# ANOTHER OSTROWSKI TYPE INEQUALITY VIA POMPEIU'S MEAN VALUE THEOREM

#### S. S. DRAGOMIR<sup>1,2</sup>

ABSTRACT. In this paper, a new Ostrowski type inequality via Pompeiu's mean value theorem is proved. Some applications for special means are also given.

## 1. Introduction

In 1946, Pompeiu [6] derived a variant of Lagrange's mean value theorem, now known as *Pompeiu's mean value theorem* (see also [8, p. 83]).

**Theorem 1** (Pompeiu, 1946 [6]). For every real valued function f differentiable on an interval [a,b] not containing 0 and for all pairs  $x_1 \neq x_2$  in [a,b], there exists a point  $\xi$  between  $x_1$  and  $x_2$  such that

(1.1) 
$$\frac{x_1 f(x_2) - x_2 f(x_1)}{x_1 - x_2} = f(\xi) - \xi f'(\xi).$$

Following [6, p. 84 - 85], we will mention here a geometrical interpretation of Pompeiu's theorem.

The equation of the secant line joining the points  $(x_1, f(x_1))$  and  $(x_2, f(x_2))$  is given by

$$y = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1).$$

This line intersects the y-axis at the point (0, y), where y is

$$y = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (0 - x_1)$$
$$= \frac{x_1 f(x_2) - x_2 f(x_1)}{x_1 - x_2}.$$

The equation of the tangent line at the point  $(\xi, f(\xi))$  is

$$y = (x - \xi) f'(\xi) + f(\xi).$$

The tangent line intersects the y-axis at the point (0, y), where

$$y = -\xi f'(\xi) + f(\xi).$$

Hence, the geometric meaning of Pompeiu's mean value theorem is that the tangent of the point  $(\xi, f(\xi))$  intersects on the y-axis at the same point as the secant line connecting the points  $(x_1, f(x_1))$  and  $(x_2, f(x_2))$ .

In 1938, A. Ostrowski [4] proved the following result in the estimating the integral mean:

1

 $<sup>1991\</sup> Mathematics\ Subject\ Classification.\quad 25 D10,\ 25 D10.$ 

 $Key\ words\ and\ phrases.$  Ostrowski inequality, Pompeiu's mean inequality, Integral inequalities, Special means.

**Theorem 2** (Ostrowski, 1938 [4]). Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b) with  $|f'(t)| \leq M < \infty$  for all  $t \in (a,b)$ . Then for any  $x \in [a,b]$ , we have the inequality

$$(1.2) \left| f\left(x\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right| \leq \left[ \frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a}\right)^{2} \right] M\left(b-a\right).$$

The constant  $\frac{1}{4}$  is best possible in the sense that it cannot be replaced by a smaller quantity.

In order to provide another approximation of the integral mean, by making use of the Pompeiu's mean value theorem, the author proved the following result:

**Theorem 3** (Dragomir, 2005 [3]). Let  $f : [a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b) with [a,b] not containing 0. Then for any  $x \in [a,b]$ , we have the inequality

(1.3) 
$$\left| \frac{a+b}{2} \cdot \frac{f(x)}{x} - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{b-a}{|x|} \left[ \frac{1}{4} + \left( \frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] \|f - \ell f'\|_{\infty},$$

where  $\ell(t) = t, t \in [a, b]$ .

The constant  $\frac{1}{4}$  is sharp in the sense that it cannot be replaced by a smaller constant.

In [7], E. C. Popa using a mean value theorem obtained a generalization of (1.3) as follows:

**Theorem 4** (Popa, 2007 [7]). Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b). Assume that  $\alpha \notin [a,b]$ . Then for any  $x \in [a,b]$ , we have the inequality

(1.4) 
$$\left| \left( \frac{a+b}{2} - \alpha \right) f(x) + \frac{\alpha - x}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \left[ \frac{1}{4} + \left( \frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \|f - \ell_{\alpha} f'\|_{\infty},$$

where  $\ell_{\alpha}(t) = t - \alpha, t \in [a, b]$ .

