity for complex valued functions

b
bia/ f(s)ds) dt

b
Clfo) =5 [ ta®-) (f(t)—

and by the integral Holder inequality.

Corollary 2. Let f,g: [a,b] — C be Lebesgue measurable functions. If v,T € C,
v#T, and g € Ay (1, 1), then

27 19
€55 SUD4e[q.] ‘f(t) - = f:f(s) ds‘ f € L la,b]
<3P (el | - o @ asf ) S E Bl
s 0|10 = 525 J7 £ () ds| e feLifab.

Another important corollary is as follows:

Corollary 3. Let f,g : [a,b] — C be Lebesgue measurable functions. If g is of
bounded variation, then

(28)  [C(f.9)
esssuDeu |/(6) ~ 55 [ S ()ds|  f € Loofast]
1 P o\3
<3V@ (al -l seaf w)” Tt
e o[ F O = 5 [ f ) dslae fe Lo,

Proof. Since g is of bounded variation, then

g(a)+g(b)‘ <

[lg (0) =g @) +19(t) — g (a)]]

b
\ (9)

N

<

N = DN

for any t € [a,b].
We have

Il
o
&
&
w0
=
o)

IN
DN =
<
S
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and
o) - 200 - (/b NSEEICE I th>”"
< ;\17/<g></abdt)1/q=1<b—a>“‘Z\b/<g>
for ¢ > 1.
Utilising (2.6) we get (2.8). O

For functions h that are Lipschitzian in the middle point with the constant L ats
2
and the exponent s > 0, i.e., satisfying the condition

b
o0 (1) 2

for any t € [a,b], we have the following result as well.
Another important corollary is as follows:

S

a+b
2

t—

Corollary 4. Let f,g : [a,b] — C be Lebesque measurable functions. If g is Lip-
schitzian in the middle point with the constant LQTH) and the exponent s > 0, then

1
(210) 1C(f,)| < 5 Lege

—a)® b
ool esssupye |£(0) = 55 [ f (5)ds|  f € Los[a,t)

(b )S,L b L b p 1 f S Lp [aab]a
(b—a)” » _ P 1
X (sq-‘rl)l/q (fa f(t) b—a fa f (S) ds’ dt) ]ii l’ 1

p q

(b—a) "t [

) -1 [ f (s)dsj dt felLifab.

1/q

a—+b\|?
g(t)—g< 5 ) dt)
b sq l/p
/L@ dt)
a 2

b sq \ V4
e ( / dt) |

Proof. We have, for ¢ > 1, that

()

[a,b].q (

a+b

t—

b
t—a+
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b sq 1/4q
(L= )
=3 a+b 54 b a+b\*
:</ (2 —t) dt+/ﬂ+b(t— : ) dt>
b sq 1/q ;_ atb sq+1
= 2/ (t—a+b> dt = 2%
atb 2 sq+1
_a\sa+1y 1/4 s 1/q s
(05 A R R ) il
sq+1 2% (sq +1) 25 (sq +1)"/9

Then by (2.11) we have

Observe that

b
po ot

b 1/q

a+b
2

_ s+1/q
Hg_g<a+b> SLM%
2 Mapg T 20 (sq+1)77
Also
g—g ath SLu+b(b_a).
2 [a,b],00 2 2¢

By utilizing the inequality (2.6) we have

1C(f.9)l
—a s+1 b
Loge G - esssupieia [ F(0) = 55 [0 £ (s)ds| f € Loc[a,)
1 f € Lp [CL, b]
1 s+1/q p
Lb—a)™ /% (b I v
<1 Lep P (50 — 55 1) S () ds| at) el
p q
Lo 052 [\ 1(6) = 555 7 1 (5) ds| e f €Ll
—a)® b
Ot - esssupreroy [F(0 = 75 [V (9)ds| S € Loola,]
1 fEeLyplab],
_ 1 (b—a)® L b R PN b
= ?LGTH) (sq+1)1/q (E fa f(t) —a fa f (S) dS‘ dt) ]ij_]i, .,
p q
s— b b
(b=a) " 7@ = 55 17 1 () ds| at feLifab)

and the corollary is proved.
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Remark 1. In the case when g is Lipschitzian with the constant L > 0, then

(212) [C(f,9)] < 5L

L (0= a) - esssupyeqep [£(8) = 55 [ £ (s)ds| € Lo ol

bea) " F b b N I € Lpla,b],
U (| r e = 0 1 () s at) Pl

J1A@) = 5 07 1 (s)ds) at f€Lifab].

