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TRAPEZOID TYPE INEQUALITIES FOR COMPLEX
FUNCTIONS DEFINED ON UNIT CIRCLE WITH
APPLICATIONS FOR UNITARY OPERATORS IN HILBERT
SPACES

S.S. DRAGOMIR?:2

ABSTRACT. Some trapezoid type inequalities for the Riemann-Stieltjes integral
of continuous complex valued integrands defined on the complex unit circle
C(0,1) and various subclasses of integrators of bounded variation are given.
Natural applications for functions of unitary operators in Hilbert spaces are
provided.

1. INTRODUCTION
A simple way to approximate the Riemann-Stieltjes integral f: f(t)du(t) is by
using the trapezoidal rule
f(a)+ f(b)
(1.1) % [u(b) —u(a)]

under different assumptions for the integrand f and the integrator u for which the
above integral exists.
A priory error bounds, namely, upper bounds for the quantity

[ romm- LI )

are known for various pairs (f,u) for which the integral ff f(t)du(t) exists. We
present here some simple ones.

Theorem 1 (Dragomir, 2001, [11]). Let f : [a,b] — C be a p — H-Holder type
function, that is, it satisfies the condition

(1.2) [f (@) = f W) < H|z—y|” for all z,y € [a,b],

where H > 0 and p € (0,1] are given, and u : [a,b] — C is a function of bounded
variation on [a,b]. Then we have the inequality:

fla) +f(b)

b
) @)= [ 0t

The constant C = 1 on the right hand side of (1.3) cannot be replaced by a smaller
quantity.

1 b
< Hb-0"\ W)

a

(1.3)
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In the case when u is monotonic nondecreasing, we have the following result as
well:

Theorem 2 (Dragomir, 2011, [14]). Let f : [a,b] — C be a p — H-Hélder type
mapping where H > 0 and p € (0,1] are given, and u : [a,b] — R a monotonic
nondecreasing function on [a,b]. Then we have the inequality:

b
W.[u(b)—u(a)]—/a f(t) du(t)

b l(b — )P (1 — a)lpl o) dt}

(b—t)"""(t—a)>

(1.4)

IN

1 p
2H{<b—a> w® -u@]-p [

a

o H (b= ) [ (5) —u (a)].

The inequalities in (1.4) are sharp.

IN

The case when both the integrand and the integrator are of bounded variation
is as follows:

Theorem 3 (Dragomir, 2011, [14]). Let f, u : [a,b] — C be of bounded variation
on [a,b]. If one of them is continuous on [a,b], then the Riemann-Stieltjes integral

f; f () du(t) exists and we have the inequality

fla)+f(b) ’

(1.5) 5 [u®) —u(a)] = [ f(t)du(t)

The constant L is best possible in (1.5).

For other results of this type see [14] where applications for functions of selfad-
joint operators on complex Hilbert spaces are given as well.

For other inequalities for Riemann-Stieltjes integral, see [1]-[5], [6]-[10], [12]-[18]
and [20].

Motivated by the above facts, we consider in the present paper the problem of
approximating the Riemann-Stieltjes integral fab f(€) du(s) by the trapezoidal

rule

f eib + f eia

L) 144y - u o)
for continuous complex valued function f : C(0,1) — C defined on the complex
unit circle C (0,1) and various subclasses of functions v : [a,b] C [0,27] — C of
bounded variation. We denote the error functional by

oib pia b
(1.6) Te (fyu;a,b) == % [u(b) —u(a)] — / f(e”) du(s).

The Riemann-Stieltjes integral f02 "f (eis) du (s) is related with functions of uni-
tary operators U defined on complex Hilbert spaces as follows.

We recall here some basic facts on unitary operators and spectral families that
will be used in the sequel.

We say that the bounded linear operator U : H — H on the Hilbert space H
is unitary iff U* = U~'. Simple examples of unitary operators are for instance the
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exponential operators exp(iA) where A is a selfadjoint bounded linear operator on
H.

