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OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE
DERIVATIVES ARE h-CONVEX IN ABSOLUTE VALUE

S. S. DRAGOMIR!:2

ABSTRACT. Some new inequalities of Ostrowski type for functions whose deriv-
atives are h-convex in modulus are given. Applications for midpoint inequali-
ties are provided as well.

1. INTRODUCTION

1.1. Ostrowski Type Inequalities. Comparison between functions and integral
means are incorporated in Ostrowski type inequalities as follows.
The first result in this direction is due to Ostrowski [38].

Theorem 1. Let [ : [a,b] — R be a differentiable function on (a,b) with the
property that |f' (t)] < M for all t € (a,b). Then

2
1 x — afb
for all z € [a, b].

The constant i 18 the best possible in the sense that it cannot be replaced by a
smaller quantity.

b
(1.1) P@%wia/fﬁmt

The following results for absolutely continuous functions hold (see [29] — [31]).

Theorem 2. Let f : [a,b] — R be absolutely continuous on [a,b]. Then, for all
x € [a,b], we have:

1 b
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where |||, 4, (7 € [1,00]) are the usual Lebesgue norms on Ly [a, b, i.e., we recall
that

191l g 47,00 == €55 sup g (£)|
t€la,b]

”gH[a bl,r (/ ‘g | dt) » T € [1300)'

and 1 5 respectively are sharp in the sense presented in

and

The constants %,
(P+1)P
Theorem 1.

The above inequalities can also be obtained from the Fink result in [33] on
choosing n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Holder
continuous, then one may state the result (see for instance [21] and the references
therein for earlier contributions):

Theorem 3. Let f : [a,b] — R be of r — H—Hélder type, i.c.,
(13) |f($)7f(y)| §H|Z'*y‘r7 fOT’ all T,y € [U’?b]a
wherer € (0,1] and H > 0 are fized. Then, for all x € [a,b], we have the inequality:

r@ -y [ roal < 2 (20T (”‘b’jj)ﬂ (b—ay

The constant w%l 18 also sharp in the above sense.

(1.4)

r+1

Note that if » = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)

(see for instance [13])
2
1 x — atb
i ( — ) (b—a)L,

(15) ‘f(@—bla/ f () dt| <

where z € [a,b]. Here the constant § is also best.

Moreover, if one drops the condition of the continuity of the function, and as-
sumes that it is of bounded variation, then the following result may be stated (see
[15]).

Theorem 4. Assume that f : [a,b] — R is of bounded variation and denote by
b
V (f) its total variation. Then

a

b
(1.6 ‘f(x) e R E

for all x € [a,b]. The constant 5 is the best possible.

a+b

b—a

2

\E

If we assume more about f, i.e., f is monotonically increasing, then the inequality
(1.6) may be improved in the following manner [12] (see also the monograph [28]).
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Theorem 5. Let f : [a,b] — R be monotonic nondecreasing. Then for all x € [a,b],
we have the inequality:

(1.7)

b
@) -y [ foa

Sbia{[%—(aw)]f(w)ﬂt/a Sgn(t—x)f(t)dt}

<t - a) [ @)~ F @]+ (b-2)[F0) ~ f (@)}
1 a:—“T“’

<l2+ - 1[f(b)—f(a)].

All the inequalities in (1.7) are sharp and the constant % is the best possible.
The case for the convex functions is as follows [18]:

Theorem 6. Let f : [a,b] C R — R be a convex function on [a,b]. Then for any
x € (a,b) one has the inequality

(18) So-2 @) - - 1 @)

b
<[ fa-0-0s@
< [e—2rP o) - @]

The constant % is sharp in both inequalities. The second inequality also holds for
r=aorz=>.

For other Ostrowski’s type inequalities for the Lebesgue integral, see [3]-[13] and
[19].

Inequalities for the Riemann-Stieltjes integral may be found in [14], [16] while
the generalization for isotonic functionals was provided in [17].

For the case of functions of self-adjoint operators on complex Hilbert spaces, see
the recent monograph [20]

1.2. The Case of Derivatives that are Convex in Modulus. In [17], the
author pointed out the following identity in representing an absolutely continuous
function. Due to the fact that we use it throughout the paper we give here a short
proof.

Lemma 1. Let f : [a,b] — R be an absolutely continuous function on [a,b]. Then
for any = € [a,b], one has the equality:

b b 1
(1.9) f(x):ﬁ/ f(t)dt—i—bia/ (:c—t)(/o f’[(l—)\)x—f—)\t]d)\)dt.
Proof. For any t,x € [a,b], x # t, one has

f(wgzii‘(t):xl_t/twf/(u)du:/o FIL = Nz + M dA,
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showing that

(1.10) f(2) :f(t)—i—(:r—t)/o F 1= Nz + M dr

for any ¢,z € [a,b].
If we integrate (1.10) over ¢ on [a, b] and divide by (b — a) , we deduce the desired
identity (1.9). O

Using the above lemma the following result can be pointed out improving Os-
trowski’s inequality [4].

