TRAPEZOIDAL TYPE INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL VIA ČEBYŠEV FUNCTIONAL WITH APPLICATIONS

S. S. DRAGOMIR ${ }^{1,2}$

$$
\begin{aligned}
& \text { Abstract. Some new inequalities for the functional } \\
& \qquad \begin{array}{|l}
T \\
\\
:=f(b)(u) \\
\left.\quad-\int_{a}^{b} f(t)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)+f(t)
\end{array}
\end{aligned}
$$

under various assumptions for the functions f and u are given. Applications for functions of selfadjoint operators and unitary operators on complex Hilbert spaces are also provided.

1. Introduction

For two Lebesgue integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$, consider the Čebyšev functional:

$$
\begin{equation*}
C(f, g):=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(t) d t \int_{a}^{b} g(t) d t \tag{1.1}
\end{equation*}
$$

In 1935, Grüss [28] showed that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{4}(M-m)(N-n) \tag{1.2}
\end{equation*}
$$

provided that there exists the real numbers m, M, n, N such that

$$
\begin{equation*}
m \leq f(t) \leq M \quad \text { and } \quad n \leq g(t) \leq N \quad \text { for a.e. } t \in[a, b] \tag{1.3}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in (1.1) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [5], states that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{12}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}(b-a)^{2} \tag{1.4}
\end{equation*}
$$

provided that f^{\prime}, g^{\prime} exist and are continuous on $[a, b]$ and $\left\|f^{\prime}\right\|_{\infty}=\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The Čebyšev inequality (1.4) also holds if $f, g:[a, b] \rightarrow \mathbb{R}$ are assumed to be absolutely continuous and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$ while $\left\|f^{\prime}\right\|_{\infty}=e s s \sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$.

[^0]A mixture between Grüss' result (1.2) and Čebyšev's one (1.4) is the following inequality obtained by Ostrowski in 1970, [39]:

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{8}(b-a)(M-m)\left\|g^{\prime}\right\|_{\infty} \tag{1.5}
\end{equation*}
$$

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely continuous and $g^{\prime} \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (1.5).

The case of euclidean norms of the derivative was considered by A. Lupaş in [32] in which he proved that

$$
\begin{equation*}
|C(f, g)| \leq \frac{1}{\pi^{2}}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}(b-a) \tag{1.6}
\end{equation*}
$$

provided that f, g are absolutely continuous and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. The constant $\frac{1}{\pi^{2}}$ is the best possible.

Recently, P. Cerone and S.S. Dragomir [3] have proved the following results:

$$
\begin{equation*}
|C(f, g)| \leq \inf _{\gamma \in \mathbb{R}}\|g-\gamma\|_{q} \cdot \frac{1}{b-a}\left(\int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} \tag{1.7}
\end{equation*}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$ or $p=1$ and $q=\infty$, and

$$
\begin{equation*}
|C(f, g)| \leq \inf _{\gamma \in \mathbb{R}}\|g-\gamma\|_{1} \cdot \frac{1}{b-a} \text { ess } \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| \tag{1.8}
\end{equation*}
$$

provided that $f \in L_{p}[a, b]$ and $g \in L_{q}[a, b]\left(p>1, \frac{1}{p}+\frac{1}{q}=1 ; p=1, q=\infty\right.$ or $p=\infty, q=1$).

Notice that for $q=\infty, p=1$ in (1.7) we obtain

$$
\begin{align*}
|C(f, g)| & \leq \inf _{\gamma \in \mathbb{R}}\|g-\gamma\|_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t \tag{1.9}\\
& \leq\|g\|_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t
\end{align*}
$$

and if g satisfies (1.3), then

$$
\begin{align*}
|C(f, g)| & \leq \inf _{\gamma \in \mathbb{R}}\|g-\gamma\|_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t \tag{1.10}\\
& \leq\left\|g-\frac{n+N}{2}\right\|_{\infty} \cdot \frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t \\
& \leq \frac{1}{2}(N-n) \cdot \frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t
\end{align*}
$$

The inequality between the first and the last term in (1.10) has been obtained by Cheng and Sun in [6]. However, the sharpness of the constant $\frac{1}{2}$, a generalization for the abstract Lebesgue integral and the discrete version of it have been obtained in [4].

For other recent results on the Grüss inequality, see [30], [35] and [40] and the references therein.

For some recent inequalities for Riemann-Stieltjes integral see [7]-[12] and [31].

In this paper some bounds for the functional

$$
\begin{aligned}
& E_{T}(f, u) \\
& :=f(b)\left(u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)+f(a)\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a)\right) \\
& -\int_{a}^{b} f(t) d u(t)
\end{aligned}
$$

under various assumptions for the functions f and u are obtained. Applications for functions of selfadjoint operators and unitary operators on complex Hilbert spaces are also provided.

2. Some Preliminary Results

We start with the following representation:
Lemma 1. Let $f:[a, b] \rightarrow \mathbb{C}$ be an absolutely continuous function and $u:[a, b] \rightarrow \mathbb{C}$ a function of bounded variation. Then we have the equalities

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b}\left[\frac{f(b)(t-a)+f(a)(b-t)}{b-a}-f(t)\right] d u(t) \tag{2.1}\\
& =\frac{1}{b-a}\left[f(b)\left(u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)\right. \\
& \left.+f(a)\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a)\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(t) d u(t) \\
& =\frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) u(t) d t-\frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) d t \frac{1}{b-a} \int_{a}^{b} u(t) d t \\
& =C\left(f^{\prime}, g\right)
\end{align*}
$$

Proof. Integrating by parts, we have

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) u(t) d t-\frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) d t \frac{1}{b-a} \int_{a}^{b} u(t) d t \\
& =\frac{1}{b-a}\left[\left.f(t) u(t)\right|_{a} ^{b}-\int_{a}^{b} f(t) u(t) d t\right] \\
& -\frac{f(b)-f(a)}{b-a} \cdot \frac{1}{b-a} \int_{a}^{b} u(t) d t \\
& =\frac{f(b) u(b)-f(a) u(a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(t) u(t) d \\
& -\frac{f(b)-f(a)}{b-a} \cdot \frac{1}{b-a} \int_{a}^{b} u(t) d t \\
& =\frac{1}{b-a}\left[f(b)\left(u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)\right. \\
& \left.+f(a)\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a)\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(t) d u(t)
\end{aligned}
$$