3. ERROR BOUNDS FOR A GENERALIZED TRAPEZOID RULE

In order to approximate the Riemann-Stieltjes integral f: f (t) du (¢t) by the gen-
eralized trapezoid formula

b b
0 (u(b)—bia u(t)dt)—l—f(a) (lj_la/ u(t)dt—u(a))

we consider the error functional

(31) ET (f, u)

b b
— () (u(b)—bla u(t)dt>+f(a) (bla/ u(t)dt—u(a))

[ romn.

For some recent results concerning this functional see [24] and [36].

Theorem 1. Let f : [a,b] — C be absolutely continuous and v : [a,b] — C of
bounded variation.

(i) Ifv,TeC,v#T, and u € A[a,b] (v,T), then

(32) 1B (fu)l < 51T

f/(t) _ f)—f(a)

(b — a) esssup;e(q ) i /' € Ly [a,b]

fELp[a7b]7

<{ v-a) (! pdt)%

f)—f(a)
f/(t) - b—a

1 1 _
p>1,;+5—1,

b —f(a
INIORES =S

dt feLifab.
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(11) If ©s S (C; 2 7& (1)7 and f/ € A[a,b] (<)07 CD); then

(33) |Br(fu)] < 5|2l

(b—a)esssup¢(q }u(t) - = ffu (s) ds‘ u € L [a, b]
1/ b N u € Ly[a,b],
< =0yt () [u(t) = 25 f) w(s) ds| dt) ST i
f; u(t)—ﬁfabu(s)ds‘dt u € Ly [a,b].

Proof. From Lemma 1 we have the representation
(34) ET(fau):(b_a)C(flvu)

() If~v,TeC,v#T,and u € A[a,b] (7,T), then by Lemma 2 we have

1C(f',w)]

€55 SUD¢¢(q,b] f'(t) — % f' € Ly [a,b]
1 L, [a,b]
1 b —f(a) |P 11, f € Lpla, b,

<50 (i | - 4= ar)

p>1,
b — a

5a Jo | £ = Tl ar f€Lilab,

which implies the desired result (3.2).
(ii) If o,® € C, p # @, and f" € Ay (@, ®), then by Lemma 2 we have

1C (', u)

a Ja

€55 SUDe[4.] ‘u(t) - = fbu (s) ds’ u € Lo [a,b]

. , b P Ny wueL,ab],
<3l ) (el oo s LLuya] a)” P
el [0 - oz e sl we Loy,
which implies the desired result (3.3). H

The following result also holds:

Theorem 2. Let f : [a,b] — C be absolutely continuous and u : [a,b] — C of
bounded variation.
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(i) We have

(b— a) esssupyepo ) | /(1) — LH=LL 7 € Locfa,b)

feLp[a’b]7

f(t) - 1OzL@|” dt)%

< b-a)t (J)

1 1 _
p>1,;+5—1,

feLifab.

F(b)—f(a
o) - Lt

J

(i) If f' is of bounded variation, then

b
1
(36) [Br (fu)l <5V (f
(b — a) esssup;eq ) ‘u(t) - = fju (s) ds‘ u € Lo [a,b]

b p » u € L,la,b|,
u(t)—ﬁfau(s)ds‘ dt) p>1pl[_|_]l:1
’p

q

<3 b-a) ([

u(t)—%afabu(s)ds‘dt u € Ly [a,b].

The proof follows by the identity (3.4) and from Corollary 3. We omit the details.
The case of Lipschitzian functions is as follows:

Theorem 3. Let f : [a,b] — C be absolutely continuous and u : [a,b] — C of
bounded variation.

(i) If w is Lipschitzian in the middle point with the constant Laiv and the
2

exponent s > 0, then

1
(37 1Br (£ < g5Lop

Ctesssupea | /(1) = LD 1€ Lo [a, )
1 1 f S Lp [a7 b] 9
b—a)’ " P b b)—f(a) |P P
xd G (12|71 — L9 ) o
p>1, » + 7= 1,
f F1(t) — f(b f(a) dt feLiab].
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(ii) If f' is Lipschitzian in the middle point with the constant Kagy and the
exponent v > 0, then

1
(38) 1B ()] < 55K

(b;zl)” €88 SUPye(q,0] ‘u(t) — ﬁ f:u (s) ds‘ u € Ly [a, b]
1 1
b—a)’ P b b P u € L [a,b],
X W(fa u(t)—ﬁfau(s)ds‘ dt) p>1f’%+%71
f: u(t)—ﬁf:u(s)ds)dt u € Ly [a,b].
The proof follows by Corollary 4.
Remark 2. If u is Lipschitzian with the constant L > 0, then
1
(39) |Br (fu)l < 1L
5 (b—a)esssupepy | £/(1) = HG=LA ) € Locla,b)
e : b A1 feLlylab],
b—a)4 f(b)—f(a P
X <q+11/“(f f1(t) - H=e dt) 111
p > ) 5 + a -
[P — Q=L@ gy feLifab].