Theorem 7. Let f : [a,b] — C be an absolutely continuous function on [a,b] so
that |f’| is convez on (a,b).

(i) If f’ € Loola,b], then for any x € [a, b,

b
(1.11) ‘f(x)— s ICL

2
et RO
2|4 b—a “ v oot
The constant % is sharp in the sense that it cannot be replaced by a smaller
quantity.
(i) If f' € Lyla,b], p > 1, % + % =1, then for any x € [a, b],

b
(1.12) ‘f(:c)—b_la/ Ft)dt

1 bh—z\4! z—a)\?! i 1 , /
= 2(q+1)7 [(b—a) +<b—a> ] (0 —a)= [IIf" @)+ [, -

The constant % s sharp in the sense that it cannot be replaced by a smaller
quantity.
(ii) If f' € L1la,b], then for any x € [a,b],

(1.13)

b
f@) - [ s

< 111 n
212
In order to extend this result for other classes of functions, we need the following
preparatory section.

_ atb
z 2

b—

] [(b—a) [ @)+ 1]

2. h-CoNVEX FUNCTIONS

2.1. Some Definitions. We recall here some concepts of convexities that are well
known in the literature. Let I be an interval in R.
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Definition 1 ([32]). We say that f: I — R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all x,y € I and t € (0,1)
we have

Some further properties of this class of functions can be found in [24], [25], [27],
[37], [40] and [41]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

Definition 2 ([27]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all x,y € I and t € [0,1] we have

flz+ A —=t)y) < fz)+f ().

Obviously @ (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone convex and quasi convez functions, i.
e. nonnegative functions satisfying

fltz+ 1 —t)y) <max{f(z),f(y)}
forall z,y € I and t € [0,1].
For some results on P-functions see [27] and [39] while for quasi convex functions,
the reader can consult [26].

Definition 3 ([6]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00)
is said to be s-convex (in the second sense) or Breckner s-convex if
flz+ 1=ty <t°f(2)+(1-1)° f(v)

for all x,y € [0,00) and t € [0,1].

For some properties of this class of functions see [1], [2], [6], [7], [22], [23], [34],
[35] and [43].

In order to unify the above concepts, S. Varosanec introduced the concept of
h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and f are real
non-negative functions defined in J and I, respectively.

Definition 4 ([46]). Let h : J — [0,00) with h not identical to 0. We say that
f:1—10,00) is an h-convex function if for all z,y € I we have

flw+ 1 =t)y) <h(t)f(z)+h(1—-1)f(y)
for allt € (0,1).

For some results concerning this class of functions see [46], [5], [36], [44], [42] and
[45].

2.2. Inequalities of Hermite-Hadamard Type. In [42] the authors proved the
following Hermite-Hadamard type inequality for integrable h-convex functions.

Theorem 8. Assume that f: I — [0,00) is an h-convex function, h € L[0,1] and
f € L[a,b] where a,b € I with a <b. Then

1 a+b I !
) s () < [ wasr@son [ how
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If we write (HH) for h(t) = ¢, then we get the classical Hermite-Hadamard
inequality for convex functions.

If we write it for the case of P-type functions, i.e., h(t) = 1, then we get the
inequality

1,(a+b TP
. — < <
(2.1) 5 (50) <55 [ 10 <s@+ 10,
provided f € L|[a,b], that has been obtained in [27].
If f is integrable on [a, b] and Breckner s-convex on [a,b], for s € (0,1), then by
taking h (t) = t* in (HH) we get

b
2.2 2oy (7)< 5= [ r0a < KO

that was obtained in [22].
Since for the case of Godunova-Levin class of function we have h (t) = 7, which
is not Lebesgue integrable on (0,1), we cannot apply the left inequality in (HH).
We can introduce now another class of functions.

Definition 5. We say that the function f : I — [0,00) is of s-Godunova-Levin
type, with s € [0,1], if

1 1
(2.3) flz+(1-1t)y) < t?f(m) + mf(y)a

forallt € (0,1) and z,y € I.

We observe that for s = 0 we obtain the class of P-functions while for s =1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions defined on I, then we obviously have

PI)=Qo(I) Qs (1) CQs, (1) CQ1 (1) =Q ()

for 0 < s1 <9 < 1.
We have the following Hermite-Hadamard type inequality.

Theorem 9. Assume that the function f : I — [0,00) is of s-Godunova-Levin type,
with s € [0,1). If f € La,b] where a,b € I and a < b, then

b
(2.4) 2sl+1f<a;rb)§bia/af(t)dt§f(al)j£(b),

We notice that for s = 1 the first inequality in (2.4) still holds and was obtained
for the first time in [27].

3. INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE h-CONVEX IN
MobuLus

3.1. The Case of |f’| is h-Convex. The following result holds:

Theorem 10. Let f : [a,b] — C be an absolutely continuous function on [a,b] so
that |f’| is h-convezx on (a,b) with h € L|0,1].
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(i) If f' € Loola,b], then for any x € [a,b),

(i) If f' € Lyla,b], p > 1, 1% + é =1, then for any x € [a, ],

b
—bia/f(t)dt
o1 (b—x)qﬂ <x—a>q+13

_(q—i—l)% b—a * b—a

X (b—a)t |If'(@)] + |f'|||p/0 h(t) dt

(iii) If f' € L1[a,b], then for any x € [a, b,

o a—i—b

(3:3) —

.%‘

b—a/f t)dt

1
x [(b—a)\f’(fc)HI\f’HJ/o h(t) dt.

Proof. (i). Using (1.9) and taking the modulus, we have

bia/abf(t)dt // (x—t) A) @ + At] dAdi

)& + At]| dAdt

b—a
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Utilizing the h-convexity of |f’| we have

K<

B //'“pl”_t| (L= @)+ 2 N[ ()] dAdt

b—a

:H/a o — ¢ {|f’(x)|/0 h(l—)\)dA+|f’(t)|/O h()\)d)\] dt

1 b 1
:bfa/O h(A)dA/ Ifc*tl[If’(m)|+|f’(t)l]dt::M(:c)/o B () dA

1
< ! /Oh()\)d)\ess sup [|f' (@) + |f'(t /|x—t|dt

t€la,b]

b
_[-at+0-
—[ 0 ][f I+ [ na

l‘—a—er 2 1
- [zlﬁ< b ) ]<ba> [If’(:r)|+||f/||oo}/0 h(A)dX,

for any x € [a, b], and the inequality (3.1) is proved.
(ii). As above, we have

b
‘f(x)—b_la [ s

1 b , , - N 1
<poa [l tlr @I Ol @) [ ryan

Using Holder’s integral inequality for p > L3 Ly % =1, we get that

b P
)< (/ |xt|th> (/ <|f'<x>|+|f’<t>|>”dt)

1 ) (-
b—a g+1

] 1@+ 111,

and the inequality (3.2) is proved.
(iii). We also have that

M@ < o ot i@ ol

t€[a,b]
1 b

= g mex(e—ab-2) [(ba)lf’(fv)H / |f'<t)dt]

T — a,—2i-b
b—a

5+

] [(b—a) [f" ()] + [LF1],]

and the inequality (3.3) is proved.

The following particular case is interesting.
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Corollary 1. With the assumptions of Theorem 10, we have the midpoint inequality

f(“jb)—bfa/:f@)dt

<0-a [l (“2)|+ 1] /Olhu)czt,

provided f' € Lyla,b].
If ' € Lpla,b], p > 17% + % =1, then, we have,

() -k [ rwa
g%(b—a)i (/ab {f’(“;b)‘Jrf’(t)@pdt);/olh(t)dt.

If f' € Lya,b], then

(3.4)

(3.5)

(3.6) |f

f'(a;b)‘+/abf’(t)|dt] /Olh(t)dt.

Remark 1. We observe that if |f’| is convex on (a,b), then Theorem 10 reduces
to Theorem 7.
Assume that | f’| is Breckner s-convex on [a,b], for s € (0,1).

(a) If ' € Lola,b], then for any x € [a,b),

b
(37) ‘f(w) S AL

1 1 x — atb ?
< 4+< b_;) b= 1 @)+ 17 l)-

(aa) If f' € Lya,b], p > 1, % + % =1, then for any x € [a,b],

b
(38) ‘f(x)— el WICL
1
<

T (s+1)(g+1)0 (Ziz)qHJr (ZCZ)W]

x (b =)t [If'@)] + 171l -
(aaa) If f' € Li[a,b], then for any x € [a,b],

b
(3.9 f@) - 5o [ S0 < = |5+

b—a
< (b= a) |F'@)| + 1 ]1).
Assume that |f'| is of s-Godunova-Levin type, with s € [0,1).
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(b) If f' € Loola,b], then for any x € [a, ],

b
(3.10) ‘f(x)b_la / f(t)dt

1 1 I*GTH) ’ ’ /
<L 4+< ba) 0= a) 1@+ 1))

(bb) If ' € Lyla,b], p > 1, % + % =1, then for any x € [a,b],

<

a+b
2

x (b—a)7 [[If (@) + /]Il -
(3.12) 5 — ]

1 b
A1 - t)dit
(311) |f(fc) = | 10
1 b—a\'"! z—a\""! i
|G=2) (=)
-5+t [\b=a b=
(bbb) If f € Li]a,b], then for any x € [a,b],

I 1|1 jz-—

- — tdt| < —— | =
fla) = 5= [ 10| < 1 [ ¥
< [(0=a) [£" (@) [+ [1f]I] -

3.2. The Case of |f'|" is h-Convex. The following result also holds:

Theorem 11. Let f : [a,b] — C be an absolutely continuous function on [a,b] so
that | f'|" with p > 1 is h-convex on (a,b) and h € L[0,1].

(i) If f’ € Loola,b], then for any x € [a, b,

(3.13)

< [lF@F + 1F1%.) " ( / ) dt)l/p.

(i) If f' € Lyla,b], p > 1, % + % =1, then for any x € [a,b],

b
(3.14) ‘f(x)—b_la / f(t)dt

< =) 6=

<[o-atrerig]” ([ ron)

1/q

1/p
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e ([ rom)

1 atb
< _ 2
_[Q+ ]

<(o-anr @) ([ rwa)

Proof. As in the proof of Theorem 10 we have

1 b b ool /
7b_a/af(t)dt = /Q/O(xft)f[(lfk)z+>\t]d>\dt

1 b L
gfa/a |zt|</0 lf [(1)\)x+>\t]d)\>dt
=K

for any x € [a, b)].

By Holder’s integral inequality we have

/ (1= A+ M dX < (/01 1qd)\)1/q (/Olf’[(l—)\)x—i-)\tﬂpd)\)
= (/01 |f [(1/\)x+/\t]|pd,\)1/p

for any x € [a, b], where % + % =1,p>1.
Since |f’|" is h-convex on (a,b) with h € L[0,1], then

[ ira-neexapa< (7 @P 1 oF] [ aoya
0 0

for any z € [a, b].
Therefore

1 1/p b
316 K< (/ h(A)dA) [ le=dr@p + 1 or]"

b—a

(iii) If f' € Lpla,b], then for any x € [a,b],
_ atb
2

2

b—a

(3.15)’ (z) _a/f t)dt

T —

b—a

1/p

b—a

1/p

for any z € [a, b].
(i). Now, if f’ € Lo [a, b] then

b Y
[ le=dlr@P + 1 or]"

b
<ess sup [Iff @ +If' (¢ ”’”/| —t]dt

te[a,b]

1
= [ @F +1FI) 5 [ - o) + - 2]
for any x € [a, b], and utilizing (3.16), the inequality (3.13) is proved.



12 S.S. DRAGOMIRY2

(ii). If f" € Lyla,b], p > 1, %} + % = 1, then by Holder’s inequality we have

b 1/
/|ff—t| [ @) +1f )] " dt

b 1/q b » p
f;<L|x—tPﬁ> (L (17 @P + 17 &) ﬂ)

_ patl T — a0t 1/q
_Vb ) ] (b=l @F + 171

1/p

Gt (e \ T fe—a\ ]
x [(b—a)|f @I + £

for any « € [a,b], and by (3.16) we deduce the desired inequality (3.14).
(iii). If f' € Lyla, b], then by Hoslder’s inequality we also have

b
l/waW@W+UWWWWt
b
< sup |z —t
t€la,b] a

b
— max{x—a,b—m}/ [1f @) +1f (t)l”]””dt

IF @ +1F ()]t

= 6-a) |5+ | 52| 117 @I + 1P|

o atb b 1/p
<(b-a) |2+ |2 (/[f%@p+ﬁ%ﬂﬂd0

Ra e [

for any z € [a, b].

The following midpoint type inequalities are of interest.

Corollary 2. With the assumptions of Theorem 11, we have the inequality

(3.17) |f (a;b> b_la/abf(t)dt

,fa+b b 1P v ' v
r() ] ([ row)

si(ba)[

provided [’ € Lyla,b].



OSTROWSKI TYPE INEQUALITIES 13

If f' € Lpyla,b], p > 1,% + % =1, then we have

(3.18) f (a;b> - bia/abf(t)dt
1

s 1/q
2(g+1)

oo (2

2 ) pil 1/17( 1h d)
I / (t) dt
If f' € Lyla,b], then

(3.19) f (a;b> _ b_la/abf(t)dt
()] i p(/olh@)dt)l/p
<5 (0-alr (S5 + ||f’||§>1/p ([ roa)

Remark 2. The interested reader can state the corresponding particular inequalities
for different h-convex functions. However the details are omitted.

Q=

(b—a)

1/p

1
< =
-2

1/p
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