It is well known that (see for instance [19, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {E/\}Ae[o,27r]7 called the spectral
family of U with the following properties:

a) Ex < E, for 0 <X < p<2m

b) Ey =0 and Ea, = 1y (the identity operator on H);

¢) Exio=FE) for 0 <\ < 2m;

d) U= fo% e dFE), where the integral is of Riemann-Stieltjes type.

Moreover, if {Fy} A€[0,27] is a family of projections satisfying the requirements
a)-d) above for the operator U, then F = E) for all A € [0, 27].

Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle C (0, 1), we have

2
(1.7) Fwy= [ r(eapy

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(18) (f (U) 2.y = / " () d (B

and
27

27
(19)  [f(W)a)® = / I (e[ d||Brz)? = / 11 (€M) d(Brz, @),

for any z,y € H.
From the above properties it follows that the function g, (\) := (Ejz,x) is
monotonic nondecreasing and right continuous on [0,2x] for any « € H.
Examples of such functions of unitary operators are

2m
exp (U) = / exp (eM) dFE)
0
and
27
U" = / ein)\dE)\
0

for n an integer.
We can also define the trigonometric functions for a unitary operator U by

sin (U) = /027r sin (e"*) dEy and cos (U) = /027r cos (e) dE
and the hyperbolic functions by
sinh (U) = /027r sinh (ei)‘) dEy and cosh (U) = /:Tr cosh (e“‘) dE)
where

1 1
sinh (z) := B [exp z — exp (—z)] and cosh (z) := 5 [exp z +exp (—2)],z € C.
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2. INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL

We have the following result.

Theorem 4. Assume that f : C(0,1) — C satisfies the following Hdélder’s type
condition

(2.1) If (z) = f (W) < H |z —w|’

for any w,z € C(0,1), where H > 0 and r € (0,1] are given.
If [a,b] C [0,27] and the function u : [a,b] — C is of bounded variation on [a,b],
then

I\D‘,_.

b
(2.2)  |Te (f,uja,b)| <27~ 1Hsrél[g)l<)]B abs\a/

b
—a)"\/ ()

for any t € [a,b], where the bound B, (a,b;s) is given by

(2.3) B, (a,b;s) := sin" <b;8> + sin” <3 ; a>

Sb=s)"+(s—a)].

<

2| =

Moreover, if f:C(0,1) — C is Lipschitzian with the constant K > 0, then

b

b
(2.4 Tc<f,u;a,b>|s2f<sm(b;f’)\/<> Kb\ ()

a

The constant 2 in the first inequality in (2.4) is best possible in the sense that it
cannot be replaced by a smaller quantity.

Proof. We have the equality

b eib eia )
(25) Te (fuat) = [ [f();f()—f(ew)] du (s).

It is known that if p : [¢,d] — C is a continuous function and v : [¢,d] — C is of

bounded variation, then the Riemann-Stieltjes integral f p (t) dv (1) exists and the
following inequality holds

d
/ p(t) do (1)

d

< max [p ()] \/ (v).-

2.6
( ) te(e,d]
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Taking the modulus in the equality (2.5) and utilizing the property (2.6) we

deduce
b 6ib eia )
e G| lf();f()—f(eﬂ] du (s

eib ela ' b
Ssrg[%] J(h) + 1) )J;f( )—f(e’s) \a/(u)
b
< 5 max 17 (€)= £ () + | () = 7 ()] (W
< 1H ib is|” is ia|T ’
<3 Srél[z;m’)l()}[}e —e®| +]e*—e |]Y(u)

Since

eis _ eit|2 _ |6is’2 _ 9Re (ei(sft)) + |6iti2

for any t,s € R, then

T

(2.8) |efs —ett|" = 2"

—t
=2 —2cos (s —t) = 4sin® <s )
for any t,s € R.

2
| (S ] t)
sin
2
For [a,b] C [0, 27] we have

|6ib _ eis|7” — 9T gin" <b25>

ial” r s—a

is _ ptal" — orgin”

e — e sin ( 5 >
for any s € [a,b].