In [5], J. Pečarić and S. Ungar have proved a general estimate with the *p*-norm,  $1 \le p \le \infty$  which for  $p = \infty$  give Dragomir's result.

**Theorem 5** (Pečarić & Ungar, 2006 [5]). Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b) with 0 < a < b. Then for  $1 \le p,q \le \infty$  with  $\frac{1}{p} + \frac{1}{q} = 1$  we have the inequality

$$\left| \frac{a+b}{2} \cdot \frac{f(x)}{x} - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq PU(x,p) \left\| f - \ell f' \right\|_{p},$$

for  $x \in [a, b]$ , where

$$PU(x,p) := (b-a)^{\frac{1}{p}-1} \left[ \left( \frac{a^{2-q} - x^{2-q}}{(1-2q)(2-q)} + \frac{x^{2-q} - a^{1+q}x^{1-2q}}{(1-2q)(1+q)} \right)^{1/q} + \left( \frac{b^{2-q} - x^{2-q}}{(1-2q)(2-q)} + \frac{x^{2-q} - b^{1+q}x^{1-2q}}{(1-2q)(1+q)} \right)^{1/q} \right].$$

In the cases  $(p,q) = (1,\infty)$ ,  $(\infty,1)$  and (2,2) the quantity PU(x,p) has to be taken as the limit as  $p \to 1, \infty$  and 2, respectively.

For other inequalities in terms of the *p*-norm of the quantity  $f - \ell_{\alpha} f'$ , where  $\ell_{\alpha}(t) = t - \alpha$ ,  $t \in [a, b]$  and  $\alpha \notin [a, b]$  see [1] and [2].

In this paper, a new Ostrowski type inequality via Pompeiu's mean value theorem is proved. Applications for special means are also given.

### 2. Another Ostrowski Type Inequality Via Pompeiu's Result

The following new result holds.

**Theorem 6.** Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b) with b > a > 0. Then for any  $x \in [a,b]$ , we have the inequality

(2.1) 
$$\left| \frac{f(x)}{x} - \frac{1}{b-a} \int_{a}^{b} \frac{f(t)}{t} dt \right|$$

$$\leq \frac{2}{b-a} \|f - \ell f'\|_{\infty} \left( \ln \frac{x}{\sqrt{ab}} + \frac{\frac{a+b}{2} - x}{x} \right),$$

where  $\ell(t) = t, t \in [a, b]$ .

The constant 2 is best possible in (2.1).

*Proof.* Applying Pompeiu's mean value theorem [6] (see also [8, p. 83]), for any  $x, t \in [a, b]$ , there is a  $\xi$  between x and t such that

$$tf(x) - xf(t) = [f(\xi) - \xi f'(\xi)](t - x)$$

giving

$$|tf(x) - xf(t)| \le \sup_{\xi \in [a,b]} |f(\xi) - \xi f'(\xi)| |x - t| = ||f - \ell f'||_{\infty} |x - t|$$

for any  $t, x \in [a, b]$ , or, by dividing with x, t > 0, equivalently to

$$\left| \frac{f(x)}{x} - \frac{f(t)}{t} \right| \le \|f - \ell f'\|_{\infty} \left| \frac{1}{x} - \frac{1}{t} \right|$$

for any  $t, x \in [a, b]$ .

Integrating over  $t \in [a, b]$ , we get

(2.3) 
$$\left| \frac{f(x)}{x} (b-a) - \int_{a}^{b} \frac{f(t)}{t} dt \right| \leq \int_{a}^{b} \left| \frac{f(x)}{x} - \frac{f(t)}{t} \right| dt$$
$$\leq \|f - \ell f'\|_{\infty} \int_{a}^{b} \left| \frac{1}{x} - \frac{1}{t} \right| dt$$

and since

$$\int_{a}^{b} \left| \frac{1}{x} - \frac{1}{t} \right| dt = \left[ \int_{a}^{x} \left( \frac{1}{t} - \frac{1}{x} \right) dt + \int_{x}^{b} \left( \frac{1}{x} - \frac{1}{t} \right) dt \right]$$