which proves the second equality in (2.1).
Integrating again by parts, we have

$$
\begin{aligned}
& u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t \\
& =u(b)-\frac{1}{b-a}\left[\left.u(t) t\right|_{a} ^{b}-\int_{a}^{b} t d u(t)\right] \\
& =\frac{u(b)(b-a)-u(b) b+u(a) a+\int_{a}^{b} t d u(t)}{b-a} \\
& =\frac{\int_{a}^{b} t d u(t)-a[u(b)-u(a)]}{b-a}=\frac{1}{b-a} \int_{a}^{b}(t-a) d u(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a) \\
& =\frac{1}{b-a}\left[\left.u(t) t\right|_{a} ^{b}-\int_{a}^{b} t d u(t)\right]-u(a) \\
& =\frac{u(b) b-u(a) a-\int_{a}^{b} t d u(t)-u(a)(b-a)}{b-a} \\
& =\frac{b[u(b)-u(a)]-\int_{a}^{b} t d u(t)}{b-a}=\frac{1}{b-a} \int_{a}^{b}(b-t) d u(t) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{1}{b-a}\left[f(b)\left(u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)\right. \\
& \left.+f(a)\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a)\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(t) d u(t) \\
& =\frac{1}{b-a}\left[f(b) \frac{1}{b-a} \int_{a}^{b}(t-a) d u(t)\right. \\
& \left.+f(a) \frac{1}{b-a} \int_{a}^{b}(b-t) d u(t)\right]-\frac{1}{b-a} \int_{a}^{b} f(t) d u(t) \\
& =\frac{1}{b-a} \int_{a}^{b}\left[\frac{f(b)(t-a)+f(a)(b-t)}{b-a}-f(t)\right] d u(t)
\end{aligned}
$$

and the first equality in (2.1) is also proved.
Now, for $\gamma, \Gamma \in \mathbb{C}$ and $[a, b]$ an interval of real numbers, define the sets of complex-valued functions
$\bar{U}_{[a, b]}(\gamma, \Gamma):=\{f:[a, b] \rightarrow \mathbb{C} \mid \operatorname{Re}[(\Gamma-f(t))(\overline{f(t)}-\bar{\gamma})] \geq 0$ for each $t \in[a, b]\}$ and

$$
\bar{\Delta}_{[a, b]}(\gamma, \Gamma):=\left\{f: \left.[a, b] \rightarrow \mathbb{C}| | f(t)-\frac{\gamma+\Gamma}{2}\left|\leq \frac{1}{2}\right| \Gamma-\gamma \right\rvert\, \text { for each } t \in[a, b]\right\}
$$

The following representation result may be stated.
Proposition 1. For any $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, we have that $\bar{U}_{[a, b]}(\gamma, \Gamma)$ and $\bar{\Delta}_{[a, b]}(\gamma, \Gamma)$ are nonempty, convex and closed sets and

$$
\begin{equation*}
\bar{U}_{[a, b]}(\gamma, \Gamma)=\bar{\Delta}_{[a, b]}(\gamma, \Gamma) . \tag{2.2}
\end{equation*}
$$

Proof. We observe that for any $z \in \mathbb{C}$ we have the equivalence

$$
\left|z-\frac{\gamma+\Gamma}{2}\right| \leq \frac{1}{2}|\Gamma-\gamma|
$$

if and only if

$$
\operatorname{Re}[(\Gamma-z)(\bar{z}-\bar{\gamma})] \geq 0
$$

This follows by the equality

$$
\frac{1}{4}|\Gamma-\gamma|^{2}-\left|z-\frac{\gamma+\Gamma}{2}\right|^{2}=\operatorname{Re}[(\Gamma-z)(\bar{z}-\bar{\gamma})]
$$

that holds for any $z \in \mathbb{C}$.
The equality (2.2) is thus a simple consequence of this fact.
On making use of the complex numbers field properties we can also state that:
Corollary 1. For any $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, we have that

$$
\begin{align*}
\bar{U}_{[a, b]}(\gamma, \Gamma)= & \{f:[a, b] \rightarrow \mathbb{C} \mid(\operatorname{Re} \Gamma-\operatorname{Re} f(t))(\operatorname{Re} f(t)-\operatorname{Re} \gamma) \tag{2.3}\\
& +(\operatorname{Im} \Gamma-\operatorname{Im} f(t))(\operatorname{Im} f(t)-\operatorname{Im} \gamma) \geq 0 \text { for each } t \in[a, b]\}
\end{align*}
$$

Now, if we assume that $\operatorname{Re}(\Gamma) \geq \operatorname{Re}(\gamma)$ and $\operatorname{Im}(\Gamma) \geq \operatorname{Im}(\gamma)$, then we can define the following set of functions as well:

$$
\begin{align*}
\bar{S}_{[a, b]}(\gamma, \Gamma) & :=\{f:[a, b] \rightarrow \mathbb{C} \mid \operatorname{Re}(\Gamma) \geq \operatorname{Re} f(t) \geq \operatorname{Re}(\gamma) \tag{2.4}\\
& \text { and } \operatorname{Im}(\Gamma) \geq \operatorname{Im} f(t) \geq \operatorname{Im}(\gamma) \text { for each } t \in[a, b]\}
\end{align*}
$$

One can easily observe that $\bar{S}_{[a, b]}(\gamma, \Gamma)$ is closed, convex and

$$
\begin{equation*}
\emptyset \neq \bar{S}_{[a, b]}(\gamma, \Gamma) \subseteq \bar{U}_{[a, b]}(\gamma, \Gamma) \tag{2.5}
\end{equation*}
$$

Lemma 2. Let $f, g:[a, b] \rightarrow \mathbb{C}$ be Lebesgue measurable functions. Then

Follows by the Sonin's identity for complex valued functions

$$
C(f, g)=\frac{1}{b-a} \int_{a}^{b}(g(t)-\gamma)\left(f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) d t
$$

and by the integral Hölder inequality.
Corollary 2. Let $f, g:[a, b] \rightarrow \mathbb{C}$ be Lebesgue measurable functions. If $\gamma, \Gamma \in \mathbb{C}$, $\gamma \neq \Gamma$, and $g \in \bar{\Delta}_{[a, b]}(\gamma, \Gamma)$, then

$$
\begin{align*}
& |C(f, g)| \tag{2.7}\\
& \leq \frac{1}{2}|\Gamma-\gamma| \begin{cases}e s s \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| & f \in L_{\infty}[a, b] \\
\left(\frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & \begin{array}{l}
f \in L_{p}[a, b] \\
p>1, \\
\frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t
\end{array} \\
f \in L_{1}[a, b]\end{cases}
\end{align*}
$$

Another important corollary is as follows:
Corollary 3. Let $f, g:[a, b] \rightarrow \mathbb{C}$ be Lebesgue measurable functions. If g is of bounded variation, then

$$
\begin{align*}
& |C(f, g)| \tag{2.8}\\
& \leq \frac{1}{2} \bigvee_{a}^{b}(g)
\end{align*} \begin{cases}e s s \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| & f \in L_{\infty}[a, b] \\
\left(\frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & \begin{array}{l}
f \in L_{p}[a, b] \\
p>1, \\
\frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t
\end{array} \\
f \in L_{1}[a, b]\end{cases}
$$

Proof. Since g is of bounded variation, then

$$
\begin{align*}
\left|g(t)-\frac{g(a)+g(b)}{2}\right| & \leq \frac{1}{2}[|g(b)-g(t)|+|g(t)-g(a)|] \tag{2.9}\\
& \leq \frac{1}{2} \bigvee_{a}^{b}(g)
\end{align*}
$$

for any $t \in[a, b]$.
We have

$$
\begin{aligned}
\left\|g(\cdot)-\frac{g(a)+g(b)}{2}\right\|_{\infty} & =\text { ess } \sup _{t \in[a, b]}\left|g(t)-\frac{g(a)+g(b)}{2}\right| \\
& \leq \frac{1}{2} \bigvee_{a}^{b}(g)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|g(\cdot)-\frac{g(a)+g(b)}{2}\right\|_{q} & =\left(\int_{a}^{b}\left|g(t)-\frac{g(a)+g(b)}{2}\right|^{q} d t\right)^{1 / q} \\
& \leq \frac{1}{2} \bigvee_{a}^{b}(g)\left(\int_{a}^{b} d t\right)^{1 / q}=\frac{1}{2}(b-a)^{1 / q} \bigvee_{a}^{b}(g)
\end{aligned}
$$

for $q \geq 1$.
Utilising (2.6) we get (2.8).

For functions h that are Lipschitzian in the middle point with the constant $L_{\frac{a+b}{2}}$ and the exponent $s>0$, i.e., satisfying the condition

$$
\left|h(t)-h\left(\frac{a+b}{2}\right)\right| \leq L_{\frac{a+b}{2}}\left|t-\frac{a+b}{2}\right|^{s}
$$

for any $t \in[a, b]$, we have the following result as well.
Another important corollary is as follows:

Corollary 4. Let $f, g:[a, b] \rightarrow \mathbb{C}$ be Lebesgue measurable functions. If g is Lipschitzian in the middle point with the constant $L_{\frac{a+b}{2}}$ and the exponent $s>0$, then

$$
\begin{align*}
& |C(f, g)| \leq \frac{1}{2^{s}} L_{\frac{a+b}{2}} \tag{2.10}\\
& \quad \times \begin{cases}\frac{(b-a)^{s}}{s+1} \cdot e s s \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| & f \in L_{\infty}[a, b] \\
\frac{(b-a)^{s-\frac{1}{p}}}{(s q+1)^{1 / q}} \cdot\left(\int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
p>1 \\
\frac{1}{p}+\frac{1}{q}=1\end{cases} \\
& (b-a)^{s-1} \cdot \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t \\
& f \in L_{1}[a, b]
\end{align*} .
$$

Proof. We have, for $q \geq 1$, that

$$
\begin{align*}
\left\|g-g\left(\frac{a+b}{2}\right)\right\|_{[a, b], q} & =\left(\int_{a}^{b}\left|g(t)-g\left(\frac{a+b}{2}\right)\right|^{p} d t\right)^{1 / q} \tag{2.11}\\
& \leq\left(\int_{a}^{b} L_{\frac{a+b}{2}}^{p}\left|t-\frac{a+b}{2}\right|^{s q} d t\right)^{1 / p} \\
& =L_{\frac{a+b}{2}}\left(\int_{a}^{b}\left|t-\frac{a+b}{2}\right|^{s q} d t\right)^{1 / q}
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \left(\int_{a}^{b}\left|t-\frac{a+b}{2}\right|^{s q} d t\right)^{1 / q} \\
& =\left(\int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-t\right)^{s q} d t+\int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)^{s q} d t\right)^{1 / q} \\
& =\left(2 \int_{\frac{a+b}{2}}^{b}\left(t-\frac{a+b}{2}\right)^{s q} d t\right)^{1 / q}=\left(\left.2 \frac{\left(t-\frac{a+b}{2}\right)^{s q+1}}{s q+1}\right|_{\frac{a+b}{2}} ^{b}\right)^{1 / q} \\
& =\left(2 \frac{\left(\frac{b-a}{2}\right)^{s q+1}}{s q+1}\right)^{1 / q}=\left(\frac{(b-a)^{s q+1}}{2^{s q}(s q+1)}\right)^{1 / q}=\frac{(b-a)^{s+1 / q}}{2^{s}(s q+1)^{1 / q}}
\end{aligned}
$$

Then by (2.11) we have

$$
\left\|g-g\left(\frac{a+b}{2}\right)\right\|_{[a, b], q} \leq L_{\frac{a+b}{2}} \frac{(b-a)^{s+1 / q}}{2^{s}(s q+1)^{1 / q}}
$$

Also

$$
\left\|g-g\left(\frac{a+b}{2}\right)\right\|_{[a, b], \infty} \leq L_{\frac{a+b}{2}} \frac{(b-a)^{s}}{2^{s}}
$$

By utilizing the inequality (2.6) we have

$$
\begin{aligned}
& |C(f, g)| \\
& \leq \frac{1}{b-a} \begin{cases}L_{\frac{a+b}{2}} \frac{(b-a)^{s+1}}{2^{s}(s+1)} \cdot e s s \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| & f \in L_{\infty}[a, b] \\
L_{\frac{a+b}{2}} \frac{(b-a)^{s+1 / q}}{2^{s}(s q+1)^{1 / q}} \cdot\left(\int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
p>1, \\
\frac{1}{p}+\frac{1}{q}=1 \\
L_{\frac{a+b}{2}} \frac{(b-a)^{s}}{2^{s}} \cdot \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t & f \in L_{1}[a, b]\end{cases} \\
& =\frac{1}{2^{s}} L_{\frac{a+b}{2}} \begin{cases}\frac{(b-a)^{s}}{s+1} \cdot e s s \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| & f \in L_{\infty}[a, b] \\
\frac{(b-a)^{s}}{(s q+1)^{1 / q}} \cdot\left(\frac{1}{b-a} \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & \begin{array}{l}
f \in L_{p}[a, b], \\
p>1, \\
\frac{1}{p}+\frac{1}{q}=1
\end{array} \\
(b-a)^{s-1} \cdot \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t & f \in L_{1}[a, b]\end{cases}
\end{aligned}
$$

and the corollary is proved.

Remark 1. In the case when g is Lipschitzian with the constant $L>0$, then

$$
\begin{align*}
& |C(f, g)| \leq \frac{1}{2} L \tag{2.12}\\
& \quad \times \begin{cases}\frac{1}{2}(b-a) \cdot e s s \sup _{t \in[a, b]}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| & f \in L_{\infty}[a, b] \\
\frac{(b-a)^{1-\frac{1}{p}}}{(q+1)^{1 / q}} \cdot\left(\int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
p>1, \\
\frac{1}{p}+\frac{1}{q}=1\end{cases} \\
& \int_{a}^{b}\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(s) d s\right| d t \\
& f \in L_{1}[a, b] .
\end{align*}
$$

3. Error Bounds for a Generalized Trapezoid Rule

In order to approximate the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ by the generalized trapezoid formula

$$
f(b)\left(u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)+f(a)\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a)\right)
$$

we consider the error functional

$$
\begin{align*}
& E_{T}(f, u) \tag{3.1}\\
& :=f(b)\left(u(b)-\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)+f(a)\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t-u(a)\right) \\
& -\int_{a}^{b} f(t) d u(t)
\end{align*}
$$

For some recent results concerning this functional see [24] and [36].
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{C}$ be absolutely continuous and $u:[a, b] \rightarrow \mathbb{C}$ of bounded variation.
(i) If $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, and $u \in \bar{\Delta}_{[a, b]}(\gamma, \Gamma)$, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2}|\Gamma-\gamma| \tag{3.2}\\
& \quad \times \begin{cases}(b-a) \text { ess } \sup _{t \in[a, b]}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| & f^{\prime} \in L_{\infty}[a, b] \\
(b-a)^{\frac{1}{q}}\left(\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
& p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| d t & f \in L_{1}[a, b]\end{cases}
\end{align*}
$$

(ii) If $\varphi, \Phi \in \mathbb{C}, \varphi \neq \Phi$, and $f^{\prime} \in \bar{\Delta}_{[a, b]}(\varphi, \Phi)$, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2}|\Phi-\varphi| \tag{3.3}\\
& \quad \times \begin{cases}(b-a) \text { ess } \sup _{t \in[a, b]}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| & u \in L_{\infty}[a, b] \\
(b-a)^{\frac{1}{q}}\left(\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & u \in L_{p}[a, b] \\
& p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| d t & u \in L_{1}[a, b]\end{cases}
\end{align*}
$$

Proof. From Lemma 1 we have the representation

$$
\begin{equation*}
E_{T}(f, u)=(b-a) C\left(f^{\prime}, u\right) \tag{3.4}
\end{equation*}
$$

(i) If $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, and $u \in \bar{\Delta}_{[a, b]}(\gamma, \Gamma)$, then by Lemma 2 we have

$$
\begin{aligned}
& \left|C\left(f^{\prime}, u\right)\right| \\
& \leq \frac{1}{2}|\Gamma-\gamma| \begin{cases}e s s \sup _{t \in[a, b]}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| & f^{\prime} \in L_{\infty}[a, b] \\
\left(\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| d t & f \in L_{1}[a, b]\end{cases}
\end{aligned}
$$

which implies the desired result (3.2).
(ii) If $\varphi, \Phi \in \mathbb{C}, \varphi \neq \Phi$, and $f^{\prime} \in \bar{\Delta}_{[a, b]}(\varphi, \Phi)$, then by Lemma 2 we have

$$
\begin{aligned}
& \left|C\left(f^{\prime}, u\right)\right| \\
& \leq \frac{1}{2}|\Phi-\varphi| \begin{cases}e s s \sup _{t \in[a, b]}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| & u \in L_{\infty}[a, b] \\
\left(\frac{1}{b-a} \int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & \begin{array}{l}
u \in L_{p}[a, b] \\
p>1
\end{array} \\
\frac{1}{b-a} \int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| d t & u \in L_{1}[a, b]\end{cases}
\end{aligned}
$$

which implies the desired result (3.3).

The following result also holds:
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{C}$ be absolutely continuous and $u:[a, b] \rightarrow \mathbb{C}$ of bounded variation.
(i) We have

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2} \bigvee_{a}^{b}(u) \tag{3.5}\\
& \quad \times \begin{cases}(b-a) e s s \sup _{t \in[a, b]}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| & f^{\prime} \in L_{\infty}[a, b] \\
(b-a)^{\frac{1}{q}}\left(\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
& p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| d t & f \in L_{1}[a, b]\end{cases}
\end{align*}
$$

(ii) If f^{\prime} is of bounded variation, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2} \bigvee_{a}^{b}\left(f^{\prime}\right) \tag{3.6}\\
& \quad \times \begin{cases}(b-a) \text { ess } \sup _{t \in[a, b]}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| & u \in L_{\infty}[a, b] \\
(b-a)^{\frac{1}{q}}\left(\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & u \in L_{p}[a, b] \\
\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| d t & u \in 1, \frac{1}{p}+\frac{1}{q}=1\end{cases} \\
& \quad \begin{array}{ll}
\left(a \in L_{1}[a, b]\right.
\end{array}
\end{align*}
$$

The proof follows by the identity (3.4) and from Corollary 3. We omit the details. The case of Lipschitzian functions is as follows:

Theorem 3. Let $f:[a, b] \rightarrow \mathbb{C}$ be absolutely continuous and $u:[a, b] \rightarrow \mathbb{C}$ of bounded variation.
(i) If u is Lipschitzian in the middle point with the constant $L_{\frac{a+b}{2}}$ and the exponent $s>0$, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2^{s}} L_{\frac{a+b}{2}} \tag{3.7}\\
& \quad \times \begin{cases}\frac{(b-a)^{s}}{s+1} e s s \sup _{t \in[a, b]}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| & f^{\prime} \in L_{\infty}[a, b] \\
\frac{(b-a)^{s-\frac{1}{p}}}{(s q+1)^{1 / q}}\left(\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
& p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| d t & f \in L_{1}[a, b]\end{cases}
\end{align*}
$$

(ii) If f^{\prime} is Lipschitzian in the middle point with the constant $K_{\frac{a+b}{2}}$ and the exponent $v>0$, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2^{v}} K_{\frac{a+b}{2}} \tag{3.8}\\
& \quad \times \begin{cases}\frac{(b-a)^{v}}{v+1} \text { ess } \sup _{t \in[a, b]}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| & u \in L_{\infty}[a, b] \\
\frac{(b-a)^{v-\frac{1}{p}}}{(v q+1)^{1 / q}}\left(\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & u \in L_{p}[a, b] \\
& p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| d t & u \in L_{1}[a, b]\end{cases}
\end{align*}
$$

The proof follows by Corollary 4.
Remark 2. If u is Lipschitzian with the constant $L>0$, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2} L \tag{3.9}\\
& \quad \times \begin{cases}\frac{1}{2}(b-a) e s s \sup _{t \in[a, b]}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| & f^{\prime} \in L_{\infty}[a, b] \\
\frac{(b-a)^{\frac{1}{q}}}{(q+1)^{1 / q}}\left(\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right|^{p} d t\right)^{\frac{1}{p}} & f \in L_{p}[a, b] \\
\int_{a}^{b}\left|f^{\prime}(t)-\frac{f(b)-f(a)}{b-a}\right| d t & f>1, \frac{1}{p}+\frac{1}{q}=1\end{cases} \\
& \quad f \in L_{1}[a, b]
\end{align*}
$$

If f^{\prime} is Lipschitzian with the constant $K>0$, then

$$
\begin{align*}
& \left|E_{T}(f, u)\right| \leq \frac{1}{2} K \tag{3.10}\\
& \times \begin{cases}\frac{1}{2}(b-a) \text { ess } \sup _{t \in[a, b]}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| & u \in L_{\infty}[a, b] \\
\frac{(b-a)^{\frac{1}{q}}}{(v+1)^{1 / q}}\left(\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right|^{p} d t\right)^{\frac{1}{p}} & u \in L_{p}[a, b] \\
\int_{a}^{b}\left|u(t)-\frac{1}{b-a} \int_{a}^{b} u(s) d s\right| d t & u \in L_{1}[a, b]\end{cases}
\end{align*}
$$

4. Applications for Selfadjoint Operators

We denote by $\mathcal{B}(H)$ the Banach algebra of all bounded linear operators on a complex Hilbert space $(H ;\langle\cdot, \cdot\rangle)$. Let $A \in \mathcal{B}(H)$ be selfadjoint and let φ_{λ} be defined for all $\lambda \in \mathbb{R}$ as follows

$$
\varphi_{\lambda}(s):=\left\{\begin{array}{l}
1, \text { for }-\infty<s \leq \lambda \\
0, \text { for } \lambda<s<+\infty
\end{array}\right.
$$

Then for every $\lambda \in \mathbb{R}$ the operator

$$
\begin{equation*}
E_{\lambda}:=\varphi_{\lambda}(A) \tag{4.1}
\end{equation*}
$$

is a projection which reduces A.

The properties of these projections are collected in the following fundamental result concerning the spectral representation of bounded selfadjoint operators in Hilbert spaces, see for instance [29, p. 256]:

Theorem 4 (Spectral Representation Theorem). Let A be a bounded selfadjoint operator on the Hilbert space H and let $m=\min \{\lambda \mid \lambda \in S p(A)\}=: \min S p(A)$ and $M=\max \{\lambda \mid \lambda \in S p(A)\}=: \max S p(A)$. Then there exists a family of projections $\left\{E_{\lambda}\right\}_{\lambda \in \mathbb{R}}$, called the spectral family of A, with the following properties
a) $E_{\lambda} \leq E_{\lambda^{\prime}}$ for $\lambda \leq \lambda^{\prime}$;
b) $E_{m-0}=0, E_{M}=I$ and $E_{\lambda+0}=E_{\lambda}$ for all $\lambda \in \mathbb{R}$;
c) We have the representation

$$
A=\int_{m-0}^{M} \lambda d E_{\lambda}
$$

More generally, for every continuous complex-valued function φ defined on \mathbb{R} and for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\left\|\varphi(A)-\sum_{k=1}^{n} \varphi\left(\lambda_{k}^{\prime}\right)\left[E_{\lambda_{k}}-E_{\lambda_{k-1}}\right]\right\| \leq \varepsilon
$$

whenever

$$
\left\{\begin{array}{l}
\lambda_{0}<m=\lambda_{1}<\ldots<\lambda_{n-1}<\lambda_{n}=M \\
\lambda_{k}-\lambda_{k-1} \leq \delta \text { for } 1 \leq k \leq n \\
\lambda_{k}^{\prime} \in\left[\lambda_{k-1}, \lambda_{k}\right] \text { for } 1 \leq k \leq n
\end{array}\right.
$$

this means that

$$
\begin{equation*}
\varphi(A)=\int_{m-0}^{M} \varphi(\lambda) d E_{\lambda} \tag{4.2}
\end{equation*}
$$

where the integral is of Riemann-Stieltjes type.
Corollary 5. With the assumptions of Theorem 4 for A, E_{λ} and φ we have the representations

$$
\varphi(A) x=\int_{m-0}^{M} \varphi(\lambda) d E_{\lambda} x \quad \text { for all } x \in H
$$

and

$$
\begin{equation*}
\langle\varphi(A) x, y\rangle=\int_{m-0}^{M} \varphi(\lambda) d\left\langle E_{\lambda} x, y\right\rangle \quad \text { for all } x, y \in H \tag{4.3}
\end{equation*}
$$

In particular,

$$
\langle\varphi(A) x, x\rangle=\int_{m-0}^{M} \varphi(\lambda) d\left\langle E_{\lambda} x, x\right\rangle \quad \text { for all } x \in H
$$

Moreover, we have the equality

$$
\|\varphi(A) x\|^{2}=\int_{m-0}^{M}|\varphi(\lambda)|^{2} d\left\|E_{\lambda} x\right\|^{2} \quad \text { for all } x \in H
$$

We need the following result that provides an upper bound for the total variation of the function $\mathbb{R} \ni \lambda \mapsto\left\langle E_{\lambda} x, y\right\rangle \in \mathbb{C}$ on an interval $[\alpha, \beta]$, see [23].