Utilising the inequality (2.7) we deduce the first inequality in (2.2).
By the elementary inequality sinz < z for z € [0, 7] we have the inequality (2.3).
Consider the function ¢ : [a,b] = R, ¢ (s) = (b—s)" + (s —a)". We have
(b _ 8)1—7‘ _ (S _ a)l—r
(b _ 8)1—7‘ (S _ a)l—’r‘

and

O (s)=r(s—a) ' —rb-—s)"""=r

and
() =r(r=1)[(s—a) P+ b —s)]

for any s € (a,b) . We observe that ¢’ (s) = 0iff s = “E2 ¢/ (s) > 0 for s € (a, 52)
and ¢’ (s) < 0for s € (a—%—b , b) which shows that the function ¢ is strictly increasing
on (a, %“b) and strictly decreasing on (“T'H’, b) . Since ¢ (s) < 0 for any s € (a,b),
the functions ¢ is strictly concave on [a,b]. We have the bounds

max ¢ (s) = ¢ (a . b) =2'""(b-a)

s€la,b 2
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and

sgﬂﬁﬂ®=wﬁw=@®%=®—®3

This proves the last part of (2.2).
For r =1 we have

. [(b—s . [(s—a
Bj (a,b; s) :=sin <2> —|—s1n< 5 )

b —a s — a+b
= 2 1 2
sin ( 1 ) oS ( 5 >
which implies that

b—a s — a+b
max B b;s) = 2si —— | m -2
56[3,}2] 1(a,b;5) St ( 4 ) se[(z,}li] €08 < 2 )

= 2sin b—a < b—a
N 4 )= 2

which proves the desired result (2.4).
Now, for the best constant, assume that there is a D > 0 such that

Eib eia b .
‘f()_;f() [u(b) — u(a)] — /a f(€") du(s)

(2.9)

b

< DK sin <b;“> \/ ()

a

for an interval [a,b] C [0,27] a K-Lipschitzian function f : C(0,1) — C and a
function of bounded variation u : [a,b] — C.
If we take [a,b] = [0,27], f (2) = z then K = 1 and the inequality (2.9) becomes

2m
(2.10) u(2m) —u(0) — /0 e du (s)

<D\/(u)
0

for any function of bounded variation u : [0, 2] — C.
Integrating by parts in the Riemann-Stieltjes integral, we have
2T ) o 2r 2r
/ edu(s) = e"u(s)|, — Z/ e’u(s)ds =u(2r) —u(0) — Z/ eu(s)ds

0 0 0

and the inequality (2.10) becomes

2r
/ eu(s)ds
0

for any function of bounded variation u : [0, 27] — C.
Now, if we take the function

27

(2.11) <D\/(u)
0

-1 ifse[0,n]
u(s) =

1 ifse[m2n],
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2
then u is of bounded variation, \/ (u) =2 and
0
2m ™ 2m
; : : 1. 1 1 1. 4
/ eu(s)ds = 7/ eds +/ eds = — e+ Ze¥ + =¥ — el = =
0 0 T (3 (3 1 (3 (3
and the inequality (2.11) becomes 4 < 2D showing that D > 2. O

Remark 1. If we take a =0 and b = 27, then we get from (2.4) that

212 |fmen-uo]- [ 7w <2mV o,

Remark 2. If0 <b—a < then

h— _
max B, (a,b;s) < max sin” ( S) + max sin” <S a)
s€la,b] s€la,b] 2 s€la,b]

— 2sin” <ba>
2

and by (2.2) we have

b
(2.13) Te (f, u;a,b)] < 2"H sin” <b ; a) V@,

a

Theorem 5. Assume that f : C(0,1) — C satisfies the Hélder’s type condition
(2.1). If [a,b] C [0,27] and the function w : [a,b] — C is Lipschitzian with the
constant L > 0 on [a,b], then

b . _
(2.14) ITe (f, us a,b)| < Qr—lLH/ {Sinr (525) +sin” (s 2 a)] ds

(b—a) ™!
s LH=

In particular, if f : C(0,1) — C is Lipschitzian with the constant K > 0, then
we have

b—a

1
(2.15) Te (f,u;a,b)| < 8LK sin® < ) < SLH(b- a)®.
Proof. Tt is well known that if p : [a,b] — C is a Riemann integrable function and
v : [a,b] — C is Lipschitzian with the constant M > 0, then the Riemann-Stieltjes

integral f: p(t) dv (t) exists and the following inequality holds

b b
(2.16) / p(t)dv ()] < M / ip (1) dt.
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Taking the modulus in the equality (2.5) and utilizing the property (2.16) we deduce

/ b [f ) o )y (e“)] du (s)

feib feia s
COESCO R

(217)  |Te(f,usa,b)| <

b
<o
a

s [T )~ £ )] 415 ()~ 5 () s

ELH b[ ib is|” is ia|7’]d
5 /a }e —e | +|e —e S

b J— J—
- 2’"*1LH/ [sinT <b25> +sin” <S . a)] ds

which proves the first inequality in (2.14).
On making use of the elementary inequality sinz < x,z € [0, 7] we have

[l () o (57
() e ()

_ (b _ a)r+1 + (b _ a)r+1 B (b _ a)r+1

(r+1)2r C(r+ 120t

This proves the second part of the inequality (2.14).
For r = 1 we have

/b in L_S + sin s—a d
j S 5 S 5 s
b a+b
_ _ atb b—
:2sin(T>/acos<s 22 >d$:881n2< 4a>

Using (2.14) for r = 1 we deduce (2.15). O

ds

IN

IN

Remark 3. Fora =0 and b = 27 we have by (2.15) that

(2.18) ‘f(l) [u(2w)—u(0)}—/0 Wf(eis) du (s)| < 8LK.

The case of monotonic nondecreasing integrators that is important for applica-
tions for unitary operators is as follows.

Theorem 6. Assume that f : C(0,1) — C satisfies the Hélder’s type condition
(2.1). If [a,b] C [0, 27| and the function u : [a,b] — R is monotonic nondecreasing
on [a,b], then

(2.19) ITe (f,u; a,b)| < 27‘—1H/ab [Sinr (b;s) +sin” (‘9_2“” du (s)

b
<5t [ (=9 + (=) ldu(o).
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In particular, if f : C(0,1) — C is Lipschitzian with the constant K > 0, then we
have

(2.20) Te (f,u;a,0)|

< 22K sin <T> /ab [1 + cos (s - a;b)} v du (s)
< Kb a)u(®) —ua)].

Proof. Tt is well known that if p : [a,b] — C is a continuous function and v :
[a,b] — R is monotonic nondecreasing on [a, b] , then the Riemann-Stieltjes integral

f; p(t) dv (t) exists and the following inequality holds

b b
/p<t>dv<t> s/ Ip (8)] do (1)

Utilising the property (2.21), we have from (2.5) that

2
< / b
; /ab [17(e®) = F (@) + [ () = f () [] du(s)

e
iH/a “e —e®| +]e®—e ’}du(s)

- zf—lﬂ/ab {smr <b;‘9> +sin” <‘9_2“ﬂ du (s),

which proves the first part of (2.19). The second part is obvious.
For r =1 we have

(5o (52 e
— 2sin (bza) /abcos (5 ;;b> u(s)
=21/2gin (T) /ab {1 + cos (s - “;bﬂ v du (s).

This proves (2.20). O

(2.21)

(222) |TC (f,u;a,b)\ S

f (eib) + f (eia)

5 —f (eis) du (s)

IN

IN

Corollary 1. Assume that f is as in Theorem 6. If the function u : [0,27] — R is
monotonic nondecreasing on [0,27], then

27 )
(2.23) ‘f Wl m) —u )] = [ 7 () du(s

2m 2m
< 2TH/ sin” (f) du (s) = QT/QH/ (1—coss)?du(s).
0 2 0
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Proof. We have

and by (2.19) we get (2.23).
Since for s € [0, 27] we have

. (s) 1—coss 1/2
sin(=) = —— ,
2 2

then the last part of (2.23) is obtained. O

3. A QUADRATURE RULE

We consider the following partition of the interval [a, b]
Apa=20<21 < ... <ZTp_1 <Tp=2>b

where 0 < k < n — 1. Define hy = xp41 — 2, 0 < k < n—1and v(A,) =
max {hg : 0 < k <n — 1} the norm of the partition A,,.

For the continuous function f : C (0,1) — C and the function v : [a, b] C [0, 27] —
C of bounded variation on [a, b], define the trapezoid quadrature rule

nfl zxk_H Tk
(3.1) o (o A = )”( )

[u(zh41) —u ()]

OM

and the remainder R, (f,u,A,) in approximating the Riemann-Stieltjes integral
f f( ) (t) by T, (f,u, Ay). Then we have

b
(3.2) / £ (€M) du () = Ty (frs An) + R (o1, A)

The following result provides a priory bounds for R, (f,u,A,) in several instances
of f and u as above.

Proposition 1. Assume that f : C(0,1) — C satisfies the following Holder’s type
condition

1f (z) = f(w)| < H|z —w|’

for any w,z € C(0,1), where H > 0 and r € (0,1] are given.
If [a,b] C [0,27] and the function u : [a,b] — C is of bounded variation on [a,b],
then for any partition A, : a = 29 < 1 < ... < Tp_1 < T, = b with the norm
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v(A,) <7 we have the error bound

(3.3) IR (f7uA)|<2’HZsm (””k*l_xk) (u)

Tk

< 2"H sin" (”(ﬁn)) \/ (u) <v" (An) H\/ (u).

a a

Proof. Since v (A,,) < 7, then on writing inequality (2.13) on each interval [z, T 1]
and for any intermediate points &, € [z, Tp41] where 0 < k < n — 1, we have

(3.4)

[ ey an - K e

k

Tp Tp Tr41 v (A ) Thk+1
r T +1 r ST n
< 2"H sin <2> y (u) < 2"H sin ( ) > \/ (u)

Tr+1

Summing over k from 0 to n — 1 in (3.4) and utilizing the generalized triangle
inequality, we deduce (3.3). O

Remark 4. If the function f : C (0,1) — C is Lipschitzian with the constant K > 0,
then by (2.4) we have a better error bound, namely

n—1 Th+1
(35)  |Ra(fiw A <2K sin (W) \/ ()

k=0 Tk

b
<2Ksin<y(4A"))\/( )<% (A K\ ().

Remark 5. The inequality (3.5) has some particular cases of interest as follows.
1. If we take As :a=z9=0, x1 =7, xo = b =2m, then

fED+ )

1o (f,u,Ag) = 3 [u(7) — u (0)]
+ LT b o) )
— 7f (1) +2f (=1) [u(27) — u (0)]

and writing the inequality (3.5) for this case we get

(3.6)

2 _ 27
/0 £ () du (t) — W [u(27) — u(O)]‘ < V2K \/ (u)
0
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2. If we take Ay:a=129=0, 11 =3, 12 =, 1:3237“,1:4=b:27r, then
Ty (f,u,Ay)
IO ) v LU - )
HACVEIED [, (31 ]+ LT oy, (37)
I Tuen () +u(3) - u 0] + L i - o)

S (3) (] 2t i

and writing the inequality (3.5) for this case we get

/0% £ (") du (1) - @ [u (27) — u (32”) tu(3) - (0)}

féi)’[u @ —u ()] - LY {u <?;T) u (;)]

f(=1)
2

S\/2—\/§Kv(u).

We consider the following partition of the interval [0, 27]

(3.7)

[u (27) — u (m)]

T, 0= X< M <... <A1 < A\ =27
and the intermediate points &, € [k, Ag+1] where 0 < k < n — 1. Define hy :=
Mit1 — A, 0 <k <n-—1and v ([',) = max{hg : 0 < k <n—1} the norm of the
partition T',,.
If U is a unitary operator on the Hilbert space H and {EA}AG[O,%]v the spectral
family of U, then we can introduce the following sums

n—1 T 41 Tk
(3.8) Ty (fou,Tps,y) = Z f(e )2+ f(e"x)

k=0

<(E>\k-+1 - EAk) x,y>

for z,y € H.

For a function f : C(0,1) — C that satisfies a Lipschitz type condition with
a constant K > 0, we can approximate the function f of unitary operator U as
follows

(3.9) (fU)z,y) =T (f, Tusw,y) + Ry (f, T2, y)
for z,y € H, where the reminder satisfies the bounds
(3.10)

n—1 A Y Akt1
k=0 Ak
27

< 20¢sin (A7) V() < o @0 Y ()

0
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for any z,y € H.
Since the following Total Variation Schwarz type inequality holds (for a short
proof see for instance [15]):

2w
(3.11) \ (Eoz,y)) < =)yl
0
2
for any =,y € H, then in the bounds above we can replace \/ (<E(.)x,y>) with
0

(| f[y]l -
From (3.6) we have the following trapezoid type inequality for K-Lipshitzian

functions f : C (0,1) — C of unitary operators U

27

(3.12) (f (U2, y) — W <w,y>‘ < V2K \/ ((Eyz,y))

0
< V2K ||z |ly|
for any z,y € H.

4. APPLICATIONS
For a # 41,0 consider the function f : C (0,1) — C, f, (z) = . Observe that

l—az"’

(@) ) = falw) =
for any z,w € C(0,1).
If z = €' with ¢ € [0,27], then we have
I1—az]> =1—-2aRe(2) +a*|z]> =1 — 2acost + a?
>1—2lal+da® = (1 —|a|)?
therefore

1 1 1 1
(4.2)

< and <
1 —az| = [1—la| 1 —aw| = [1 —la|
for any z,w € C(0,1).
Utilising (4.1) and (4.2) we deduce

|al
(1—al)?
for any z,w € C (0, 1), showing that the function f, is Lipschitzian with the constant
L, = —% on the circle C (0,1).

(1—|al)
If we write the inequality (3.12) for the function f,, we get

(4.3) |fa (2) = fa (w)] <

|2 — wl

(4.4) '<(1 —al)™! xy> ~3 _1a2 (x,y>‘ < (1\/_§||a||)2 V (Boey))
al) o
_V2la
< T lal)? [l Iy

for any z,y € H.
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Now, for z, w € C define the function f, ., : [0,1] = C, f, ,, (t) = exp [(1 — t) z + tw].
We observe that f, ., is differentiable on (0, 1) and

dfzgut . (w—z)exp[(1 =) z + tw]
for any t € (0,1).
We then have
_ | e ()
(45)  Jexp(w) —exp(2)] = [fow (1) ~ fo (0)] = / dtdt‘

1
:‘(w—z)/ exp[(l—t)z—i—tw]dt‘
0
1
§|w—z|/ lexp [(1 —¢) 2z + tw]| dt
0
1
§|w—z|/ exp |(1 —1t) z + tw| dt
0

1
g|w—z|/ exp (1 - £) 2] + ¢t ] dt
0

for any z,w € C. To obtain this we used the well known inequality |exp (u)| <
exp (|u|) for any u € C.
We observe that if u € C, then

lexp (u)] = |exp(Reu+iImu)| = |exp (Rew)||exp (i Imu)]
= exp(Reu)|cos (Imu) +isin (Imu)| = exp (Rew) .
Therefore
lexp [(1 —¢) z + tw]| = exp (Re [(1 — 1) 2 + tw]) = exp [(1 — t) Re z + t Re w]

for any t € [0,1].

From this inequality, we deduce the following result of interest

1
(4.6) lexp (w) — exp (2)| < |w — 2| / exp[(1 —t)Rez + tRew]dt
0

that holds for any z,w € C.

In the case when Re z # Rew we have

exp (Re z) — exp (Rew)
Rez — Rew ’

1
/ exp[(1 —t)Rez + tRew]dt =
0

which implies the following inequality of interest:

exp (w) — exp (2) < &P (Rez) —exp (Rew)

w—z - Rez — Rew

that holds for any z,w € C with Re z # Re w.
Now, if ,w € C with |w| = |z| = 1, then from (4.5) we have

lexp (w) — exp (2)] < e|w — 2|

which shows that the function f(z) = exp(z) is Lipschitzian with the constant
L = e on the circle C (0,1).
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Utilising the inequality (3.12) we have for any unitary operators U

@) e @)my) - S )| < VI (Byw.y)) < Vaelal i

for any z,y € H.

The interested reader may apply the above results for other Lipschitzian func-

tions. However, the details are not presented here.
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