$$= \left( \ln \frac{x}{a} - \frac{x - a}{x} + \frac{b - x}{x} - \ln \frac{b}{x} \right)$$

$$= \left( \ln \frac{x^{2}}{ab} + \frac{a + b - 2x}{x} \right)$$

$$= 2 \left( \ln \frac{x}{\sqrt{ab}} + \frac{\frac{a + b}{2} - x}{x} \right)$$

for any  $x \in [a, b]$ , then we deduce from (2.3) the desired result (2.1). Now, assume that (2.1) holds with a constant k > 0, i.e.,

(2.4) 
$$\left| \frac{f(x)}{x} - \frac{1}{b-a} \int_{a}^{b} \frac{f(t)}{t} dt \right|$$

$$\leq \frac{k}{b-a} \|f - \ell f'\|_{\infty} \left( \ln \frac{x}{\sqrt{ab}} + \frac{\frac{a+b}{2} - x}{x} \right),$$

for any  $x \in [a, b]$ .

Consider  $f:[a,b] \to \mathbb{R}, f(t) = 1$ . Then

$$||f - \ell f'||_{\infty} = 1, \frac{1}{b-a} \int_{a}^{b} \frac{f(t)}{t} dt = \frac{1}{b-a} \ln \frac{b}{a},$$

and by (2.4) we deduce

$$\left| \frac{1}{x} - \frac{1}{b-a} \ln \frac{b}{a} \right| \le \frac{k}{b-a} \left( \ln \frac{x}{\sqrt{ab}} + \frac{\frac{a+b}{2} - x}{x} \right)$$

for any  $x \in [a, b]$ .

If we take in this inequality x = a, we get

(2.5) 
$$\left| \frac{1}{a} - \frac{1}{b-a} \ln \frac{b}{a} \right| \le \frac{k}{b-a} \left( \ln \frac{a}{\sqrt{ab}} + \frac{b-a}{2a} \right)$$

$$= \frac{k}{2(b-a)} \left( \ln \frac{a^2}{ab} + \frac{b-a}{a} \right)$$

$$= \frac{k}{2(b-a)} \left( \ln \frac{a}{b} + \frac{b-a}{a} \right).$$

In we multiply (2.5) with 2(b-a) we get

$$2\left|\frac{b-a}{a} - \ln\frac{b}{a}\right| \le k\left(\frac{b-a}{a} - \ln\frac{b}{a}\right)$$

which implies that  $k \geq 2$ .

The following interesting particular case holds.

Corollary 1. With the assumptions in Theorem 6, we have

$$(2.6) \qquad \left| \frac{f\left(\frac{a+b}{2}\right)}{\frac{a+b}{2}} - \frac{1}{b-a} \int_{a}^{b} \frac{f\left(t\right)}{t} dt \right| \leq \frac{2}{b-a} \left\| f - \ell f' \right\|_{\infty} \ln\left(\frac{\frac{a+b}{2}}{\sqrt{ab}}\right).$$

**Remark 1.** If we consider the function  $\psi : [a,b] \to \mathbb{R}$  given by

$$\psi(x) := \ln \frac{x}{\sqrt{ab}} + \frac{\frac{a+b}{2} - x}{x},$$

then we observe that

$$\psi'(x) = \frac{x - \frac{a+b}{2}}{x^2},$$

which shows that

$$\inf_{x \in [a,b]} \psi(x) = \psi\left(\frac{a+b}{2}\right) = \ln\left(\frac{\frac{a+b}{2}}{\sqrt{ab}}\right),\,$$

meaning that the inequality (2.6) is the best possible one can get from (2.1).

