ON HARMONIC REPRESENTATION OF MEANS

ALFRED WITKOWSKI

$$
\begin{aligned}
& \text { Abstract. We characterize continuous, symmetric and homogeneous means } \\
& M \text { that can be represented in the form } \\
& \qquad \frac{1}{M(x, y)}=\int_{0}^{1} \frac{d t}{N\left(\frac{x+y}{2}-t \frac{x-y}{2}, \frac{x+y}{2}+t \frac{x-y}{2}\right)}
\end{aligned}
$$

New inequalities for means are derived from such representation.

1. Introduction, Definitions and notation

In paper [5] we investigated the representation of a symmetric, homogeneous mean $M: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ of the form

$$
\begin{equation*}
M(x, y)=\frac{|x-y|}{2 f\left(\frac{|x-y|}{x+y}\right)} \tag{1}
\end{equation*}
$$

The main observation was that every symmetric, homogeneous mean admits such a representation. The mapping

$$
\begin{equation*}
M(x, y) \leftrightarrow f_{M}(z)=\frac{z}{M(1-z, 1+z)} \tag{2}
\end{equation*}
$$

establishes one-to-one correspondence between the set of symmetric homogeneous means and the set of functions $f:(0,1) \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\frac{z}{1+z} \leq f(z) \leq \frac{z}{1-z}, \tag{3}
\end{equation*}
$$

called Seiffert functions, and the identity

$$
\begin{equation*}
M(x, y)=\frac{|x-y|}{2 f_{M}\left(\frac{|x-y|}{x+y}\right)} \tag{4}
\end{equation*}
$$

holds. Moreover, the formula (1) transforms Seiffert function into a symmetric, homogeneous mean.
Note that the outermost functions in (3) correspond to max and min means.
In this note we discuss the representation of means in the form

$$
\frac{1}{M(x, y)}=\int_{0}^{1} \frac{d t}{N\left(\frac{x+y}{2}+t \frac{x-y}{2}, \frac{x+y}{2}-t \frac{x-y}{2}\right)},
$$

where N is also a homogeneous, symmetric mean.
We shall be using two facts from [5]

Date: October 10, 2013.
2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Seiffert mean, logarithmic mean, Seiffert, harmonic representation, AGM mean.

Property 1. [5, Section 7] If f is a Seiffert mean, then for arbitrary $0<t \leq 1$ the function $f^{\{t\}}$ given by the formula $f^{\{t\}}(z)=\frac{f(t z)}{t}$ is also a Seiffert mean.

Lemma 1.1. If f is a Seiffert function corresponding to the mean M, then $f^{\{t\}}$ is a Seiffert function for

$$
M^{\{t\}}(x, y)=M\left(\frac{x+y}{2}+t \frac{x-y}{2}, \frac{x+y}{2}-t \frac{x-y}{2}\right) .
$$

Proof. Let $z=\frac{|x-y|}{x+y}$. Then by (1) and (2) we have

$$
\begin{aligned}
\frac{|x-y|}{2 f^{\{t\}}(z)} & =\frac{t|x-y|}{2 f(t z)}=\frac{t|x-y| M(1-t z, 1+t z)}{2 t z} \\
& =\frac{x+y}{2} M\left(1-t \frac{|x-y|}{x+y}, 1+t \frac{|x-y|}{x+y}\right)=M^{\{t\}}(x, y)
\end{aligned}
$$

Following [5, Section 5], consider the integral operator on the set of continuous Seiffert functions, defined as

$$
\begin{equation*}
I(f)(z)=\int_{0}^{z} \frac{f(u)}{u} d u \tag{5}
\end{equation*}
$$

Property 2. The operator I has the following properties:

- is monotone - if $f \leq g$, then $I(f) \leq I(g)$,
- preserves convexity - if f is convex, then so is $I(f)$ and for all $0<z<1$ the inequalities $z \leq I(f)(z) \leq f(z)$ hold, ([5, Theorem 5.1]),
- preserves concavity - if f is concave, then so is $I(f)$ and for all $0<z<1$ the inequalities $z \geq I(f)(z) \geq f(z)$ hold, ([5, Theorem 5.1]),
- $I(f)$ is a Seiffert function, ([5, Corollary 5.1]).