If f" is Lipschitzian with the constant K > 0, then

(3.10) |Br (/)] < 3K

1(b—a)ess SUDyeq,b] ‘u(t) - = fj u(s)ds| u € Ly |a,b]

Lt (10— 2 Pus) ds’pdt)% u € Lyla b,
(v+1)1/a a b—a Ja p>17%+é:1
f: u(t)—ﬁf;u(s)ds)dt u € Ly [a,b].

4. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows
1, for —oo < s <A,

NOES
0, for A < s < 4o0.

Then for every A € R the operator
(4.1) E):= ¢, (A)

is a projection which reduces A.
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The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [29, p. 256]:

Theorem 4 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let m = min {\ |\ € Sp(A) } =: min Sp (A) and
M =max{A |\ € Sp(A4)} =: max Sp(A). Then there exists a family of projections
{Ex} e, called the spectral family of A, with the following properties

a) Ex < Ey for A< \;

b) En—0=0,Ey =1 and Exio = E)\ for all A € R;

¢) We have the representation

M
A :/ AE).

m—0
More generally, for every continuous complex-valued function ¢ defined on R
and for every € > 0 there exists a § > 0 such that

@ (A) - i ¥ ()‘;c) [E/\k - E)\Ic—l}
k=1

<e

whenever
A <m=A<..<A_1 <Ay =M,

A = Ap—1 <0 for 1 <k <,

Ne € b1, M) for1<k<n
this means that

M
(4.2) o (A) = / o (\) dEh,

m—0

where the integral is of Riemann-Stieltjes type.

Corollary 5. With the assumptions of Theorem 4 for A, E) and ¢ we have the
representations

M
@(A)x:/ (AN dExx forallx € H

and
M

(4.3) (p(A)z,y) = / o (AN d{(Exz,y) forallx,y € H.

m—0
In particular,
M

(p(A)z,x) = / © (N d(Exz,z) forallx € H.

m—0

Moreover, we have the equality

M
o (A) 2|2 = / T Bl for allz € I

We need the following result that provides an upper bound for the total variation
of the function R 5 A — (E)z,y) € C on an interval e, 8], see [23].
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Lemma 3. Let {Ex\},cg be the spectral family of the bounded selfadjoint operator
A. Then for any x,y € H and o < 3 we have the inequality

P 2

V (<E<->$7y>)] < ((Es — Ea)x,2) ((Es — Ea) ¥, ,

[0}

(4.4)

B
where \/ (<E(_)m, y>) denotes the total variation of the function <E(_)x, y> on [a, 5]

Remark 3. For a =m—¢c withe > 0 and 8 = M we get from (3.1) the inequality

M
(4'5) \/ (<E(-)‘T7y>) < <(I - Em—e) 1‘,$>1/2 <(I_ Em—s)yay>1/2

m—e
for any x,y € H.
This implies, for any x,y € H, that

M

(4.6) V (Eoz,y) <zl vl

m—0

M M
where \/ (<E(.)x,y>) denotes the limit lim._, o4 l\/ (<E(_)x,y>)] .

m—0 m—e

We can state the following result for functions of selfadjoint operators:

Theorem 5. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min{A |\ € Sp(4)} =: minSp(A) and M = max{A|A € Sp(A)}
=:max Sp (A). If {Ex} cp is the spectral family of the bounded selfadjoint opera-

tor A and f : I — C is absolutely continuous on [m, M) C I (the interior of I),
then

) |([LOM ) S O ) ) )

M—-—m

(M —m)ess SUDy ¢ m, M]

F(M)—f(m
/() — 2=l

< f(t) — FM)=f(m)

M—m

\(O (Boyzy) 4 (M —m)b (me

PoNF
dt)

1
2

f(8) = =R g

fe

(M —m) ess Supepm, ‘f’(t) -

<

N =

P NG
I 1yl (Mfm)i(fnjy f/(t),%’ dt)

F(M)—f(m)
fr(6) — S5 dt

I

for any x,y € H.
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Proof. Utilising the representation (2.1) and the inequality (3.5) we have

/M {f(M)(t—m+6)+f(m—6)(M—t)
M—-—m-+e¢

y <t>] 4 (Ea,y)

m—e

M)—f(m—
7't - Lo

(M —m + ) essSuPye—e,

)~ 108y=ttnca

1 p z
<35V (Byzy) (M—m—i—s)a(f:f_g dt)”

f’(t) _ f(M)—f(m—e)

M—m+-e dt

fM
for small € > 0 and for any z,y € H.