**Remark 2.** We can state from (2.1) the following inequality as well:

$$(2.7) \qquad \left| \frac{f\left(\sqrt{ab}\right)}{\sqrt{ab}} - \frac{1}{b-a} \int_{a}^{b} \frac{f\left(t\right)}{t} dt \right| \leq \frac{2}{b-a} \left\| f - \ell f' \right\|_{\infty} \left( \frac{\frac{a+b}{2} - \sqrt{ab}}{\sqrt{ab}} \right).$$

**Corollary 2.** Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b) with b > a > 0. Then we have the inequality

(2.8) 
$$\left| \int_{a}^{b} f(x) dx - \frac{a+b}{2} \int_{a}^{b} \frac{f(t)}{t} dt \right|$$

$$\leq \|f - \ell f'\|_{\infty} \left[ \left( \frac{b^{2} + a^{2}}{2} \right) \frac{\ln b - \ln a}{b-a} - 1 \right].$$

*Proof.* Utilizing (2.1) we have

$$(2.9) \qquad \left| \int_{a}^{b} f(x) dx - \frac{a+b}{2} \int_{a}^{b} \frac{f(t)}{t} dt \right|$$

$$\leq \int_{a}^{b} \left| f(x) - \frac{x}{b-a} \int_{a}^{b} \frac{f(t)}{t} dt \right| dx$$

$$\leq \frac{2}{b-a} \|f - \ell f'\|_{\infty} \left( \int_{a}^{b} x \ln \frac{x}{\sqrt{ab}} dx + \int_{a}^{b} \left( \frac{a+b}{2} - x \right) dx \right)$$

$$= \frac{2}{b-a} \|f - \ell f'\|_{\infty} \int_{a}^{b} x \ln \frac{x}{\sqrt{ab}} dx.$$

6

Since

$$\begin{split} \int_{a}^{b} x \ln \frac{x}{\sqrt{ab}} dx &= \frac{x^{2}}{2} \ln \frac{x}{\sqrt{ab}} \bigg|_{a}^{b} - \frac{1}{2} \int_{a}^{b} x dx \\ &= \frac{b^{2}}{2} \ln \frac{b}{\sqrt{ab}} - \frac{a^{2}}{2} \ln \frac{a}{\sqrt{ab}} - \frac{1}{2} (b - a) \\ &= \frac{b^{2}}{2} \ln \sqrt{\frac{b}{a}} - \frac{a^{2}}{2} \ln \sqrt{\frac{a}{b}} - \frac{1}{2} (b - a) \\ &= \left(\frac{b^{2} + a^{2}}{2}\right) \ln \sqrt{\frac{b}{a}} - \frac{1}{2} (b - a) \\ &= \left(\frac{b^{2} + a^{2}}{4}\right) \ln \frac{b}{a} - \frac{1}{2} (b - a) \,, \end{split}$$

then

$$\frac{2}{b-a} \int_a^b x \ln \frac{x}{\sqrt{ab}} dx = \left(\frac{b^2 + a^2}{2}\right) \frac{\ln b - \ln a}{b-a} - 1$$

and by (2.9) we deduce the desired result (2.8).

## 3. The Weighted Case

We consider now the weighted integral case.

**Theorem 7.** Let  $f:[a,b] \to \mathbb{R}$  be continuous on [a,b] and differentiable on (a,b) with [a,b] with b>a>0. If  $w:[a,b]\to\mathbb{R}$  is nonnegative integrable on [a,b], then for each  $x\in[a,b]$ , we have the inequality:

$$(3.1) \quad \left| \frac{f(x)}{x} \int_{a}^{b} w(t) dt - \int_{a}^{b} \frac{f(t)}{t} w(t) dt \right|$$

$$\leq \|f - \ell f'\|_{\infty} \left[ \int_{a}^{x} \frac{w(t) dt}{t} - \int_{x}^{b} \frac{w(t)}{t} dt + \frac{1}{x} \left( \int_{x}^{b} w(t) dt - \int_{a}^{x} w(t) dt \right) \right].$$