The next simple theorem characterizes the functions, which are of the form $I(f)$.
Theorem 1.1. Let g be a real function defined on the interval (0,1). The following conditions are equivalent

- $\lim _{z \rightarrow 0} g(z)=0, g$ is continuously differentiable, and for all $0<z<1$

$$
\begin{equation*}
\frac{1}{1+z} \leq g^{\prime}(z) \leq \frac{1}{1-z} \tag{6}
\end{equation*}
$$

- there exist a continuous Seiffert function f such that $g=I(f)$.

Proof. Multiplying (6) by z we see that $f(z)=z g^{\prime}(z)$ is a continuous Seiffert function and clearly $I(f)=g$.
Conversely, if f is continuous, then $g=I(f)$ is differentiable. Since $\lim _{z \rightarrow 0} f(z) / z=$ 1 we claim $\lim _{z \rightarrow 0} g(z)=0$. Differentiating g we obtain $g^{\prime}(z)=f(z) / z$, which yields (6) because f fulfills (3).

Now we are ready to formulate the main result of this note.

2. Harmonic representation of means

Definition 2.1. We say that a continuous mean N is a harmonic representation of mean M if

$$
\frac{1}{M(x, y)}=\int_{0}^{1} \frac{d t}{N^{\{t\}}(x, y)}
$$

Theorem 2.1. A continuous mean M admits a harmonic representation if and only if its Seiffert function m can be represented as $I(n)$, where n is a continuous Seiffert function.

Proof. Let N be the harmonic representation of M and let $z=\frac{|x-y|}{x+y}$. Denote by m and n the Seiffert functions of M and N respectively. Applying (1) and (2) we have

$$
\begin{aligned}
\frac{2}{|x-y|} I(n)(z) & =\frac{2}{|x-y|} \int_{0}^{z} \frac{n(u)}{u} d u=\frac{2}{|x-y|} \int_{0}^{1} n^{\{t\}}(z) d t \\
& =\int_{0}^{1} \frac{d t}{N^{\{t\}}(x, y)}=\frac{1}{M(x, y)}=\frac{2}{|x-y|} m(z)
\end{aligned}
$$

which yields $m=I(n)$. Conversely, if $m=I(n)$ and N is a mean corresponding to n, then

$$
\begin{aligned}
\frac{1}{M(x, y)} & =\frac{2}{|x-y|} m(z)=\frac{2}{|x-y|} I(n)(z)=\frac{2}{|x-y|} \int_{0}^{z} \frac{n(u)}{u} d u \\
& =\frac{2}{|x-y|} \int_{0}^{1} n^{\{t\}}(z) d t=\int_{0}^{1} \frac{d t}{N^{\{t\}}(x, y)}
\end{aligned}
$$

From (3) we obtain by integration the inequalities

$$
\begin{equation*}
\log (1+z) \leq I(f)(z) \leq-\log (1-z) \tag{7}
\end{equation*}
$$

which shows, that every mean admitting harmonic representation satisfies the inequalities

$$
\frac{|x-y|}{2(\log A(x, y)-\log \min (x, y))} \leq M(x, y) \leq \frac{|x-y|}{2(\log \max (x, y)-\log A(x, y))}
$$

The inverse statement is not true. It is easy to construct a function satisfying (7) for which (6) fails.

3. Examples I

Example 3.1. The Seiffert function of the Seiffert mean $P(x, y)=\frac{|x-y|}{2 \arcsin z}$ is obviously arcsin. Let $g(z)=\frac{z}{\sqrt{1-z^{2}}}$. Then $\arcsin =I(g)$ and g is the Seiffert function of the geometric mean $G(x, y)=\sqrt{x y}$. Thus we obtain the identity

$$
P(x, y)=\left(\int_{0}^{1} \frac{d t}{G^{\{t\}}(x, y)}\right)^{-1}
$$

Example 3.2. The second Seiffert mean is given by $T(x, y)=\frac{|x-y|}{2 \arctan z}$. Let $C(x, y)=\frac{x^{2}+y^{2}}{x+y}$ be the contra-harmonic mean. Its Seiffert function is $c(z)=\frac{z}{1+z^{2}}$ and one can easily verify that $I(c)=\arctan$, so

$$
T(x, y)=\left(\int_{0}^{1} \frac{d t}{C^{\{t\}}(x, y)}\right)^{-1}
$$

Example 3.3. For the logarithmic mean $L(x, y)=\frac{x-y}{\log x-\log y}=\frac{|x-y|}{2 \operatorname{artanh} z}$ we get