Taking the limit over ¢ — 0+ and using the continuity of f and the Spectral
Representation Theorem, we deduce the desired result (4.7). O

For recent results concerning inequalities for functions of selfadjoint operators,
see [1], [14], [15], [16], [17], [18], [19], [23], [33], [37], [38], [41] and the books [21],
[22] and [27].

5. APPLICATIONS FOR UNITARY OPERATORS

A unitary operator is a bounded linear operator U : H — H on a Hilbert space
H satisfying

U'U=UU" =1y
where U* is the adjoint of U, and 1y : H — H is the identity operator. This
property is equivalent to the following:

(i) U preserves the inner product (-,-) of the Hilbert space, i.e., for all vectors
z and y in the Hilbert space, (Uz, Uy) = (z,y) and
(ii) U is surjective.
The following result is well known [29, p. 275 - p. 276]:

Theorem 6 (Spectral Representation Theorem). Let U be a unitary operator on
the Hilbert space H. Then there exists a family of projections {P)\}/\G[O,Qw]’ called
the spectral family of U, with the following properties

a) Py < Py for A <\

b) Py=0,P, =1 and P/\+0 =P, fO?“ all \ € [0,27‘(‘),’

c) We have the representation

27
U= / exp (i\) dPy.
0

More generally, for every continuous complex-valued function ¢ defined on the
unit circle C (0,1) and for every € > 0 there exists a § > 0 such that

S fexp (i) [Py — Py ]| <
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whenever
0=\ <..< A1 <A, =2m,

A —Ag—1 <0 for 1 <k <,

A, € M1, M) for1<k<n
this means that
27
(5.1) o) = [ lexpn) Py,
0
where the integral is of Riemann-Stieltjes type.

Corollary 6. With the assumptions of Theorem 6 for U, P\ and ¢ we have the
representations

27
e U)x = / o (exp (iN)) dP x for allxz € H
0

and

62 ()= [ plep()dPeg) foralog e H

In particular,

27
(p(U)z,z) = /0 @ (exp (1N)) d (Paz,x) for all x € H.

Moreover, we have the equality

27
lo@)al® = [ lo(exp @) 1Pl for all s € B,
0
The following result holds:

Theorem 7. Let U be a unitary operator on the Hilbert space H and {P/\}Ae[o,%]’
the spectral family of U. Let f be a differentiable complex-valued function defined
on an open disk containing the unit circle C (0,1). Then we have

(5-3) [((2mf (1) = f (U)] 2, y)]

2mess supyepo ax | (€™)]

b

2

3V (Rom) § e (57 ar)”

0

3 =

IN

fOQW ‘f/(eit)’ dt;

2mess SUPe(o o |/ (€7)];

IN

1 L/ on it |P »
2l g emt (f57 e )"

o1 e de,
for all x,y € H.
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Proof. Utilising the representation (2.1), the inequality (3.5) and the fact that f is
differentiable as a complex function, we have

(5-4) d(Pyz,y)

2T

/027T lf (ei%) (t— 0) +f (60) (2r — t) —f (eit)

ieitf’(eit) _ f(ei%)*f(eo)

27
N
dt)

2mess supyc(o on)

ieitf’(eit) _ f(ei%)*f(eo)

27

VAN
N
o<§

((Poyz,9)) 4 (2m) < o

F(e?) = £ (")

2 . i
foﬂ' Zeztf/(ezt) _ o

dt

for all z,y € H.
The inequality (5.4) is equivalent with

2T

[F (1) = £ ()] d<PAx,y>|

2mes8 SUP4e(0,24] |/ (e™)]

0

177 1/ on , i
5\0/ (Poww)) § @t (e dr)”
Jo £ (e dt
and the desired result (5.3) is proved. (]

Remark 4. Consider the exponential function f : C— C, f(z) = expz =
>0 nnzn Then [’ (z) = expz and

|f/(e")] = lexp(cost+isint)| = exp (cost) |exp (isint)]
= exp(cost)

fort €10,27].
Observe that

sup |f/(e”)| =e

te[0,27]

and forp>1

(/0% |f,(eit)‘pdt>; = </027T exp (pcost) dt); = [2n]y (p)]/P

where Iy is the modified Bessel function of the first kind, i.e., we recall that

oo

Io (2) = ;} (1)2 (%)2 2€C.

m!
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Let U be a unitary operator on the Hilbert space H and {P,\})\E[Ogﬂ], the spectral
family of U. Then we have by (5.3)

(5.5) [{[2me — exp (U)] z,y)|
27 7 .
<7\ (Pozy) 4 (Lo(p)7; p>1
0
In(1);

<wllzlllyl { (T (p))?; p>1

Iy (1),

forall xz,y € H.
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