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INEQUALITIES OF POMPEIU’S TYPE FOR ABSOLUTELY
CONTINUOUS FUNCTIONS WITH APPLICATIONS TO
OSTROWSKYTI’'S INEQUALITY

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, some new Pompeiu’s type inequalities for complex-
valued absolutely continuous functions are provided. They are applied to ob-
tain some new Ostrowski type inequalities.

1. INTRODUCTION
In 1946, Pompeiu [6] derived a variant of Lagrange’s mean value theorem, now

known as Pompeiu’s mean value theorem (see also [8, p. 83]).

Theorem 1 (Pompeiu, 1946 [6]). For every real valued function f differentiable
on an interval [a, b] not containing 0 and for all pairs x1 # x4 in [a,b], there exists
a point & between x1 and xo such that

w1 f (12) — @2 f (21)

X1 — T2

(1.1) =€) & ().

In 1938, A. Ostrowski [4] proved the following result in the estimating the integral
mean:

Theorem 2 (Ostrowski, 1938 [4]). Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) with |f'(t)] < M < oo for all t € (a,b). Then for any

x € [a,b], we have the inequality
2
1 x — atb
< 4+< b;) M (b—a).

The constant i 18 best possible in the sense that it cannot be replaced by a smaller
quantity.

(12) ‘f(:v)—bla/ 7 (1) de

In order to provide another approximation of the integral mean, by making use
of the Pompeiu’s mean value theorem, the author proved the following result:

Theorem 3 (Dragomir, 2005 [3]). Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) with [a,b] not containing 0. Then for any x € [a,b], we have
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the inequality

a+b f(x) 1 f°
2z _bfa/af(t)dt

2
b—a |1 xr— atb
< 4+< b_;) 1f =2l -

where £(t) =t, t € [a,b].
The constant i is sharp in the sense that it cannot be replaced by a smaller
constant.

(1.3)

In [7], E. C. Popa using a mean value theorem obtained a generalization of (1.3)
as follows:

Theorem 4 (Popa, 2007 [7]). Let f : [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b). Assume that « ¢ [a,b]. Then for any x € [a,b], we have the
inequality

(1.4) ‘(a—;b—a>f(m)+(z_z/abf(t)dt

2
1 {E—[H_b ,
_ 4+< b_;) b0 If e

where by, (1) =t — a, t € [a,b].

In [5], J. Pecari¢ and S. Ungar have proved a general estimate with the p-norm,
1 < p < oo which for p = oo give Dragomir’s result.

Theorem 5 (Pecari¢ & Ungar, 2006 [5]). Let f : [a,b] — R be continuous on [a, b]
and differentiable on (a,b) with 0 < a < b. Then for 1 < p,q < oo with % + % =1
we have the inequality

at+b f(z) —bia/abf(t)dt

(1.5) < PU (z,p) If = £f'l,,»

2 T

for x € [a,b], where

1 a2—1 _ p2—a 22-0 _ gltag1—2q\ 14
PUtep) = bmar [((1—2q><2—q>+ g )
p2—4 _ 24 220 _ pltagl—2q 1/q
+((1—2q><2—q>+ <1—2q><1+q>) ]

In the cases (p,q) = (1,00) , (00, 1) and (2,2) the quantity PU (z,p) has to be taken
as the limit as p — 1,00 and 2, respectively.

For other inequalities in terms of the p-norm of the quantity f — £, f’, where
by (t)=t—a, t €la,b] and « ¢ [a,b] see [1] and [2].

In this paper, some new Pompeiu’s type inequalities for complex-valued ab-
solutely continuous functions are provided. They are applied to obtain some new
Ostrowski type inequalities.
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2. PoMPEIU’S TYPE INEQUALITIES
The following inequality is useful to derive some Ostrowski type inequalities.

Corollary 1 (Pompeiu’s Inequality). With the assumptions of Theorem 1 and if
1f = £f'llc = SuPseap |f (8) —tf' (t)] < oo where £(t) =t, t € [a,b], then

(2.1) tf (@) —2f ) < If = € | 2 — 2]
for any t,x € [a,b].

The inequality (2.1) was stated by the author in [3].
We can generalize the above inequality (2.1) for the larger class of functions that

are absolutely continuous and complex-valued as well as for other norms of the
difference f — £f".