$$
L(x, y)=\left(\int_{0}^{1} \frac{d t}{H^{\{t\}}(x, y)}\right)^{-1}
$$

where $H(x, y)=\frac{2 x y}{x+y}$ denotes the harmonic mean.
Example 3.4. The Seiffert function of the root-mean square $R=\sqrt{\frac{x^{2}+y^{2}}{2}}$ is the function $r(z)=\frac{z}{\sqrt{1+z^{2}}}$, thus $I(r)(z)=\operatorname{arsinh} z$, which in turn is the Seiffert mean of the Neuman-Sándor mean $M(x, y)=\frac{|x-y|}{2 \operatorname{arsinh} z}$, so

$$
M(x, y)=\left(\int_{0}^{1} \frac{d t}{R^{\{t\}}(x, y)}\right)^{-1}
$$

In [5] we have shown that \sin , \tan , \sinh and tanh are also Seiffert function. Let us check if their corresponding means admit harmonic representations. To do it we shall use Theorems 1.1 and 2.1

Example 3.5. For $g(z)=\sin z$ we want to show that g^{\prime} satisfies (6). Obviously $\cos z<1<1 /(1-z)$. To prove the other part observe that

$$
(1+z) \cos z>(1+z)\left(1-z^{2} / 2\right)>1+z(1-z / 2)>1
$$

thus (6) holds, and one easily verifies that $z \cos z$ is the Seiffert function of the mean $M(x, y)=A(x, y) / \cos \frac{|x-y|}{x+y}$, which implies

$$
\frac{x-y}{2 \sin \frac{x-y}{x+y}}=\left(\int_{0}^{1} \frac{d t}{M^{\{t\}}(x, y)}\right)^{-1}
$$

Example 3.6. Now let $g(z)=\tan z$. We have

$$
\frac{1}{1+z}<1<\frac{1}{\cos ^{2} z}=\frac{1}{(1+\sin z)(1-\sin z)}<\frac{1}{1-z}
$$

so $z / \cos ^{2} z$ is the Seiffert function. It corresponds to the mean $M(x, y)=A(x, y) \cos ^{2} \frac{|x-y|}{x+y}$ and

$$
\frac{x-y}{2 \tan \frac{x-y}{x+y}}=\left(\int_{0}^{1} \frac{d t}{M^{\{t\}}(x, y)}\right)^{-1}
$$

Example 3.7. With the hyperbolic sine the situation is simple. We have

$$
1<\cosh z=\sum_{m=0}^{\infty} \frac{z^{2 m}}{(2 m)!}<\sum_{m=0}^{\infty} z^{m}=\frac{1}{1-z}
$$

thus $z \cosh z$ is the Seiffert function, and its mean $M(x, y)=A(x, y) / \cosh \frac{|x-y|}{x+y}$ satisfies

$$
\frac{x-y}{2 \sinh \frac{x-y}{x+y}}=\left(\int_{0}^{1} \frac{d t}{M^{\{t\}}(x, y)}\right)^{-1}
$$

Example 3.8. The last function is the hyperbolic tangent. Its derivative is $\cosh ^{-2} z$ and $\cosh ^{-2}(1) \approx 0.41997<\frac{1}{2}$, so the left inequality in (6) does not hold, and this yields the mean $\frac{x-y}{2 \sinh \frac{x-y}{x+y}}$ does not have a harmonic representation.

We leave as a simple exercise the fact that there is no harmonic representation of the geometric mean.

4. The arithmetic-geometric mean

This section is devoted to the arithmetic-geometric mean given by the formula

$$
A G M(x, y)=\left(\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{d \varphi}{\sqrt{x^{2} \cos ^{2} \varphi+y^{2} \sin ^{2} \varphi}}\right)^{-1}
$$

To find its Seiffert mean let us recall the famous result of Gauss [3]

$$
\begin{equation*}
A G M(1-z, 1+z)=\frac{\pi}{2 K(z)} \tag{8}
\end{equation*}
$$

where K is the complete elliptic integral of the first kind

$$
\begin{equation*}
K(z)=\int_{0}^{\pi / 2} \frac{d \varphi}{\sqrt{1-z^{2} \sin ^{2} \varphi}}=\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-z^{2} t^{2}}} \tag{9}
\end{equation*}
$$

Comparing (8) and (2) we see that $f_{A G M}(z)=\frac{2}{\pi} z K(z)$. We shall show that $A G M$ admits the harmonic representation. By Theorem 1.1 it is enough to show that $f_{A G M}^{\prime}$ satisfies (6). To this end let us recall the power series expansion of K ([2, 900.00])

$$
\begin{equation*}
K(z)=\frac{\pi}{2}\left(1+\sum_{m=1}^{\infty}\left[\frac{(2 m-1)!!}{(2 m)!!}\right]^{2} z^{2 m}\right) \tag{10}
\end{equation*}
$$

We have

$$
\begin{equation*}
f_{A G M}^{\prime}(z)=\frac{2}{\pi}\left(K(z)+z \frac{d K}{d z}\right)=1+\sum_{m=1}^{\infty}(2 m+1)\left[\frac{(2 m-1)!!}{(2 m)!!}\right]^{2} z^{2 m} \tag{11}
\end{equation*}
$$

Denoting the $m^{\text {th }}$ coefficient in (11) by c_{m} we see that

$$
\frac{c_{m+1}}{c_{m}}=\frac{2 m+3}{2 m+1}\left[\frac{(2 m+1)!!((2 m)!!}{(2 m+2)!!(2 m-1)!!}\right]^{2}=\frac{(2 m+1)(2 m+3)}{(2 m+2)^{2}}<1
$$

and since $c_{1}=3 / 4$ we conclude that $c_{m}<1$ for all ≥ 1. Thus $1<f_{A G M}^{\prime}(z)<$ $1+z+z^{2}+\cdots=1 /(1-z)$.
Theorem 1.1 implies that the arithmetic-geometric mean admits the harmonic representation. To derive its explicit form, recall that the derivative of K is given by $K^{\prime}(z)=\frac{E(z)}{z\left(1-z^{2}\right)}-\frac{K(z)}{z}$ (see. e.g. $\left.[2,710.00]\right)$, thus

$$
z f_{A G M}^{\prime}(z)=\frac{2}{\pi}\left(z K(z)+z^{2} K^{\prime}(z)\right)=\frac{2}{\pi} \frac{z}{1-z^{2}} E(z)
$$

$\left(E(z)=\int_{0}^{\pi / 2} \sqrt{1-z^{2} \sin ^{2} \varphi} d \varphi\right.$ is the complete elliptic integral of the second kind). As $\frac{z}{1-z^{2}}$ is the Seiffert function of the harmonic mean we obtain the formula

$$
\begin{aligned}
V(x, y) & =\frac{\pi H(x, y)}{2 E\left(\frac{|x-y|}{x+y}\right)}=\frac{\pi H(x, y)}{2 E\left(\sqrt{1-\frac{G^{2}(x, y)}{A^{2}(x, y)}}\right)} \\
& =\frac{\pi G^{2}(x, y)}{2 \int_{0}^{\pi / 2} \sqrt{A^{2}(x, y) \cos ^{2} \varphi+G^{2}(x, y) \sin ^{2} \varphi} d \varphi}
\end{aligned}
$$

This mean has a nice geometric interpretation: in the ellipsis with semi-axes $G(x, y)$ and $A(x, y)$ it represents the ratio of the area of inscribed disc to its semi-perimeter.

5. Hermite-Hadamard inequality for means

The Hermite-Hadamard inequality in its classic form says that if f is a convex function in an interval I, then for all $a, b \in I$

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}
$$

A stronger inequality also holds

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right]
$$

Suppose now that the mean N is the harmonic representation of M and its Seiffert function n is such that the function $n(u) / u$ is convex. Then, applying the Hermite-Hadamard inequality to (5) and taking into account that $\lim _{u \rightarrow 0} n(u) / u=$ 1 we obtain

$$
\begin{equation*}
2 n(z / 2) \leq I(n)(z) \leq \frac{z+n(z)}{2} \tag{12}
\end{equation*}
$$

This yields (with help of (2)) the inequalities for means

$$
\begin{equation*}
H(A(x, y), N(x, y)) \leq M(x, y) \leq N\left(\frac{3 x+y}{4}, \frac{x+3 y}{4}\right) \tag{13}
\end{equation*}
$$

The stronger version of the Hermite-Hadamard reads in this case:

$$
\begin{equation*}
I(n)(z) \leq \frac{1}{2}\left[2 n(z / 2)+\frac{z+n(z)}{2}\right] \tag{14}
\end{equation*}
$$

which yields

$$
\begin{equation*}
H\left(A(x, y), N^{\{1 / 2\}}(x, y), N^{\{1 / 2\}}(x, y), N(x, y)\right) \leq M(x, y) \leq N\left(\frac{3 x+y}{4}, \frac{x+3 y}{4}\right) \tag{15}
\end{equation*}
$$

Obviously, if $n(u) / u$ is concave, the inequalities in (12)-(15) are reversed.
In the above we use the Hermite-Hadamard inequality with the left end fixed, so it may happen that (12) holds even if $n(u) / u$ is not convex. Of course, in such case an individual treatment would be required.

6. Examples II

Example 6.1. Let $N=G$. By Example 3.1 we know that $M=P$ is the first Seiffert mean. Since $n(u) / u=\left(1-u^{2}\right)^{-1 / 2}$ is convex and $G^{\{1 / 2\}}=\sqrt{3 A^{2}+G^{2}} / 2$, (13) and (14) yield

$$
\frac{2 A G}{A+G} \leq 2\left(\frac{2}{\sqrt{3 A^{2}+G^{2}}}+\frac{A+G}{2}\right)^{-1} \leq P \leq \frac{\sqrt{3 A^{2}+G^{2}}}{2}
$$

Example 6.2. The Seiffert function c from Example 3.2 does not satisfy the convexity condition, but the reversed inequalities in (12) hold anyway, by the following lemma.

Lemma 6.1. The inequalities

$$
\frac{4 u}{4+u^{2}}>\arctan u>u \frac{2+u^{2}}{2+2 u^{2}}
$$

hold for $0<u<1$

Proof. Let $h(u)=\frac{4 u}{4+u^{2}}-\arctan u$. As $h(0)=0$ and $h^{\prime}(u)=\frac{u^{2}\left(4-5 u^{2}\right)}{\left(u^{2}+1\right)\left(u^{2}+4\right)^{2}}$ we see that h has local maximum at $u=2 / \sqrt{5}$ and since $h(1)>0$ we conclude that $h(u)>0$.

Let now $h(u)=\arctan u-u \frac{2+u^{2}}{2+2 u^{2}}$. Then $h(0)=0$ and $h^{\prime}(u)=\frac{u^{2}\left(1-u^{2}\right)}{2\left(x^{2}+1\right)^{2}}>0$, and the proof is complete.

Thus for the contraharmonic mean and the second Seiffert mean we have

$$
C^{\{1 / 2\}}=\frac{5 A^{2}-G^{2}}{4 A} \leq T \leq H(A, C)
$$

Example 6.3. The pair $(M, N)=(L, H)$ (see Example 3.3) gives the inequalities

$$
\frac{2 G^{2} A}{A^{2}+G^{2}} \leq \frac{4 A G^{2}\left(3 A^{2}+G^{2}\right)}{3 A^{4}+12 A^{2} G^{2}+G^{4}} \leq L \leq \frac{3 A^{2}+G^{2}}{4 A}
$$

Example 6.4. For the root-mean square and Neuman-Sándor means (Example 3.4) the convexity condition is not satisfied, but the following lemma shows that the reversed inequalities (12) are valid.

Lemma 6.2. For $0<u<1$ the inequalities

$$
\frac{2 u}{\sqrt{u^{2}+4}} \geq \operatorname{arsinh} u \geq \frac{u}{2}+\frac{u}{2 \sqrt{u^{2}+1}}
$$

hold.
Proof. To prove the left inequality it suffices to show that the function $h(u)=$ $\operatorname{arsinh} u-\frac{2 u}{\sqrt{u^{2}+4}}$ decreases, because $h(0)=0$. Differentiating we obtain

$$
\begin{equation*}
h^{\prime}(u)=\frac{\left(u^{2}+4\right)^{3 / 2}-8\left(u^{2}+1\right)^{1 / 2}}{\left(u^{2}+4\right)^{3 / 2}\left(u^{2}+1\right)^{1 / 2}} \tag{16}
\end{equation*}
$$

Let p denote the numerator in (16). Then $p^{\prime}(u)=u\left(3 \sqrt{\left.u^{2}+4\right)}-\frac{8}{\sqrt{u^{2}+1}}\right):=$ $u q(u)$. The function q is a difference of an increasing and decreasing function, thus increases from $q(0)=-2$ to $q(1)=3 \sqrt{5}-4 \sqrt{2}>0$, so we conclude that p has one local minimum in the interval $(0,1)$. Since $p(0)=0$ and $p(1)=\sqrt{125}-\sqrt{128}<0$ we see that $p(u)<0$ for all u, thus $h^{\prime}(u)<0$ and we are done.

For the right inequality the method is similar:

$$
\begin{aligned}
h(u)=\frac{u}{2}+\frac{u}{2 \sqrt{u^{2}+1}}-\operatorname{arsinh} u, & h^{\prime}(u)=\frac{\left(u^{2}+1\right)^{3 / 2}-\left(2 u^{2}+1\right)}{2\left(u^{2}+1\right)^{3 / 2}} \\
p(u)=\left(u^{2}+1\right)^{3 / 2}-\left(2 u^{2}+1\right), & p^{\prime}(u)=u\left(3 \sqrt{u^{2}+1}-4\right):=u q(u)
\end{aligned}
$$

As above, q increases from -1 to $3 \sqrt{2}-4$, so p has one local minimum, and since $p(0)=0$ and $p(1)=\sqrt{8}-3<0$ we conclude $h^{\prime}<0$.

Thus for the Neuman-Sándor mean $M(x, y)=\frac{|x-y|}{2 \operatorname{arsinh} \frac{|x-y|}{x+y}}$ the inequality (13) in this case reads

$$
R^{\{1 / 2\}}=\frac{\sqrt{5 A^{2}-G^{2}}}{2} \leq M \leq H(A, R)
$$

Example 6.5. In Example 3.5 we consider the Seiffert functions $m(z)=\sin z$ and $n(z)=z \cos z$. Clearly $n(z) / z$ is concave and thus

$$
\frac{x+y}{2 \cos \frac{1}{2} \frac{|x-y|}{x+y}} \leq \frac{|x-y|}{2 \sin \frac{|x-y|}{x+y}} \leq \frac{x+y}{1+\cos \frac{|x-y|}{x+y}}
$$

Example 6.6. The function $\frac{1}{\cos ^{2} z}$ is convex, thus we can apply (12) to the functions from Example 3.6 to obtain

$$
\frac{(x+y) \cos ^{2} \frac{|x-y|}{x+y}}{1+\cos ^{2} \frac{|x-y|}{x+y}} \leq \frac{|x-y|}{2 \tan \frac{|x-y|}{x+y}} \leq A(x, y) \cos ^{2} \frac{1}{2} \frac{|x-y|}{x+y}
$$

Example 6.7. In Example 3.7 the function cosh is convex, so we get

$$
\frac{x+y}{1+\cosh \frac{|x-y|}{x+y}} \leq \frac{|x-y|}{2 \sinh \frac{|x-y|}{x+y}} \leq \frac{x+y}{2 \cosh \frac{1}{2} \frac{|x-y|}{x+y}}
$$

Example 6.8. In this example we deal with the $A G M$ mean and its harmonic representation V described in Section 4. The Seiffert mean of V is $v(z)=\frac{2}{\pi} \frac{z}{1-z^{2}} E(z)$, so

$$
\begin{equation*}
\frac{v(z)}{z}=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{\sqrt{1-z^{2} \sin ^{2} \varphi}}{1-z^{2}} d \varphi \tag{17}
\end{equation*}
$$

We shall show that this function is convex. For $0<a<1$ let $h_{a}(u)=\frac{\sqrt{1-a u^{2}}}{\sqrt{1-u^{2}}}$. Then

$$
h_{a}^{\prime}(u)=\frac{(1-a) u}{\left(1-a u^{2}\right)^{1 / 2}\left(1-u^{2}\right)^{3 / 2}}
$$

Note the h_{a}^{\prime} is nonnegative and increasing, since its numerator increases while denominator decreases. Thus h_{a} is positive, increasing and convex. The function $g(u)=1 / \sqrt{\left(1-u^{2}\right)}$ shares the same properties, so their product is convex [4, Theorem I.13C]. Since the integrands in (17) are convex, so is the left-hand side. Therefore by (13)

$$
\frac{2 A V}{A+V} \leq A G M \leq V^{\{1 / 2\}}
$$

References

[1] J.M. Borwein, P.B. Borwein, Pi and the AGM, John Wiley \& Sons, New York 1987.
[2] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971.
[3] C.F. Gauss, Werke, Bd. 3, Königlichen Gesell. Wiss., Göttingen, 1876, pp. 361-403.
[4] A.W. Rogers, D.E.Varberg, Convex Functions, Academic Press, New York and London, 1973
[5] A. Witkowski. On Seiffert-like means. arXiv:1309.1244 [math.CA], June 2013.
Institute of Mathematics and Physics, University of Technology and Life Sciences, Al. prof. Kaliskiego 7, 85-796 Bydgoszcz, Poland

E-mail address: alfred.witkowski@utp.edu.pl