Lemma 3. Let $\left\{E_{\lambda}\right\}_{\lambda \in \mathbb{R}}$ be the spectral family of the bounded selfadjoint operator A. Then for any $x, y \in H$ and $\alpha<\beta$ we have the inequality

$$
\begin{equation*}
\left[\bigvee_{\alpha}^{\beta}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right]^{2} \leq\left\langle\left(E_{\beta}-E_{\alpha}\right) x, x\right\rangle\left\langle\left(E_{\beta}-E_{\alpha}\right) y, y\right\rangle \tag{4.4}
\end{equation*}
$$

where $\bigvee_{\alpha}^{\beta}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)$ denotes the total variation of the function $\left\langle E_{(\cdot)} x, y\right\rangle$ on $[\alpha, \beta]$.
Remark 3. For $\alpha=m-\varepsilon$ with $\varepsilon>0$ and $\beta=M$ we get from (3.1) the inequality

$$
\begin{equation*}
\bigvee_{m-\varepsilon}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \leq\left\langle\left(I-E_{m-\varepsilon}\right) x, x\right\rangle^{1 / 2}\left\langle\left(I-E_{m-\varepsilon}\right) y, y\right\rangle^{1 / 2} \tag{4.5}
\end{equation*}
$$

for any $x, y \in H$.
This implies, for any $x, y \in H$, that

$$
\begin{equation*}
\bigvee_{m-0}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \leq\|x\|\|y\| \tag{4.6}
\end{equation*}
$$

where $\bigvee_{m-0}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)$ denotes the limit $\lim _{\varepsilon \rightarrow 0+}\left[\bigvee_{m-\varepsilon}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right]$.
We can state the following result for functions of selfadjoint operators:
Theorem 5. Let A be a bounded selfadjoint operator on the Hilbert space H and let $m=\min \{\lambda \mid \lambda \in S p(A)\}=: \min \operatorname{Sp}(A)$ and $M=\max \{\lambda \mid \lambda \in S p(A)\}$ $=: \max \operatorname{Sp}(A)$. If $\left\{E_{\lambda}\right\}_{\lambda \in \mathbb{R}}$ is the spectral family of the bounded selfadjoint operator A and $f: I \rightarrow \mathbb{C}$ is absolutely continuous on $[m, M] \subset \stackrel{\circ}{I}$ (the interior of I), then

$$
\begin{align*}
\left|\left\langle\left[\frac{f(M)\left(A-m 1_{H}\right)+f(m)\left(M 1_{H}-A\right)}{M-m}-f(A)\right] x, y\right\rangle\right| \tag{4.7}\\
\leq \frac{1}{2} \bigvee_{m-0}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\left\{\begin{array}{l}
(M-m) \text { ess } \sup _{t \in[m, M]}\left|f^{\prime}(t)-\frac{f(M)-f(m)}{M-m}\right| \\
\\
(M-m)^{\frac{1}{q}}\left(\int_{m}^{M}\left|f^{\prime}(t)-\frac{f(M)-f(m)}{M-m}\right|^{p} d t\right)^{\frac{1}{p}} \\
\\
\int_{m}^{M}\left|f^{\prime}(t)-\frac{f(M)-f(m)}{M-m}\right| d t
\end{array}\right. \\
\leq \frac{1}{2}\|x\|\|y\|\left\{\begin{array}{l}
(M-m) e s s \sup _{t \in[m, M]}\left|f^{\prime}(t)-\frac{f(M)-f(m)}{M-m}\right| \\
(M-m)^{\frac{1}{q}}\left(\int_{m}^{M}\left|f^{\prime}(t)-\frac{f(M)-f(m)}{M-m}\right|^{p} d t\right)^{\frac{1}{p}} \\
\int_{m}^{M}\left|f^{\prime}(t)-\frac{f(M)-f(m)}{M-m}\right| d t
\end{array}\right.
\end{align*}
$$

for any $x, y \in H$.

Proof. Utilising the representation (2.1) and the inequality (3.5) we have

$$
\begin{aligned}
& \left|\int_{m-\varepsilon}^{M}\left[\frac{f(M)(t-m+\varepsilon)+f(m-\varepsilon)(M-t)}{M-m+\varepsilon}-f(t)\right] d\left\langle E_{t} x, y\right\rangle\right| \\
\leq & \frac{1}{2} \bigvee_{m-\varepsilon}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\left\{\begin{array}{l}
(M-m+\varepsilon) e s s \sup _{t \in[m-\varepsilon, M]}\left|f^{\prime}(t)-\frac{f(M)-f(m-\varepsilon)}{M-m+\varepsilon}\right| \\
(M-m+\varepsilon)^{\frac{1}{q}}\left(\int_{m-\varepsilon}^{M}\left|f^{\prime}(t)-\frac{f(M)-f(m-\varepsilon)}{M-m+\varepsilon}\right|^{p} d t\right)^{\frac{1}{p}} \\
\int_{m-\varepsilon}^{M}\left|f^{\prime}(t)-\frac{f(M)-f(m-\varepsilon)}{M-m+\varepsilon}\right| d t
\end{array}\right.
\end{aligned}
$$

for small $\varepsilon>0$ and for any $x, y \in H$.
Taking the limit over $\varepsilon \rightarrow 0+$ and using the continuity of f and the Spectral Representation Theorem, we deduce the desired result (4.7).

For recent results concerning inequalities for functions of selfadjoint operators, see [1], [14], [15], [16], [17], [18], [19], [23], [33], [37], [38], [41] and the books [21], [22] and [27].

5. Applications for Unitary Operators

A unitary operator is a bounded linear operator $U: H \rightarrow H$ on a Hilbert space H satisfying

$$
U^{*} U=U U^{*}=1_{H}
$$

where U^{*} is the adjoint of U, and $1_{H}: H \rightarrow H$ is the identity operator. This property is equivalent to the following:
(i) U preserves the inner product $\langle\cdot, \cdot\rangle$ of the Hilbert space, i.e., for all vectors x and y in the Hilbert space, $\langle U x, U y\rangle=\langle x, y\rangle$ and
(ii) U is surjective.

The following result is well known [29, p. $275-$ p. 276]:
Theorem 6 (Spectral Representation Theorem). Let U be a unitary operator on the Hilbert space H. Then there exists a family of projections $\left\{P_{\lambda}\right\}_{\lambda \in[0,2 \pi]}$, called the spectral family of U, with the following properties
a) $P_{\lambda} \leq P_{\lambda^{\prime}}$ for $\lambda \leq \lambda^{\prime}$;
b) $P_{0}=0, P_{2 \pi}=I$ and $P_{\lambda+0}=P_{\lambda}$ for all $\lambda \in[0,2 \pi)$;
c) We have the representation

$$
U=\int_{0}^{2 \pi} \exp (i \lambda) d P_{\lambda}
$$

More generally, for every continuous complex-valued function φ defined on the unit circle $\mathcal{C}(0,1)$ and for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\left\|\varphi(U)-\sum_{k=1}^{n} \varphi\left(\exp \left(i \lambda_{k}^{\prime}\right)\right)\left[P_{\lambda_{k}}-P_{\lambda_{k-1}}\right]\right\| \leq \varepsilon
$$

whenever

$$
\left\{\begin{array}{l}
0=\lambda_{1}<\ldots<\lambda_{n-1}<\lambda_{n}=2 \pi \\
\lambda_{k}-\lambda_{k-1} \leq \delta \text { for } 1 \leq k \leq n \\
\lambda_{k}^{\prime} \in\left[\lambda_{k-1}, \lambda_{k}\right] \text { for } 1 \leq k \leq n
\end{array}\right.
$$

this means that

$$
\begin{equation*}
\varphi(U)=\int_{0}^{2 \pi} \varphi(\exp (i \lambda)) d P_{\lambda} \tag{5.1}
\end{equation*}
$$

where the integral is of Riemann-Stieltjes type.
Corollary 6. With the assumptions of Theorem 6 for U, P_{λ} and φ we have the representations

$$
\varphi(U) x=\int_{0}^{2 \pi} \varphi(\exp (i \lambda)) d P_{\lambda} x \quad \text { for all } x \in H
$$

and

$$
\begin{equation*}
\langle\varphi(U) x, y\rangle=\int_{0}^{2 \pi} \varphi(\exp (i \lambda)) d\left\langle P_{\lambda} x, y\right\rangle \quad \text { for all } x, y \in H \tag{5.2}
\end{equation*}
$$

In particular,

$$
\langle\varphi(U) x, x\rangle=\int_{0}^{2 \pi} \varphi(\exp (i \lambda)) d\left\langle P_{\lambda} x, x\right\rangle \quad \text { for all } x \in H
$$

Moreover, we have the equality

$$
\|\varphi(U) x\|^{2}=\int_{0}^{2 \pi}|\varphi(\exp (i \lambda))|^{2} d\left\|P_{\lambda} x\right\|^{2} \quad \text { for all } x \in H
$$

The following result holds:
Theorem 7. Let U be a unitary operator on the Hilbert space H and $\left\{P_{\lambda}\right\}_{\lambda \in[0,2 \pi]}$, the spectral family of U. Let f be a differentiable complex-valued function defined on an open disk containing the unit circle $\mathcal{C}(0,1)$. Then we have

$$
\begin{align*}
& |\langle[2 \pi f(1)-f(U)] x, y\rangle| \tag{5.3}\\
& \leq \frac{1}{2} \bigvee_{0}^{2 \pi}\left(\left\langle P_{(\cdot)} x, y\right\rangle\right)\left\{\begin{array}{l}
2 \pi e s s \sup _{t \in[0,2 \pi]}\left|f^{\prime}\left(e^{i t}\right)\right| \\
(2 \pi)^{\frac{1}{q}}\left(\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right|^{p} d t\right)^{\frac{1}{p}} ; \\
\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right| d t
\end{array}\right. \\
& \leq \frac{1}{2}\|x\|\|y\|\left\{\begin{array}{l}
2 \pi e s s \sup _{t \in[0,2 \pi]}\left|f^{\prime}\left(e^{i t}\right)\right| ; \\
(2 \pi)^{\frac{1}{q}}\left(\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right|^{p} d t\right)^{\frac{1}{p}} \\
\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right| d t
\end{array}\right.
\end{align*}
$$

for all $x, y \in H$.

Proof. Utilising the representation (2.1), the inequality (3.5) and the fact that f is differentiable as a complex function, we have

$$
\begin{align*}
& \left|\int_{0}^{2 \pi}\left[\frac{f\left(e^{i 2 \pi}\right)(t-0)+f\left(e^{0}\right)(2 \pi-t)}{2 \pi}-f\left(e^{i t}\right)\right] d\left\langle P_{\lambda} x, y\right\rangle\right| \tag{5.4}\\
& \leq \frac{1}{2} \bigvee_{0}^{2 \pi}\left(\left\langle P_{(\cdot)} x, y\right\rangle\right)\left\{\begin{array}{l}
2 \pi e s s \sup _{t \in[0,2 \pi]}\left|i e^{i t} f^{\prime}\left(e^{i t}\right)-\frac{f\left(e^{i 2 \pi}\right)-f\left(e^{0}\right)}{2 \pi}\right| \\
(2 \pi)^{\frac{1}{q}}\left(\int_{0}^{2 \pi}\left|i e^{i t} f^{\prime}\left(e^{i t}\right)-\frac{f\left(e^{i 2 \pi}\right)-f\left(e^{0}\right)}{2 \pi}\right|^{p} d t\right)^{\frac{1}{p}} \\
\int_{0}^{2 \pi}\left|i e^{i t} f^{\prime}\left(e^{i t}\right)-\frac{f\left(e^{i 2 \pi}\right)-f\left(e^{0}\right)}{2 \pi}\right| d t
\end{array}\right.
\end{align*}
$$

for all $x, y \in H$.
The inequality (5.4) is equivalent with

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi}\left[f(1)-f\left(e^{i t}\right)\right] d\left\langle P_{\lambda} x, y\right\rangle\right| \\
& \leq \frac{1}{2} \bigvee_{0}^{2 \pi}\left(\left\langle P_{(\cdot)} x, y\right\rangle\right)\left\{\begin{array}{l}
2 \pi e s s \sup _{t \in[0,2 \pi]}\left|f^{\prime}\left(e^{i t}\right)\right| \\
(2 \pi)^{\frac{1}{q}}\left(\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right|^{p} d t\right)^{\frac{1}{p}} \\
\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right| d t
\end{array}\right.
\end{aligned}
$$

and the desired result (5.3) is proved.
Remark 4. Consider the exponential function $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\exp z:=$ $\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$. Then $f^{\prime}(z)=\exp z$ and

$$
\begin{aligned}
\left|f^{\prime}\left(e^{i t}\right)\right| & =|\exp (\cos t+i \sin t)|=\exp (\cos t)|\exp (i \sin t)| \\
& =\exp (\cos t)
\end{aligned}
$$

for $t \in[0,2 \pi]$.
Observe that

$$
\sup _{t \in[0,2 \pi]}\left|f^{\prime}\left(e^{i t}\right)\right|=e
$$

and for $p \geq 1$

$$
\left(\int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i t}\right)\right|^{p} d t\right)^{\frac{1}{p}}=\left(\int_{0}^{2 \pi} \exp (p \cos t) d t\right)^{\frac{1}{p}}=\left[2 \pi I_{0}(p)\right]^{1 / p}
$$

where I_{0} is the modified Bessel function of the first kind, i.e., we recall that

$$
I_{0}(z):=\sum_{m=0}^{\infty} \frac{1}{(m!)^{2}}\left(\frac{z}{2}\right)^{2 m}, z \in \mathbb{C}
$$

Let U be a unitary operator on the Hilbert space H and $\left\{P_{\lambda}\right\}_{\lambda \in[0,2 \pi]}$, the spectral family of U. Then we have by (5.3)

$$
\begin{align*}
& |\langle[2 \pi e-\exp (U)] x, y\rangle| \tag{5.5}\\
& \leq \pi \bigvee_{0}^{2 \pi}\left(\left\langle P_{(\cdot)} x, y\right\rangle\right)\left\{\begin{array}{l}
e ; \\
\left(I_{0}(p)\right)^{\frac{1}{p}} ; \quad p>1 \\
I_{0}(1) ;
\end{array}\right. \\
& \leq \pi\|x\|\|y\|\left\{\begin{array}{l}
e ; \\
\left(I_{0}(p)\right)^{\frac{1}{p}} ; \quad p>1 \\
I_{0}(1),
\end{array}\right.
\end{align*}
$$

for all $x, y \in H$.

References

[1] R. P. Agarwal and S. S. Dragomir, A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785-3812.
[2] T. M. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley Publishing Comp. Inc., 1975.
[3] P. Cerone and S. S. Dragomir, New bounds for the Čebyšev functional, App. Math. Lett., 18 (2005), 603-611.
[4] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. 38(2007), No. 1, 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Art. 14. [ONLINE http://rgmia.vu.edu.au/v8n2.html].
[5] P. L. Chebyshev, Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[6] X.-L. Cheng and J. Sun, Note on the perturbed trapezoid inequality, J. Ineq. Pure \& Appl. Math., 3(2) (2002), Art. 29. [ONLINE: http://jipam.vu.edu.au/article.php?sid=181].
[7] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral and applications, Korean J. Comput. \& Appl. Math., 7(3) (2000), 611-627.
[8] S. S. Dragomir, Some inequalities for Riemann-Stieltjes integral and applications, Optimisation and Related Topics, Editor: A. Rubinov, Kluwer Academic Publishers, (2000), 197-235.
[9] S. S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral, Nonlinear Analysis, 47(4) (2001), 2333-2340
[10] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, $\mathbf{5}(1)(2001)$, 35-45.
[11] S. S. Dragomir, Sharp bounds of Čebyšev functional for Stieltjes integrals and applications. Bull. Austral. Math. Soc. 67(2) (2003), 257-266.
[12] S. S. Dragomir, New estimates of the Čebyšev functional for Stieltjes integrals and applications, J. Korean Math. Soc., 41(2) (2004), 249-264.
[13] S. S. Dragomir, On the Ostrowski inequality for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$, where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, $\mathbf{5}(2001)$, No. 1, 35-45.
[14] S. S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces. Linear Multilinear Algebra 58 (2010), no. 7-8, 805-814.
[15] S. S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces , Aust. J. Math. Anal. \& Appl. 6(2009), Issue 1, Article 7, pp. 1-58.
[16] S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality. Integral Transforms Spec. Funct. 20 (2009), no. 9-10, 757-767
[17] S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces. J. Inequal. Appl. 2010, Art. ID 496821, 15 pp.
[18] S. S. Dragomir, Vector and operator trapezoidal type inequalities for continuous functions of selfadjoint operators in Hilbert spaces. Electron. J. Linear Algebra 22 (2011), 161-178.
[19] S. S. Dragomir, Approximating n-time differentiable functions of selfadjoint operators in Hilbert spaces by two point Taylor type expansion, Computers and Mathematics with Applications 61 (2011) 2958-2970.
[20] S. S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications, Mathematical and Computer Modelling 54 (2011) 243-260.
[21] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[22] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[23] S. S. Dragomir, Some inequalities for continuous functions of selfadjoint operators in Hilbert spaces, Acta Math. Vietnamica, to appear. Preprint RGMIA Res. Rep. Coll. 15(2012), Art. 16. http://rgmia.org/v15.php.
[24] S. S Dragomir and C. E. M. Pearce, Some inequalities relating to upper and lower bounds for the Riemann-Stieltjes integral. J. Math. Inequal. 3 (2009), no. 4, 607-616.
[25] S. S. Dragomir and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. I. Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987), 61-64, Res. Centre, Acad. SR Romania, Timişoara, 1988. MR1006000 (90k:46048).
[26] S. S. Dragomir, J. Pečarić and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. II. Proceedings of the Third Symposium of Mathematics and its Applications (Timişoara, 1989), 75-78, Rom. Acad., Timişoara, 1990. MR1266442 (94m:46033)
[27] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[28] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x$ -$\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39(1935), 215-226.
[29] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley \& Sons, Inc. -New York, 1969.
[30] X. Li, R. N. Mohapatra and R. S. Rodriguez, Grüss-type inequalities. J. Math. Anal. Appl. 267 (2002), no. 2, 434-443.
[31] Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. Math., 30(4) (2004), 483-489.
[32] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), $\mathbf{1 5}(\mathbf{3 8})(2)(1973), 219-222$.
[33] A. Matković, J. Pečarić and I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications. Linear Algebra Appl. 418 (2006), No. 2-3, 551-564.
[34] C. A. McCarthy, c_{p}, Israel J. Math., 5(1967), 249-271.
[35] A. McD. Mercer, An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 93, 4 pp. (electronic).
[36] P .R. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral, J. Math. Anal. Applic., 344 (2008), 921-926.
[37] B. Mond and J. Pečarić, Convex inequalities in Hilbert spaces, Houston J. Math., 19(1993), 405-420.
[38] B. Mond and J. Pečarić, Classical inequalities for matrix functions, Utilitas Math., 46(1994), 155-166.
[39] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[40] B. G. Pachpatte, On Grüss like integral inequalities via Pompeiu's mean value theorem. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 82, 5 pp. (electronic).
[41] J. Pečarić, J. Mićić and Y. Seo, Inequalities between operator means based on the MondPečarić method. Houston J. Math. 30 (2004), no. 1, 191-207.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 25D10, 47A63.
 Key words and phrases. Absolutely continuous functions, Integral inequalities, Trapezoid inequality, Lebesgue norms, Čebyšev Functional, Grüss inequality, Selfadjoint operators, Functions of selfadjoint operators. Unitary operators, Functions of unitary operators.