Theorem 6. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] with b > a > 0. Then for any t,x € [a,b] we have

(2.2) tf (z) —zf (B)]
1f = £ oo 2 — £ if f —Lf" € Lo [a, 1],

if f—Lf" € Ly[a,b

24 a 1/q
< G 1f = Ul |5 — s 119?&1
pTa=h
If = ef)), el
or, equivalently
t
oy |12 10)
T t
1=t 1 — 3 if f—Lf" € L [a, 0],
v, U Lo
< Wﬂf—fflﬂp‘tzq%—wzifl} ! 1p?£71
pta=h
1f = 2f'ly ey

Proof. If f is absolutely continuous, then f// is absolutely continuous on the inter-
val [a,b] that does not containing 0 and

f(fis))’ds_fix)@

for any ¢,z € [a,b] with = # ¢.

Since /tx (@>/dsz/tIst

then we get the following identity
xz e _
(2.4) tf(x) —xf(t)= xt/ Mds
t

for any ¢, x € [a,b] .
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We notice that the equality (2.4) was proved for the smaller class of differentiable
real valued functions and in a different manner in [5].
Taking the modulus in (2.4) we have

(2.5 tf ) = af (0] = fat [ T2

T | gt _
| [0
' s
and utilizing Holder’s integral inequality we deduce
SUPscir () [ (8) s = F (9] [} Fds|,
> 1,
(2.6) < «at Utx|f’(s)s—f(s)|pds’1/p‘ﬁx S%qu|1/q lf_lzl
P q ’
|17 ()5 = f (s)] ds| supse s,y {32 )
If =€l 1z = 2],
29 a 1/q p>1,
=\ G -l —a= T i
If = efl, mefred,
and the inequality (2.3) is proved. O

Remark 1. The first inequality in (2.2) also holds in the same form for 0 > b > a.

Remark 2. If we take in (2.2) x = A = A(a,b) := %t (the arithmetic mean) and
t=G=0G(a,b):= Vab (the geometric mean) then we get the simple inequality for
functions of means:

27 |G (A) - AF(G)
If = £f'll (A= G) if f—tf € L [ab],

if f —(f' € L, [a,b]
p>1,

1 1 _
Lyl=y,

1 A29—1_2q-1 1/q
sy I = e,

IN

If =], &.

3. EVALUATING THE INTEGRAL MEAN

The following new result holds.
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Theorem 7. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] with b > a > 0. Then for any x € [a,b] we have

(3.1)

at+b f(z) 1 /bf(t)dt

2 T b—a
o—ofb?
e 14 (522) - e ot € Lot

if f—Lf" € Ly[a,b

1
= Go s 1 = L1, [Bq (a, b; 2)] /e p>1, ’
1 1 _
L
p q
2_ 2
s 17 = el (nz + B,
where
2{1(1 (2xq*2 —a?7? — bq’z)
q72
(3.2)  Bglabiz) =1 Hgrgry (00 +atth = 2204
.’1,'2 In %z 4 b3+a;’a:2m3, q= 2.

Proof. The first inequality can be proved in an identical way to the case of differ-
entiable functions from [3] by utilizing the first inequality in (2.2).
Utilising the second inequality in (2.2) we have

a+b x b
T - [ fa

1
b—a

(3.3)

b
/ 6 (@) — f (£)] dt

1/q

1
dt.

b
—of
= (2q—1)1/q (b—a) IF =t ”p/a

Utilising Holder’s integral inequality we have

(3.4) A "
() ([
=(b—a)'/? (/ab

For q # 2 we have

x4 t?
ta—1 ga-1

1 t?

ta—1  ga-l

x4 t4

T

1/q q 1/q
1/q
dt) |

x4 t4

ta=1  ga-1
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b q q
x t
/a ta—1  ga-1 dt
a2 td b xd
:/a (tql T 1)dt+/ (qu _tql)dt
T dt 1 T b b
_ 4 _ q04 _ 4
73:/@ = xq_l/a ’ tidt — x /$ tq_ldt
x4 1 1 1
— _ _ g+l _ q+1
7 () s 0 )
1 z? 1 1
patl _ patly _ _
+xq—1(q+1)( @) 2—q \b21 24
ot 1 1 1 1
T 2-g\a¥1 20 pa ' g2
1
= (patl _patl _ gpatl q+1
+mq*1(q—|—1)( T T +a )
x4 1
— 9 q—2 _ q—2 _ bq—2 bq+1 q+1 _ 2 q+1
2_q(a: a )+7:cq*1(q+1)( +a T )
= B, (a,b;x).
For ¢ = 2 we have
b|..2 2
t
/x—‘dt
o | T x
T2 42 bory2 g2
= — — — | dt — — — | dt
[ (-2 [ (5-7)
Tdt 1 (7 1
= 22 ——f/ t2dt+f/t2dt / —dt
a t &€ a
2) z lad—d3 1b3—x 2)
=z2°ln— — — — n,
a T 3 x 3 x
2 3
9, T 16°+a° -2z
=z°ln— 4+ = =B b
x ab+ 3 (a,b;x)

Utilizing (3.3) and (3.4) we get the second inequality in (3.1).

Utilising the third inequality in (2.2)

we have

a+b b 1 b
35) |37 e o) <= @ -ar @
max{t x}
—||f = f
Since
b x b 2 2
max {t, z} x t x 1b—x
dt —dt —dt=xln—+ —
o min{t x} /u t +/T x “ 2 7

——dt.
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then by (3.5) we have

a+b x b 1 b
: — < - _
T = [ rwa < o= @ - o)l
1 x  1b*—2?
< —|f —&f In=+ =
<o lf—erl fom 4 T RS
and the last part of (3.1) is thus proved. O
Remark 3. If we take in (3.1) x = A = A(a,b) := “E, then we get
1 b
. A — —— t)dt
3O |- [ r0
b—a | s _ ppr if f=Lf
2 I - 7). o
if f—Lf
< 1 eL [a,b] ,
- (2q71)1/q{4(b7a)1/q 1f = ££71l, [Bq (a, b A)] . £> 1,
1,01
P + i 1,
e 1f =€y [In G+ 3 (0 —a) (+5) 4],
where
)
2 1 1 1 172
Bq (a,b; A) = +W (A (bq+ ,a‘1+ ) — Aq+ ) s
2A21n%+%(b—a)2, q=2.

4. A RELATED RESULT
The following new result also holds.

Theorem 8. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] with b > a > 0. Then for any x € [a,b] we have

1 [Pre
an [ L,
x b—aj, t
2 ! ot _g ; 1
w2 I = 0 (n &5 + 277) if f—tf' € Loc [0, )
if f—Lf" € L,|a,b]
1
=3 e 1 = 1l (Cq(a, b)) i Pl ,
pta=1
IQ a0—zax
e I = e, =2,
where
1 2—2q b272q72 2—2q
(4.2) C’q(a,b;z)zi(bJran:c)Jra + :c ,q > 1.

= 2(g—1)
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Proof. From the first inequality in (3.2) we have

fl@) 1 (" L [Mf@) [
(43) x _bfa/a t dt Sbfa/a z ’dt
1 b
< -l [ [5-5]
Since

r x—a b—=x b
=(ln—— —In—

a T T T

2 -2
:(lnx+a+b x)

a T

for any x € [a,b], then we deduce from (4.3) the first inequality in (4.1).
From the second inequality in (3.2) we have

I
L [Mf@) [
Sb—a/a z ‘dt

1/q

1
dt.

1
$2¢—1  52¢—1

1 b
yry
< 2007 5w If = ¢f IIp/a

Utilising Holder’s integral inequality we have

(4.5) / b 5
(L) (1]
=®b-a)'? (/ab

1/q

1 1
dt

20-1  52¢—1

1 1
$2¢—1 "~ 52¢—1

1/4749 1/q
1/q
dt> .

1 1
$2a—1  52¢-1
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Since

1 1

12¢—1  p2¢-1 dt

/b
T/ 1 b 1
:/a <t2q—1 - qu—l) dt+/w (qu—l - t2q—1) dt

w2—2q _ a2—2q 1 b2—2q _ x2—2q
BT R TS R
1 2x2—2q _ CL2—2q _ b2—2q
=~ (b+a—2x)+ 52
1 a2—2q + b2—2q _ 2x2—2q
:33211—1 (b+a_2x)+ 2(q—1) :Cq(avb;x)

then by (4.4) and (4.5) we get

Sl 1 e
‘ T _b—a/a t dt
1

If = £l (b= a)'’? (Cq (a, by x)) "/

T 21" (b-a)

and the second inequality in (4.1) is proved.
From the third inequality in (3.2) we have

P b b
wo) ‘fw_bla/fgﬂdt .

x
1 [0 1
b—a If =t Hl/a min{tQ,xQ}dt'

IN

x

1) 10
t

IN

Since

/b 1 dt:/mﬂ—i— bﬁzz—a_'_b—x
., min{t? 22} o 12 . T2 za x?
2% + ab — 2ax

z2a
then by (4.6) we deduce the last part of (4.1).

Remark 4. If we take in (4.1) x = A= A(a,b) := “E, then we get
f4) 1 /Fﬂw

4. — dt

(47) | A b—aj, t

w2 = ef o In(28) if f—€f € Lo [a)b],

if f—Lf € L,[a,b]
L,

IN

aorig—aa I = 1, (Cq (asb; Ay p )
+ )

U=V

Sl

LIF—ef'), e,
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where A 2—2 2—2 AQ 2
=29 }2-29) _ A2%2-2
Cq (a?va): (a 7 ) 7q>1
q—1
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