*Proof.* Using the inequality (2.2), we have

$$\begin{split} &\left| \frac{f(x)}{x} \int_{a}^{b} w(t) \, dt - \int_{a}^{b} \frac{f(t)}{t} w(t) \, dt \right| \\ &\leq \int_{a}^{b} \left| \frac{f(x)}{x} - \frac{f(t)}{t} \right| w(t) \, dt \\ &\leq \|f - \ell f'\|_{\infty} \int_{a}^{b} \left| \frac{1}{x} - \frac{1}{t} \right| w(t) \, dt \\ &= \|f - \ell f'\|_{\infty} \left[ \int_{a}^{x} \left( \frac{1}{t} - \frac{1}{x} \right) w(t) \, dt + \int_{x}^{b} \left( \frac{1}{x} - \frac{1}{t} \right) w(t) \, dt \right] \\ &= \|f - \ell f'\|_{\infty} \left[ \int_{a}^{x} \frac{w(t) \, dt}{t} - \frac{1}{x} \int_{a}^{x} w(t) \, dt \right. \\ &+ \frac{1}{x} \int_{x}^{b} w(t) \, dt - \int_{x}^{b} \frac{w(t) \, dt}{t} dt \right] \\ &= \|f - \ell f'\|_{\infty} \left[ \int_{a}^{x} \frac{w(t) \, dt}{t} - \int_{x}^{b} \frac{w(t) \, dt}{t} dt \right. \\ &+ \frac{1}{x} \left( \int_{x}^{b} w(t) \, dt - \int_{a}^{x} w(t) \, dt \right) \right], \end{split}$$

from where we get the desired inequality (3.1).

**Remark 3.** If we take in (3.1) w(t) = t, then we have the following estimate for the integral mean

$$\left| \frac{b^2 - a^2}{2} \cdot \frac{f(x)}{x} - \int_a^b f(t) dt \right|$$

$$\leq \frac{1}{x} \|f - \ell f'\|_{\infty} \left[ \left( x - \frac{a+b}{2} \right)^2 + \left( \frac{b-a}{2} \right)^2 \right]$$

for  $x \in (a, b)$ , that is equivalent to (2.1) for 0 < a < b. If we take in (3.1)  $w(t) = t^2$ , then we have

(3.2) 
$$\left| \frac{b^3 - a^3}{3} \cdot \frac{f(x)}{x} - \int_a^b f(t) t dt \right| \\ \leq \|f - \ell f'\|_{\infty} \left[ \frac{2x^3 - 3x \left(a^2 + b^2\right) + 2 \left(b^3 + a^3\right)}{6x} \right]$$

for  $x \in (a, b)$ .

# 4. Applications for Special Means

In the following we will use the following inequality obtained in Corollary 1,

$$\left| \frac{f\left(\frac{a+b}{2}\right)}{\frac{a+b}{2}} - \frac{1}{b-a} \int_{a}^{b} \frac{f\left(t\right)}{t} dt \right| \le \frac{2}{b-a} \left\| f - \ell f' \right\|_{\infty} \ln \left(\frac{\frac{a+b}{2}}{\sqrt{ab}}\right)$$

provided 0 < a < b.

(1) Consider the function  $f:[a,b]\subset(0,\infty)\to\mathbb{R},\ f(t)=t^p,\ p\in\mathbb{R}\setminus\{-1,0\}$ . Then

$$f\left(\frac{a+b}{2}\right) = A^p, \ \frac{1}{b-a} \int_a^b \frac{f(t)}{t} dt = L_{p-1}^{p-1}, \ p \in \mathbb{R} \setminus \{0,1\},$$
$$\|f - \ell f'\|_{[a,b],\infty} = \left\{ \begin{array}{ll} (1-p) \, a^p & \text{if} \ p \in (-\infty,0) \setminus \{-1\}, \\ |1-p| \, b^p & \text{if} \ p \in (0,1) \cup (1,\infty), \end{array} \right.$$

where

$$L_p = L_p(a,b) := \left[ \frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right]^{\frac{1}{p}}, \ p \in R \setminus \{-1,0\}, \ a,b > 0, \ a \neq b$$

is the *p-Logarithmic mean* and  $A=A(a,b):=\frac{a+b}{2}, a,b\geq 0$  is the *arithmetic mean*.

Consequently, by (4.1) we deduce

(4.2) 
$$\left| A^{p-1} - L_{p-1}^{p-1} \right| \le \frac{2}{b-a} \ln \left( \frac{A}{G} \right)$$

$$\times \left\{ \begin{array}{ll} (1-p) \, a^p & \text{if } p \in (-\infty,0) \setminus \{-1\}, \\ |1-p| \, b^p & \text{if } p \in (0,1) \cup (1,\infty). \end{array} \right.$$

(2) Consider the function  $f:[a,b]\subset(0,\infty)\to\mathbb{R}, f(t)=\frac{1}{t}$ . Then

$$f\left(\frac{a+b}{2}\right) = \frac{1}{A}, \frac{1}{b-a} \int_a^b \frac{f(t)}{t} dt = \frac{1}{G^2}, \|f - \ell f'\|_{[a,b],\infty} = \frac{2}{a},$$

where

$$G(a,b) := \sqrt{ab}, \ a,b > 0,$$

is the Geometric mean.

Consequently, by (4.1) we deduce

(4.3) 
$$0 \le A^2 - G^2 \le \frac{4}{(b-a)a} A^2 G^2 \ln\left(\frac{A}{G}\right).$$

(3) Consider the function  $f:[a,b]\subset(0,\infty)\to\mathbb{R}, f(t)=\ln t$ . Then

$$f\left(\frac{a+b}{2}\right) = \ln A, \ \frac{1}{b-a} \int_a^b \frac{f\left(t\right)}{t} dt = \frac{\ln^2 b - \ln^2 a}{2\left(b-a\right)},$$
$$\|f - \ell f'\|_{[a,b],\infty} = \max\left\{\left|\ln\left(\frac{a}{e}\right)\right|, \left|\ln\left(\frac{b}{e}\right)\right|\right\},$$

where

$$I = I(a,b) := \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}}, \ a,b > 0, \ a \neq b$$

is the *Identric mean*.

Consequently, by (4.1) we deduce

$$\left| \frac{\ln A}{A} - \frac{\ln^2 b - \ln^2 a}{2(b-a)} \right| \le \frac{2}{b-a} \max \left\{ \left| \ln \left( \frac{a}{e} \right) \right|, \left| \ln \left( \frac{b}{e} \right) \right| \right\} \ln \left( \frac{A}{G} \right).$$

If we use the *Logarithmic mean*, i.e.

$$L=\frac{b-a}{\ln b-\ln a},\ a,b>0,\ a\neq b,$$

then (4.4) can be written as

$$\left|\frac{\ln A}{A} - \frac{\ln G}{L}\right| \leq \frac{2}{b-a} \max \left\{ \left|\ln \left(\frac{a}{e}\right)\right|, \left|\ln \left(\frac{b}{e}\right)\right| \right\} \ln \left(\frac{A}{G}\right).$$

#### References

- A. M. Acu and F. D. Sofonea, On an inequality of Ostrowski type. J. Sci. Arts 2011, no. 3(16), 281–287.
- [2] A. M. Acu, A. Baboş and F. D. Sofonea, The mean value theorems and inequalities of Ostrowski type. Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5–16.
- [3] S. S. Dragomir, An inequality of Ostrowski type via Pompeiu's mean value theorem. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 83, 9 pp.
- [4] A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.
- [5] J. Pečarić and S. Ungar, On an inequality of Ostrowski type, J. Ineq. Pure &Appl. Math, Volume 7, Issue 4, Article 151, 2006.
- [6] D. Pompeiu, Sur une proposition analogue au théorème des accroissements finis, Mathematica (Cluj, Romania), 22(1946), 143-146.
- [7] E. C. Popa, An inequality of Ostrowski type via a mean value theorem, General Mathematics Vol. 15, No. 1, 2007, 93-100.
- [8] P. K. Sahoo and T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000.

 $^1\mathrm{Mathematics},$  College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$ 

URL: http://rgmia.org/dragomir

 $^2$ School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa