A FUNCTIONAL GENERALIZATION OF OSTROWSKI INEQUALITY VIA MONTGOMERY IDENTITY

S. S. DRAGOMIR^{1,2}

ABSTRACT. We show in this paper amongst other that, if $f : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b] and $\Phi : \mathbb{R} \to \mathbb{R}$ is convex (concave) on \mathbb{R} then

$$\Phi\left(f\left(x\right) - \frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt\right)$$

$$\leq (\geq)\frac{1}{b-a}\left[\int_{a}^{x}\Phi\left[\left(t-a\right)f'\left(t\right)\right]dt + \int_{x}^{b}\Phi\left[\left(t-b\right)f'\left(t\right)\right]dt\right]$$

for any $x \in [a, b]$.

Natural applications for power and exponential functions are provided as well. Bounds for the Lebesgue *p*-norms of the deviation of a function from its integral mean are also given.

1. INTRODUCTION

Comparison between functions and integral means are incorporated in Ostrowski type inequalities as follows.

The first result in this direction is due to Ostrowski [20].

Theorem 1. Let $f : [a,b] \to \mathbb{R}$ be a differentiable function on (a,b) with the property that $|f'(t)| \leq M$ for all $t \in (a,b)$. Then

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) M$$

for all $x \in [a, b]$.

The constant $\frac{1}{4}$ is the best possible in the sense that it cannot be replaced by a smaller quantity.

The following results for absolutely continuous functions hold (see [16] - [18]).

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 25D10.

Key words and phrases. Absolutely continuous functions, Convex functions, Integral inequalities, Ostrowski inequality, Jensen's inequality, Lebesgue norms, Special means.

Theorem 2. Let $f : [a,b] \to \mathbb{R}$ be absolutely continuous on [a,b]. Then, for all $x \in [a,b]$, we have:

$$(1.2) \qquad \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \\ \leq \begin{cases} \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \|f'\|_{\infty} & \text{if } f' \in L_{\infty} [a,b] \\ \frac{1}{(\alpha+1)^{\frac{1}{\alpha}}} \left[\left(\frac{x-a}{b-a} \right)^{\alpha+1} + \left(\frac{b-x}{b-a} \right)^{\alpha+1} \right]^{\frac{1}{\alpha}} & \text{if } f' \in L_{\beta} [a,b] \\ \times (b-a)^{\frac{1}{\alpha}} \|f'\|_{\beta} & \frac{1}{\alpha} + \frac{1}{\beta} = 1, \\ \alpha > 1; & \alpha > 1; \end{cases}$$

where $\|\cdot\|_{[a,b],r}$ $(r \in [1,\infty])$ are the usual Lebesgue norms on $L_r[a,b]$, i.e.,

$$\left\|g\right\|_{[a,b],\infty}:=ess\sup_{t\in[a,b]}\left|g\left(t\right)\right|$$

and

$$\|g\|_{[a,b],r} := \left(\int_{a}^{b} |g(t)|^{r} dt\right)^{\frac{1}{r}}, \ r \in [1,\infty).$$

The constants $\frac{1}{4}$, $\frac{1}{(p+1)^{\frac{1}{p}}}$ and $\frac{1}{2}$ respectively are sharp in the sense presented in Theorem 1.

The above inequalities can also be obtained from the Fink result in [19] on choosing n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Hölder continuous, then one may state the result (see for instance [14] and the references therein for earlier contributions):

Theorem 3. Let $f : [a, b] \to \mathbb{R}$ be of $r - H - H\ddot{o}lder$ type, i.e.,

(1.3)
$$|f(x) - f(y)| \le H |x - y|^r$$
, for all $x, y \in [a, b]$,

where $r \in (0,1]$ and H > 0 are fixed. Then, for all $x \in [a,b]$, we have the inequality:

(1.4)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \frac{H}{r+1} \left[\left(\frac{b-x}{b-a} \right)^{r+1} + \left(\frac{x-a}{b-a} \right)^{r+1} \right] (b-a)^{r}.$$

The constant $\frac{1}{r+1}$ is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following version of Ostrowski's inequality for Lipschitzian functions (with L instead of H) (see for instance [6])

(1.5)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) L,$$

where $x \in [a,b]$. Here the constant $\frac{1}{4}$ is also best.

Moreover, if one drops the condition of the continuity of the function, and assumes that it is of bounded variation, then the following result may be stated (see [8]).

Theorem 4. Assume that $f : [a,b] \to \mathbb{R}$ is of bounded variation and denote by $\bigvee^{b}(f)$ its total variation. Then

(1.6)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{2} + \left| \frac{x - \frac{a+b}{2}}{b-a} \right| \right] \bigvee_{a}^{b} (f)$$

for all $x \in [a, b]$. The constant $\frac{1}{2}$ is the best possible.

If we assume more about f, i.e., f is monotonically increasing, then the inequality (1.6) may be improved in the following manner [5] (see also the monograph [15]).

Theorem 5. Let $f : [a, b] \to \mathbb{R}$ be monotonic nondecreasing. Then for all $x \in [a, b]$, we have the inequality:

(1.7)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{1}{b-a} \left\{ [2x - (a+b)] f(x) + \int_{a}^{b} sgn(t-x) f(t) dt \right\}$$

$$\leq \frac{1}{b-a} \left\{ (x-a) [f(x) - f(a)] + (b-x) [f(b) - f(x)] \right\}$$

$$\leq \left[\frac{1}{2} + \left| \frac{x - \frac{a+b}{2}}{b-a} \right| \right] [f(b) - f(a)].$$

All the inequalities in (1.7) are sharp and the constant $\frac{1}{2}$ is the best possible.

The case for the convex functions is as follows [11]:

Theorem 6. Let $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ be a convex function on [a,b]. Then for any $x \in (a,b)$ one has the inequality

(1.8)
$$\frac{1}{2} \left[(b-x)^2 f'_+(x) - (x-a)^2 f'_-(x) \right] \\ \leq \int_a^b f(t) dt - (b-a) f(x) \\ \leq \frac{1}{2} \left[(b-x)^2 f'_-(b) - (x-a)^2 f'_+(a) \right]$$

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for x = a or x = b.

For other Ostrowski's type inequalities for the Lebesgue integral, see [1]-[6] and [12]. Inequalities for the Riemann-Stieltjes integral may be found in [7], [9] while the generalization for isotonic functionals was provided in [10]. For the case of functions of self-adjoint operators on complex Hilbert spaces, see the recent monograph [13].

2. A Generalization of Ostrowski's Inequality

The following result holds:

Theorem 7. Let $f : [a, b] \to \mathbb{R}$ be absolutely continuous on [a, b]. If $\Phi : \mathbb{R} \to \mathbb{R}$ is convex (concave) on \mathbb{R} then we have the inequalities

(2.1)
$$\Phi\left(f(x) - \frac{1}{b-a}\int_{a}^{b} f(t) dt\right)$$
$$\leq (\geq) \frac{1}{b-a} \left[\int_{a}^{x} \Phi\left[(t-a) f'(t)\right] dt + \int_{x}^{b} \Phi\left[(t-b) f'(t)\right] dt\right]$$

for any $x \in [a, b]$.

Proof. Utilising the Montgomery identity

(2.2)
$$f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt$$
$$= \frac{1}{b-a} \left[\int_{a}^{x} (t-a) f'(t) dt + \int_{x}^{b} (t-b) f'(t) dt \right]$$
$$= \frac{x-a}{b-a} \left(\frac{1}{x-a} \int_{a}^{x} (t-a) f'(t) dt \right)$$
$$+ \frac{b-x}{b-a} \left(\frac{1}{b-x} \int_{x}^{b} (t-b) f'(t) dt \right),$$

which holds for any $x \in (a, b)$ and the convexity of $\Phi : \mathbb{R} \to \mathbb{R}$, we have

(2.3)
$$\Phi\left(f(x) - \frac{1}{b-a}\int_{a}^{b}f(t) dt\right)$$
$$\leq \frac{x-a}{b-a}\Phi\left(\frac{1}{x-a}\int_{a}^{x}(t-a) f'(t) dt\right)$$
$$+ \frac{b-x}{b-a}\Phi\left(\frac{1}{b-x}\int_{x}^{b}(t-b) f'(t) dt\right)$$

for any $x \in (a, b)$, which is an inequality of interest in itself as well. If we use Jensen's integral inequality

$$\Phi\left(\frac{1}{d-c}\int_{c}^{d}g\left(t\right)dt\right) \leq \frac{1}{d-c}\int_{c}^{d}\Phi\left[g\left(t\right)\right]dt$$

we have

(2.4)
$$\Phi\left(\frac{1}{x-a}\int_{a}^{x}(t-a)f'(t)\,dt\right) \leq \frac{1}{x-a}\int_{a}^{x}\Phi\left[(t-a)f'(t)\right]dt$$

and

(2.5)
$$\Phi\left(\frac{1}{b-x}\int_{x}^{b}(t-b)f'(t)dt\right) \leq \frac{1}{b-x}\int_{x}^{b}\Phi\left[(t-b)f'(t)\right]dt$$

for any $x \in (a, b)$.

Making use of (2.3)-(2.5) we get the desired result (2.1) for the convex functions.

If x = b, then

$$f(b) - \frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{b-a} \int_{a}^{b} (t-a) f'(t) dt$$

and by Jensen's inequality we get

$$\Phi\left(f\left(b\right) - \frac{1}{b-a}\int_{a}^{b} f\left(t\right)dt\right) \leq \frac{1}{b-a}\int_{a}^{b}\Phi\left[\left(t-a\right)f'\left(t\right)\right]dt,$$

which proves the inequality (2.1) for x = b.

The same argument can be applied for x = a.

The case of concave functions goes likewise and the theorem is proved.

Corollary 1. With the assumptions of Theorem 7 we have

(2.6)
$$\Phi(0) \le (\ge) \frac{1}{b-a} \int_{a}^{b} \Phi\left(f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt\right) dx$$
$$\le (\ge) \frac{1}{(b-a)^{2}} \left[\int_{a}^{b} (b-x) \Phi\left[(x-a) f'(x)\right] dx + \int_{a}^{b} (x-a) \Phi\left[(x-b) f'(x)\right] dx \right].$$

Proof. By Jensen's integral inequality we have

$$\frac{1}{b-a} \int_{a}^{b} \Phi\left(f\left(x\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt\right) dx$$
$$\geq (\leq) \Phi\left[\frac{1}{b-a} \int_{a}^{b} \left(f\left(x\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt\right) dx\right]$$
$$= \Phi\left(0\right),$$

which proves the first inequality in (2.6).

Integrating the inequality (2.1) over x we have

(2.7)
$$\frac{1}{b-a} \int_{a}^{b} \Phi\left(f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt\right) dx$$
$$\leq (\geq) \frac{1}{(b-a)^{2}} \int_{a}^{b} \left[\int_{a}^{x} \Phi\left[(t-a) f'(t)\right] dt + \int_{x}^{b} \Phi\left[(t-b) f'(t)\right] dt \right] dx.$$

Integrating by parts we have

$$\int_{a}^{b} \left(\int_{a}^{x} \Phi \left[(t-a) f'(t) \right] dt \right) dx$$

= $x \int_{a}^{x} \Phi \left[(t-a) f'(t) \right] dt \Big|_{a}^{b} - \int_{a}^{b} x d \left(\int_{a}^{x} \Phi \left[(t-a) f'(t) \right] dt \right)$
= $b \int_{a}^{b} \Phi \left[(t-a) f'(t) \right] dt - \int_{a}^{b} x \Phi \left[(x-a) f'(x) \right] dx$
= $\int_{a}^{b} (b-x) \Phi \left[(x-a) f'(x) \right] dx$

and

$$\begin{split} &\int_{a}^{b} \left(\int_{x}^{b} \Phi \left[(t-b) \, f' \, (t) \right] dt \right) dx \\ &= x \left(\int_{x}^{b} \Phi \left[(t-b) \, f' \, (t) \right] dt \right) \Big|_{a}^{b} - \int_{a}^{b} x d \left(\int_{x}^{b} \Phi \left[(t-b) \, f' \, (t) \right] dt \right) \\ &= -a \left(\int_{a}^{b} \Phi \left[(t-b) \, f' \, (t) \right] dt \right) + \int_{a}^{b} x \Phi \left[(x-b) \, f' \, (x) \right] dx \\ &= \int_{a}^{b} (x-a) \Phi \left[(x-b) \, f' \, (x) \right] dx. \end{split}$$

Utilising the inequality (2.7) we deduce the desired inequality (2.6).

Remark 1. If we write the inequality (2.1) for the convex function $\Phi(x) = |x|^p$, $p \ge 1$ then we get the inequality

(2.8)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} \leq \frac{1}{b-a} \left[\int_{a}^{x} (t-a)^{p} \left| f'(t) \right|^{p} dt + \int_{x}^{b} (b-t)^{p} \left| f'(t) \right|^{p} dt \right]$$

for $x \in [a, b]$.

Utilising Hölder's inequality we have

$$(2.9) \qquad B(x) := \int_{a}^{x} (t-a)^{p} |f'(t)|^{p} dt + \int_{x}^{b} (b-t)^{p} |f'(t)|^{p} dt$$

$$\leq \begin{cases} \frac{(x-a)^{p+1}}{p+1} \|f'\|_{[a,x],\infty}^{p} & \text{if } f' \in L_{p\beta}[a,x],; \\ \frac{(x-a)^{p+1/\alpha}}{(p\alpha+1)^{1/\alpha}} \|f'\|_{[a,x],p\beta}^{p} & \alpha > 1, 1/\alpha + 1/\beta = 1; \\ (x-a)^{p} \|f'\|_{[a,x],p}^{p} & \text{if } f' \in L_{\infty}[x,b]; \\ + \begin{cases} \frac{(b-x)^{p+1}}{p+1} \|f'\|_{[x,b],\infty}^{p} & \text{if } f' \in L_{p\beta}[x,b],; \\ \frac{(b-x)^{p+1/\alpha}}{(p\alpha+1)^{1/\alpha}} \|f'\|_{[x,b],p\beta}^{p} & \alpha > 1, 1/\alpha + 1/\beta = 1; \\ (b-x)^{p} \|f'\|_{[x,b],p}^{p} & \alpha > 1, 1/\alpha + 1/\beta = 1; \end{cases}$$

for $x \in [a, b]$.

Utilising the inequalities (2.8) and (2.9) we have for $x \in [a, b]$ that

$$(2.10) \qquad \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} \\ \leq \frac{1}{(b-a)(p+1)} \left[(x-a)^{p+1} \|f'\|_{[a,x],\infty}^{p} + (b-x)^{p+1} \|f'\|_{[x,b],\infty}^{p} \right] \\ \leq \frac{1}{(p+1)} \left[\left(\frac{x-a}{b-a} \right)^{p+1} + \left(\frac{b-x}{b-a} \right)^{p+1} \right] (b-a)^{p} \|f'\|_{[a,b],\infty}^{p}$$

provided $f' \in L_{\infty}[a, b]$,

$$(2.11) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} \\ \leq \frac{1}{(b-a) (p\alpha+1)^{1/\alpha}} \left[(x-a)^{p+1/\alpha} \|f'\|_{[a,x],p\beta}^{p} + (b-x)^{p+1/\alpha} \|f'\|_{[x,b],p\beta}^{p} \right] \\ \leq \frac{1}{(p\alpha+1)^{1/\alpha}} \left[\left(\frac{x-a}{b-a} \right)^{p+1/\alpha} + \left(\frac{b-x}{b-a} \right)^{p+1/\alpha} \right] (b-a)^{p-1/\beta} \|f'\|_{[a,b],p\beta}^{p}$$

provided $f' \in L_{p\beta}[a, b], \alpha > 1, 1/\alpha + 1/\beta = 1$ and

(2.12)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p}$$

$$\leq \frac{1}{b-a} \left[(x-a)^{p} \|f'\|_{[a,x],p}^{p} + (b-x)^{p} \|f'\|_{[x,b],p}^{p} \right]$$

$$\leq \max\left\{ \left(\frac{x-a}{b-a} \right)^{p}, \left(\frac{b-x}{b-a} \right)^{p} \right\} (b-a)^{p-1} \|f'\|_{[a,b],p}^{p}$$

$$= \left\{ \frac{1}{2} + \left| \frac{x-\frac{a+b}{2}}{b-a} \right| \right\}^{p} (b-a)^{p-1} \|f'\|_{[a,b],p}^{p}$$

provided $f' \in L_p[a, b]$.

Remark 2. If we take p = 1 in the above inequalities (2.11)-(2.12), then we obtain some inequalities similar to the Ostrowski type inequalities from Theorem 2, namely

(2.13)
$$\begin{vmatrix} f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \end{vmatrix}$$

$$\leq \frac{1}{2(b-a)} \left[(x-a)^{2} \|f'\|_{[a,x],\infty} + (b-x)^{2} \|f'\|_{[x,b],\infty} \right]$$

$$\leq \frac{1}{2} \left[\left(\frac{x-a}{b-a} \right)^{2} + \left(\frac{b-x}{b-a} \right)^{2} \right] (b-a) \|f'\|_{[a,b],\infty}$$

$$= \left[\frac{1}{4} + \left(\frac{x-\frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \|f'\|_{[a,b],\infty}$$

for $x \in [a, b]$, provided $f' \in L_{\infty}[a, b]$,

$$(2.14) \quad \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \\ \leq \frac{1}{(b-a)(\alpha+1)^{1/\alpha}} \left[(x-a)^{1+1/\alpha} \|f'\|_{[a,x],\beta} + (b-x)^{1+1/\alpha} \|f'\|_{[x,b],\beta} \right] \\ \leq \frac{1}{(\alpha+1)^{1/\alpha}} \left[\left(\frac{x-a}{b-a} \right)^{1+1/\alpha} + \left(\frac{b-x}{b-a} \right)^{1+1/\alpha} \right] (b-a)^{1/\alpha} \|f'\|_{[a,b],\beta} \right]$$

for $x \in [a, b]$, provided $f' \in L_{\beta}[a, b]$, $\alpha > 1, 1/\alpha + 1/\beta = 1$ and

(2.15)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$
$$\leq \frac{1}{b-a} \left[(x-a) \|f'\|_{[a,x],1} + (b-x) \|f'\|_{[x,b],1} \right]$$
$$= \left\{ \frac{1}{2} + \left| \frac{x - \frac{a+b}{2}}{b-a} \right| \right\} \|f'\|_{[a,b],1}$$

for $x \in [a, b]$.

3. Applications for *p*-Norms

We have the following inequalities for Lebesgue norms of the deviation of a function from its integral mean:

Theorem 8. Let $f:[a,b] \to \mathbb{R}$ be absolutely continuous on [a,b].

(i) If
$$f' \in L_{\infty}[a, b]$$
, then
(3.1) $\left\| f - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right\|_{[a,b],p} \leq \left[\frac{2}{(p+1)(p+2)} \right]^{1/p} (b-a)^{1+\frac{1}{p}} \|f'\|_{[a,b],\infty}$.

(ii) If $f' \in L_{p\beta}[a,b]$, with $\alpha > 1, 1/\alpha + 1/\beta = 1$ then

(3.2)
$$\left\| f - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right\|_{[a,b],p} \leq \left[\frac{2}{(p\alpha+1)^{1/\alpha} (p+1/\alpha+1)} \right]^{1/p} \|f'\|_{[a,b],p\beta} (b-a)^{1+\frac{1}{\alpha p}}.$$

(iii) We have

(3.3)
$$\left\| f - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right\|_{[a,b],p} \le \frac{1}{2} \left(\frac{2^{p+1}-1}{p+1} \right)^{1/p} (b-a) \|f'\|_{[a,b],p}.$$

Proof. Integrating on [a, b] the inequality (2.10) we have

$$(3.4) \qquad \int_{a}^{b} \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} dx$$

$$\leq \frac{1}{(b-a)(p+1)} \|f'\|_{[a,b],\infty}^{p} \int_{a}^{b} \left[(x-a)^{p+1} + (b-x)^{p+1} \right] dx$$

$$= \frac{1}{(b-a)(p+1)} \|f'\|_{[a,b],\infty}^{p} \left[\frac{2(b-a)^{p+2}}{p+2} \right]$$

$$= \frac{2}{(p+1)(p+2)} \|f'\|_{[a,b],\infty}^{p} (b-a)^{p+1}$$

which is equivalent with (3.1). Integrating the inequality (2.11)

$$(3.5) \qquad \int_{a}^{b} \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} dx$$

$$\leq \frac{1}{(b-a) (p\alpha+1)^{1/\alpha}} \|f'\|_{[a,b],p\beta}^{p} \int_{a}^{b} \left[(x-a)^{p+1/\alpha} + (b-x)^{p+1/\alpha} \right] dx$$

$$= \frac{1}{(b-a) (p\alpha+1)^{1/\alpha}} \|f'\|_{[a,b],p\beta}^{p} \left[\frac{2 (b-a)^{p+1/\alpha+1}}{p+1/\alpha+1} \right]$$

$$= \frac{2}{(p\alpha+1)^{1/\alpha} (p+1/\alpha+1)} \|f'\|_{[a,b],p\beta}^{p} (b-a)^{p+1/\alpha}$$

which is equivalent with (3.2).

Integrating the inequality (2.12) we have

(3.6)
$$\int_{a}^{b} \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} dx$$
$$\leq \frac{1}{b-a} \left\| f' \right\|_{[a,b],p}^{p} \int_{a}^{b} \max\left\{ (x-a)^{p}, (b-x)^{p} \right\} dx.$$

Since

$$\int_{a}^{b} \max\left\{ (x-a)^{p}, (b-x)^{p} \right\} dx$$

= $\int_{a}^{\frac{a+b}{2}} (b-x)^{p} dx + \int_{\frac{a+b}{2}}^{b} (x-a)^{p} dx$
= $-\frac{\left(\frac{b-a}{2}\right)^{p+1}}{p+1} + \frac{(b-a)^{p+1}}{p+1} + \frac{(b-a)^{p+1}}{p+1} - \frac{\left(\frac{b-a}{2}\right)^{p+1}}{p+1}$
= $\frac{1}{p+1} \left(\frac{2^{p+1}-1}{2^{p}}\right) (b-a)^{p+1}$

then from (3.6) we get

$$\int_{a}^{b} \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|^{p} dx \leq \frac{1}{p+1} \left(\frac{2^{p+1}-1}{2^{p}} \right) (b-a)^{p} \left\| f' \right\|_{[a,b],p}^{p},$$

which is equivalent with (3.3).

4. Applications for the Exponential

If we write the inequality (2.1) for the convex function $\Phi(x) = \exp(x)$ then we get the inequality

(4.1)
$$\exp\left[f\left(x\right) - \frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt\right]$$
$$\leq \frac{1}{b-a}\left[\int_{a}^{x}\exp\left[\left(t-a\right)f'\left(t\right)\right]dt + \int_{x}^{b}\exp\left[\left(t-b\right)f'\left(t\right)\right]dt\right]$$

for $x \in [a, b]$.

If we write the inequality (2.1) for the convex function $\Phi(x) = \cosh(x) := \frac{e^x + e^{-x}}{2}$ then we get the inequality

(4.2)
$$\cosh\left[f\left(x\right) - \frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt\right]$$
$$\leq \frac{1}{b-a}\left[\int_{a}^{x}\cosh\left[\left(t-a\right)f'\left(t\right)\right]dt + \int_{x}^{b}\cosh\left[\left(t-b\right)f'\left(t\right)\right]dt\right]$$

for $x \in [a, b]$.

Utilising the inequality (4.1) we have the following multiplicative version of Ostrowski's inequality:

Theorem 9. Let $f : [a,b] \to (0,\infty)$ be absolutely continuous on [a,b]. Then we have the inequalities

(4.3)
$$\frac{f(x)}{\exp\left[\frac{1}{b-a}\int_{a}^{b}\ln f(t) dt\right]} \leq \frac{1}{b-a} \left[\int_{a}^{x} \exp\left[(t-a)\frac{f'(t)}{f(t)}\right] dt + \int_{x}^{b} \exp\left[(t-b)\frac{f'(t)}{f(t)}\right] dt\right]$$

for any $x \in [a, b]$ and

(4.4)
$$\frac{\int_{a}^{b} f(x) dx}{\exp\left[\frac{1}{b-a} \int_{a}^{b} \ln f(t) dt\right]}$$
$$\leq \frac{1}{b-a} \left[\int_{a}^{b} (b-x) \exp\left[(x-a) \frac{f'(x)}{f(x)}\right] dx$$
$$+ \int_{a}^{b} (x-a) \exp\left[(x-b) \frac{f'(x)}{f(x)}\right] dx\right].$$

Proof. If we replace f by $\ln f$ in (4.1) we get

(4.5)
$$\exp\left[\ln f(x) - \frac{1}{b-a} \int_{a}^{b} \ln f(t) dt\right]$$
$$\leq \frac{1}{b-a} \left[\int_{a}^{x} \exp\left[(t-a) \frac{f'(t)}{f(t)} \right] dt + \int_{x}^{b} \exp\left[(t-b) \frac{f'(t)}{f(t)} \right] dt \right]$$

for any $x \in [a, b]$. Since

$$\begin{split} &\exp\left[\ln f\left(x\right) - \frac{1}{b-a}\int_{a}^{b}\ln f\left(t\right)dt\right] \\ &= \exp\left[\ln f\left(x\right) - \ln\left\{\exp\left(\frac{1}{b-a}\int_{a}^{b}\ln f\left(t\right)dt\right)\right\}\right] \\ &= \exp\left[\ln\left(\frac{f\left(x\right)}{\exp\left(\frac{1}{b-a}\int_{a}^{b}\ln f\left(t\right)dt\right)}\right)\right] \\ &= \frac{f\left(x\right)}{\exp\left(\frac{1}{b-a}\int_{a}^{b}\ln f\left(t\right)dt\right)} \end{split}$$

for any $x \in [a, b]$, then we get from (4.5) the desired inequality (4.3). If we integrate the inequality (4.3) we get

$$(4.6) \qquad \frac{\int_{a}^{b} f(x) dx}{\exp\left[\frac{1}{b-a} \int_{a}^{b} \ln f(t) dt\right]} \\ \leq \frac{1}{b-a} \int_{a}^{b} \left[\int_{a}^{x} \exp\left[(t-a) \frac{f'(t)}{f(t)}\right] dt + \int_{x}^{b} \exp\left[(t-b) \frac{f'(t)}{f(t)}\right] dt\right] dx.$$

Integrating by parts we have

$$\int_{a}^{b} \left(\int_{a}^{x} \exp\left[(t-a) \frac{f'(t)}{f(t)} \right] dt \right) dx$$

= $x \int_{a}^{x} \exp\left[(t-a) \frac{f'(t)}{f(t)} \right] dt \Big|_{a}^{b} - \int_{a}^{b} xd \left(\int_{a}^{x} \exp\left[(t-a) \frac{f'(t)}{f(t)} \right] dt \right)$
= $b \int_{a}^{b} \exp\left[(t-a) \frac{f'(t)}{f(t)} \right] dt - \int_{a}^{b} x \exp\left[(x-a) \frac{f'(x)}{f(x)} \right] dx$
= $\int_{a}^{b} (b-x) \exp\left[(x-a) \frac{f'(x)}{f(x)} \right] dx$

and

$$\begin{split} &\int_{a}^{b} \left(\int_{x}^{b} \exp\left[\left(t-b\right) \frac{f'\left(t\right)}{f\left(t\right)} \right] dt \right) dx \\ &= x \int_{x}^{b} \exp\left[\left(t-b\right) \frac{f'\left(t\right)}{f\left(t\right)} \right] dt \bigg|_{a}^{b} - \int_{a}^{b} xd \left(\int_{x}^{b} \exp\left[\left(t-b\right) \frac{f'\left(t\right)}{f\left(t\right)} \right] dt \right) \\ &= -a \int_{a}^{b} \exp\left[\left(t-b\right) \frac{f'\left(t\right)}{f\left(t\right)} \right] dt + \int_{a}^{b} x \exp\left[\left(x-b\right) \frac{f'\left(x\right)}{f\left(x\right)} \right] dx \\ &= \int_{a}^{b} \left(x-a\right) \exp\left[\left(x-b\right) \frac{f'\left(x\right)}{f\left(x\right)} \right] dx, \end{split}$$

then by (4.6) we deduce the desired inequality (4.4).

5. Applications for Midpoint-Inequalities

We have from the inequality (2.1) written for -f the following result:

Proposition 1. Let $f : [a,b] \to \mathbb{R}$ be absolutely continuous on [a,b]. If $\Phi : \mathbb{R} \to \mathbb{R}$ is convex (concave) on \mathbb{R} then from (2.1) we have the inequalities

(5.1)
$$\Phi\left(\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - f\left(\frac{a+b}{2}\right)\right)$$
$$\leq (\geq)\,\frac{1}{b-a}\left[\int_{\frac{a+b}{2}}^{b}\Phi\left[(b-t)\,f'(t)\right]dt + \int_{a}^{\frac{a+b}{2}}\Phi\left[(a-t)\,f'(t)\right]dt\right].$$

If $f:[a,b]\to \mathbb{R}$ is convex on $[a,b]\,,$ then by Hermite-Hadamard inequality we have

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \ge f\left(\frac{a+b}{2}\right).$$

We can state the following result in which the function Φ is assumed be convex only on $[0, \infty)$ or $(0, \infty)$.

Proposition 2. If $f : [a, b] \to \mathbb{R}$ is convex on [a, b], monotonic nondecreasing on $[a, \frac{a+b}{2}]$ and monotonic nonincreasing $[a, \frac{a+b}{2}]$. If $\Phi : [0, \infty), (0, \infty) \to \mathbb{R}$ is convex (concave) on $[0, \infty)$ or $(0, \infty)$, then (5.1) holds true.

If $f:[a,b] \to \mathbb{R}$ is strictly convex on [a,b], monotonic nondecreasing on $[a,\frac{a+b}{2}]$ and monotonic nonincreasing $[a,\frac{a+b}{2}]$, then by taking $\Phi(x) = \ln x$, which is strictly concave on $(0,\infty)$, we get the logarithmic inequality

(5.2)
$$\ln\left(\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - f\left(\frac{a+b}{2}\right)\right) \\ \ge \frac{1}{b-a}\left[\int_{\frac{a+b}{2}}^{b}\ln\left[(b-t)\,f'(t)\right]dt + \int_{a}^{\frac{a+b}{2}}\ln\left[(a-t)\,f'(t)\right]dt\right].$$

If $f : [a, b] \to \mathbb{R}$ is convex on [a, b], monotonic nondecreasing on $[a, \frac{a+b}{2}]$ and monotonic nonincreasing $[a, \frac{a+b}{2}]$, then by taking $\Phi(x) = x^q$, with $q \in (0, 1)$ we

also have

(5.3)
$$\left(\frac{1}{b-a}\int_{a}^{b}f(t)\,dt - f\left(\frac{a+b}{2}\right)\right)^{q} \geq \frac{1}{b-a}\left[\int_{\frac{a+b}{2}}^{b}\left[(b-t)\,f'(t)\right]^{q}\,dt + \int_{a}^{\frac{a+b}{2}}\left[(a-t)\,f'(t)\right]^{q}\,dt\right].$$

If $\Phi : [0,\infty), (0,\infty) \to \mathbb{R}$ is convex (concave) on $[0,\infty)$ or $(0,\infty)$, and if we take $f(t) := \left|t - \frac{a+b}{2}\right|^p$, $p \ge 1$, then we get from (5.1)

(5.4)
$$\Phi\left(\frac{(b-a)^{p}}{2^{p}(p+1)}\right) \leq (\geq) \frac{1}{b-a} \left[\int_{\frac{a+b}{2}}^{b} \Phi\left[p(b-t)\left(t-\frac{a+b}{2}\right)^{p-1}\right] dt + \int_{a}^{\frac{a+b}{2}} \Phi\left[(t-a)\left(\frac{a+b}{2}-t\right)^{p-1}\right] dt\right].$$

Let us recall the following means:

(a) The arithmetic mean

$$A = A(a,b) := \frac{a+b}{2}, a, b \ge 0;$$

(b) The geometric mean

$$G = G(a, b) := \sqrt{ab}; a, b \ge 0;$$

(c) The harmonic mean

$$H = H(a, b) := \frac{2}{\frac{1}{a} + \frac{1}{b}}; a, b > 0;$$

(d) The logarithmic mean

$$L = L(a, b) := \begin{cases} a & \text{if } a = b \\ \frac{b-a}{\ln b - \ln a} & \text{if } a \neq b \end{cases} \quad a, b > 0;$$

(e) The *identric mean*

$$I = I(a, b) := \begin{cases} a \text{ if } a = b \\ \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}} \text{ if } a \neq b \end{cases};$$

(f) The *p*-logarithmic mean

$$L_{p} = L_{p}(a, b) := \begin{cases} a \text{ if } a = b \\ \left[\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}} \text{ if } a \neq b \end{cases};$$

where $p \in \mathbb{R} \setminus \{0, -1\}$.

The following inequality is well-known in the literature:

$$H \le G \le L \le I \le A.$$

It is also well-known that L_p is monotonically increasing over p, assuming that $L_0 = I$ and $L_{-1} = L$.

Assume that $\Phi : \mathbb{R} \to \mathbb{R}$ is convex (concave) on \mathbb{R} .

Now, if we take $f(t) = \frac{1}{t}$ in (5.1), where $t \in [a, b] \subset (0, \infty)$, then we have

(5.5)
$$\Phi\left(\frac{A(a,b) - L(a,b)}{A(a,b)L(a,b)}\right)$$
$$\leq (\geq) \frac{1}{b-a} \left[\int_{\frac{a+b}{2}}^{b} \Phi\left(\frac{t-b}{t^{2}}\right) dt + \int_{a}^{\frac{a+b}{2}} \Phi\left(\frac{t-a}{t^{2}}\right) dt\right].$$

If we take $f(t) = -\ln t$ in (5.1), where $t \in [a, b] \subset (0, \infty)$, then we have

(5.6)
$$\Phi\left(\ln\left(\frac{A\left(a,b\right)}{I\left(a,b\right)}\right)\right)$$
$$\leq (\geq) \frac{1}{b-a} \left[\int_{\frac{a+b}{2}}^{b} \Phi\left(\frac{t-b}{t}\right) dt + \int_{a}^{\frac{a+b}{2}} \Phi\left(\frac{t-a}{t}\right) dt\right].$$

If we take $f(t) = t^p$, $p \in \mathbb{R} \setminus \{0, -1\}$ in (5.1), where $t \in [a, b] \subset (0, \infty)$, then we have

(5.7)
$$\Phi\left(L_{p}^{p}(a,b) - A^{p}(a,b)\right) \leq (\geq) \frac{1}{b-a} \left[\int_{\frac{a+b}{2}}^{b} \Phi\left[p\left(b-t\right)t^{p-1}\right] dt + \int_{a}^{\frac{a+b}{2}} \Phi\left[p\left(a-t\right)t^{p-1}\right] dt \right].$$

References

- G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175–189.
- [2] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, *Handbook of Analytic-Computational Methods in Applied Mathematics*, CRC Press, New York. 135-200.
- [3] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
- [4] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, *Demonstratio Mathematica*, **32**(2) (1999), 697– 712.
- [5] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
- [6] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
- [7] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
- [8] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. & Appl., 4(1) (2001), 33-40.
- [9] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, $\mathbf{5}(1)$ (2001), 35-45.
- [10] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math., 3(5) (2002), Art. 68.
- [11] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
- [12] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, *Revista Math. Complutense*, 16(2) (2003), 373-382.
- [13] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1

- [14] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, *Bull. Math. Soc. Sci. Math. Romanie*, **42(90)** (4) (1999), 301-314.
- [15] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
- [16] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L₁-norm and applications to some special means and to some numerical quadrature rules, *Tamkang J. of Math.*, 28 (1997), 239-244.
- [17] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, *Appl. Math. Lett.*, **11** (1998), 105-109.
- [18] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_p -norm and applications to some special means and to some numerical quadrature rules, *Indian J. of Math.*, **40**(3) (1998), 245-304.
- [19] A. M. Fink, Bounds on the deviation of a function from its averages, *Czechoslovak Math. J.*, 42(117) (1992), No. 2, 298-310.
- [20] A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

 $^2 \rm School$ of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa