
OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE
DERIVATIVES ARE h-CONVEX IN ABSOLUTE VALUE

S. S. DRAGOMIR1;2

Abstract. Some new inequalities of Ostrowski type for functions whose deriv-
atives are h-convex in modulus are given. Applications for midpoint inequali-
ties are provided as well.

1. Introduction

1.1. Ostrowski Type Inequalities. Comparison between functions and integral
means are incorporated in Ostrowski type inequalities as follows.
The �rst result in this direction is due to Ostrowski [38].

Theorem 1. Let f : [a; b] ! R be a di¤erentiable function on (a; b) with the
property that jf 0 (t)j �M for all t 2 (a; b). Then

(1.1)

�����f (x)� 1

b� a

Z b

a

f (t) dt
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x� a+b

2

b� a

!235 (b� a)M
for all x 2 [a; b].
The constant 1

4 is the best possible in the sense that it cannot be replaced by a
smaller quantity.

The following results for absolutely continuous functions hold (see [29] �[31]).

Theorem 2. Let f : [a; b] ! R be absolutely continuous on [a; b]. Then, for all
x 2 [a; b], we have:�����f (x)� 1

b� a

Z b

a

f (t) dt

�����(1.2)

�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�
1
4 +

�
x� a+b

2

b�a

�2�
(b� a) kf 0k1 if f 0 2 L1 [a; b] ;

1

(�+1)
1
�

��
x�a
b�a

��+1
+
�
b�x
b�a

��+1� 1
�

� (b� a)
1
� kf 0k�

if f 0 2 L� [a; b] ;

1
� +

1
� = 1;

� > 1;h
1
2 +

���x� a+b
2

b�a

���i kf 0k1 ;
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where k�k[a;b];r (r 2 [1;1]) are the usual Lebesgue norms on Lr [a; b], i.e., we recall
that

kgk[a;b];1 := ess sup
t2[a;b]

jg (t)j

and

kgk[a;b];r :=
 Z b

a

jg (t)jr dt
! 1

r

; r 2 [1;1):

The constants 1
4 ,

1

(p+1)
1
p
and 1

2 respectively are sharp in the sense presented in

Theorem 1.

The above inequalities can also be obtained from the Fink result in [33] on
choosing n = 1 and performing some appropriate computations.
If one drops the condition of absolute continuity and assumes that f is Hölder

continuous, then one may state the result (see for instance [21] and the references
therein for earlier contributions):

Theorem 3. Let f : [a; b]! R be of r �H�Hölder type, i.e.,

(1.3) jf (x)� f (y)j � H jx� yjr ; for all x; y 2 [a; b] ;

where r 2 (0; 1] and H > 0 are �xed. Then, for all x 2 [a; b] ; we have the inequality:

(1.4)

�����f (x)� 1

b� a

Z b

a

f (t) dt

����� � H

r + 1

"�
b� x
b� a

�r+1
+

�
x� a
b� a

�r+1#
(b� a)r :

The constant 1
r+1 is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski�s inequality for Lipschitzian functions (with L instead of H)
(see for instance [13])

(1.5)

�����f (x)� 1

b� a

Z b

a

f (t) dt
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2

b� a

!235 (b� a)L;
where x 2 [a; b] : Here the constant 14 is also best.
Moreover, if one drops the condition of the continuity of the function, and as-

sumes that it is of bounded variation, then the following result may be stated (see
[15]).

Theorem 4. Assume that f : [a; b] ! R is of bounded variation and denote by
bW
a
(f) its total variation. Then

(1.6)

�����f (x)� 1

b� a

Z b

a

f (t) dt

����� �
"
1

2
+

�����x� a+b
2

b� a

�����
#

b_
a

(f)

for all x 2 [a; b]. The constant 12 is the best possible.

If we assume more about f , i.e., f is monotonically increasing, then the inequality
(1.6) may be improved in the following manner [12] (see also the monograph [28]).
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Theorem 5. Let f : [a; b]! R be monotonic nondecreasing. Then for all x 2 [a; b],
we have the inequality:�����f (x)� 1

b� a

Z b

a

f (t) dt

�����(1.7)

� 1

b� a

(
[2x� (a+ b)] f (x) +

Z b

a

sgn (t� x) f (t) dt
)

� 1

b� a f(x� a) [f (x)� f (a)] + (b� x) [f (b)� f (x)]g

�
"
1

2
+

�����x� a+b
2

b� a

�����
#
[f (b)� f (a)] :

All the inequalities in (1.7) are sharp and the constant 12 is the best possible.

The case for the convex functions is as follows [18]:

Theorem 6. Let f : [a; b] � R! R be a convex function on [a; b]. Then for any
x 2 (a; b) one has the inequality

1

2

h
(b� x)2 f 0+ (x)� (x� a)

2
f 0� (x)

i
(1.8)

�
Z b

a

f (t) dt� (b� a) f (x)

� 1

2

h
(b� x)2 f 0� (b)� (x� a)

2
f 0+ (a)

i
:

The constant 1
2 is sharp in both inequalities. The second inequality also holds for

x = a or x = b.

For other Ostrowski�s type inequalities for the Lebesgue integral, see [3]-[13] and
[19].
Inequalities for the Riemann-Stieltjes integral may be found in [14], [16] while

the generalization for isotonic functionals was provided in [17].
For the case of functions of self-adjoint operators on complex Hilbert spaces, see

the recent monograph [20]

1.2. The Case of Derivatives that are Convex in Modulus. In [17], the
author pointed out the following identity in representing an absolutely continuous
function. Due to the fact that we use it throughout the paper we give here a short
proof.

Lemma 1. Let f : [a; b]! R be an absolutely continuous function on [a; b] : Then
for any x 2 [a; b] ; one has the equality:

(1.9) f (x) =
1

b� a

Z b

a

f (t) dt+
1

b� a

Z b

a

(x� t)
�Z 1

0

f 0 [(1� �)x+ �t] d�
�
dt:

Proof. For any t; x 2 [a; b] ; x 6= t; one has

f (x)� f (t)
x� t =

1

x� t

Z x

t

f 0 (u) du =

Z 1

0

f 0 [(1� �)x+ �t] d�;
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showing that

(1.10) f (x) = f (t) + (x� t)
Z 1

0

f 0 [(1� �)x+ �t] d�

for any t; x 2 [a; b] :
If we integrate (1.10) over t on [a; b] and divide by (b� a) ; we deduce the desired

identity (1.9). �

Using the above lemma the following result can be pointed out improving Os-
trowski�s inequality [4].

Theorem 7. Let f : [a; b] ! C be an absolutely continuous function on [a; b] so
that jf 0j is convex on (a; b).

(i) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(1.11)

� 1

2

241
4
+

 
x� a+b

2

b� a

!235 (b� a) [jf 0(x)j+ kf 0k1] .
The constant 12 is sharp in the sense that it cannot be replaced by a smaller
quantity.

(ii) If f 0 2 Lp[a; b]; p > 1; 1p +
1
q = 1; then for any x 2 [a; b];�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(1.12)

� 1

2 (q + 1)
1
q

"�
b� x
b� a

�q+1
+

�
x� a
b� a

�q+1# 1
q

(b� a)
1
q kjf 0(x)j+ jf 0jkp :

The constant 12 is sharp in the sense that it cannot be replaced by a smaller
quantity.

(iii) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(1.13)

� 1

2

"
1

2
+

�����x� a+b
2

b� a

�����
#
[(b� a) jf 0(x)j+ kf 0k1] .

In order to extend this result for other classes of functions, we need the following
preparatory section.

2. h-Convex Functions

2.1. Some De�nitions. We recall here some concepts of convexities that are well
known in the literature. Let I be an interval in R.
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De�nition 1 ([32]). We say that f : I ! R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all x; y 2 I and t 2 (0; 1)
we have

f (tx+ (1� t) y) � 1

t
f (x) +

1

1� tf (y) :

Some further properties of this class of functions can be found in [24], [25], [27],
[37], [40] and [41]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

De�nition 2 ([27]). We say that a function f : I ! R belongs to the class P (I)
if it is nonnegative and for all x; y 2 I and t 2 [0; 1] we have

f (tx+ (1� t) y) � f (x) + f (y) :

Obviously Q (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone convex and quasi convex functions, i.
e. nonnegative functions satisfying

f (tx+ (1� t) y) � max ff (x) ; f (y)g
for all x; y 2 I and t 2 [0; 1] :
For some results on P -functions see [27] and [39] while for quasi convex functions,

the reader can consult [26].

De�nition 3 ([6]). Let s be a real number, s 2 (0; 1]: A function f : [0;1)! [0;1)
is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1� t) y) � tsf (x) + (1� t)s f (y)
for all x; y 2 [0;1) and t 2 [0; 1] :

For some properties of this class of functions see [1], [2], [6], [7], [22], [23], [34],
[35] and [43].
In order to unify the above concepts, S. Varo�anec introduced the concept of

h-convex functions as follows.
Assume that I and J are intervals in R; (0; 1) � J and functions h and f are real

non-negative functions de�ned in J and I; respectively.

De�nition 4 ([46]). Let h : J ! [0;1) with h not identical to 0. We say that
f : I ! [0;1) is an h-convex function if for all x; y 2 I we have

f (tx+ (1� t) y) � h (t) f (x) + h (1� t) f (y)
for all t 2 (0; 1) :

For some results concerning this class of functions see [46], [5], [36], [44], [42] and
[45].

2.2. Inequalities of Hermite-Hadamard Type. In [42] the authors proved the
following Hermite-Hadamard type inequality for integrable h-convex functions.

Theorem 8. Assume that f : I ! [0;1) is an h-convex function, h 2 L [0; 1] and
f 2 L [a; b] where a; b 2 I with a < b: Then

(HH)
1

2h
�
1
2

�f �a+ b
2

�
� 1

b� a

Z b

a

f (t) dt � [f (a) + f (b)]
Z 1

0

h (t) dt:
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If we write (HH) for h (t) = t; then we get the classical Hermite-Hadamard
inequality for convex functions.
If we write it for the case of P -type functions, i.e., h (t) = 1; then we get the

inequality

(2.1)
1

2
f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b) ;

provided f 2 L [a; b] ; that has been obtained in [27].
If f is integrable on [a; b] and Breckner s-convex on [a; b] ; for s 2 (0; 1) ; then by

taking h (t) = ts in (HH) we get

(2.2) 2s�1f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

s+ 1

that was obtained in [22].
Since for the case of Godunova-Levin class of function we have h (t) = 1

t ; which
is not Lebesgue integrable on (0; 1) ; we cannot apply the left inequality in (HH).
We can introduce now another class of functions.

De�nition 5. We say that the function f : I ! [0;1) is of s-Godunova-Levin
type, with s 2 [0; 1] ; if

(2.3) f (tx+ (1� t) y) � 1

ts
f (x) +

1

(1� t)s f (y) ;

for all t 2 (0; 1) and x; y 2 I:

We observe that for s = 0 we obtain the class of P -functions while for s = 1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions de�ned on I, then we obviously have

P (I) = Q0 (I) � Qs1 (I) � Qs2 (I) � Q1 (I) = Q (I)

for 0 � s1 � s2 � 1:
We have the following Hermite-Hadamard type inequality.

Theorem 9. Assume that the function f : I ! [0;1) is of s-Godunova-Levin type,
with s 2 [0; 1): If f 2 L [a; b] where a; b 2 I and a < b; then

(2.4)
1

2s+1
f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

1� s :

We notice that for s = 1 the �rst inequality in (2.4) still holds and was obtained
for the �rst time in [27].

3. Inequalities for Functions Whose Derivatives are h-Convex in
Modulus

3.1. The Case of jf 0j is h-Convex. The following result holds:

Theorem 10. Let f : [a; b] ! C be an absolutely continuous function on [a; b] so
that jf 0j is h-convex on (a; b) with h 2 L [0; 1].
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(i) If f 0 2 L1[a; b], then for any x 2 [a; b],

�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.1)

�

241
4
+

 
x� a+b

2

b� a

!235 (b� a) [jf 0(x)j+ kf 0k1]Z 1

0

h (t) dt.

(ii) If f 0 2 Lp[a; b]; p > 1; 1p +
1
q = 1; then for any x 2 [a; b];

�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.2)

� 1

(q + 1)
1
q

"�
b� x
b� a

�q+1
+

�
x� a
b� a

�q+1# 1
q

� (b� a)
1
q kjf 0(x)j+ jf 0jkp

Z 1

0

h (t) dt:

(iii) If f 0 2 L1[a; b], then for any x 2 [a; b],

�����f(x)� 1

b� a

Z b

a

f(t)dt

����� �
"
1

2
+

�����x� a+b
2

b� a

�����
#

(3.3)

� [(b� a) jf 0(x)j+ kf 0k1]
Z 1

0

h (t) dt.

Proof. (i). Using (1.9) and taking the modulus, we have

�����f(x)� 1

b� a

Z b

a

f(t)dt

����� = 1

b� a

�����
Z b

a

Z 1

0

(x� t) f 0 [(1� �)x+ �t] d�dt
�����

� 1

b� a

Z b

a

Z 1

0

jx� tj jf 0 [(1� �)x+ �t]j d�dt

:= K
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Utilizing the h-convexity of jf 0j we have

K � 1

b� a

Z b

a

Z 1

0

jx� tj [h (1� �) jf 0(x)j+ h (�) jf 0(t)j] d�dt

=
1

b� a

Z b

a

jx� tj
�
jf 0(x)j

Z 1

0

h (1� �) d�+ jf 0(t)j
Z 1

0

h (�) d�

�
dt

=
1

b� a

Z 1

0

h (�) d�

Z b

a

jx� tj [jf 0(x)j+ jf 0(t)j] dt :=M (x)

Z 1

0

h (�) d�

� 1

b� a

Z 1

0

h (�) d� ess sup
t2[a;b]

[jf 0(x)j+ jf 0(t)j]
Z b

a

jx� tj dt

=

"
(x� a)2 + (b� x)2

2 (b� a)

#
[jf 0(x)j+ kf 0k1]

Z 1

0

h (�) d�

=

241
4
+

 
x� a+b

2

b� a

!235 (b� a) [jf 0(x)j+ kf 0k1]Z 1

0

h (�) d�;

for any x 2 [a; b]; and the inequality (3.1) is proved.
(ii). As above, we have�����f(x)� 1

b� a

Z b

a

f(t)dt

�����
� 1

b� a

Z b

a

jx� tj [jf 0(x)j+ jf 0(t)j] dt :=M (x)

Z 1

0

h (�) d�:

Using Hölder�s integral inequality for p > 1; 1p +
1
q = 1, we get that

M(x) � 1

b� a

 Z b

a

jx� tjq dt
! 1

q
 Z b

a

(jf 0(x)j+ jf 0(t)j)p dt
! 1

p

=
1

b� a

"
(b� x)q+1 + (x� a)q+1

q + 1

# 1
q

kjf 0(x)j+ jf 0jkp

and the inequality (3.2) is proved.
(iii). We also have that

M(x) � sup
t2[a;b]

jx� tj 1

b� a

Z b

a

[jf 0(x)j+ jf 0(t)j] dt

=
1

b� a) max (x� a; b� x)
"
(b� a) jf 0(x)j+

Z b

a

jf 0(t)j dt
#

=

"
1

2
+

�����x� a+b
2

b� a

�����
#
[(b� a) jf 0(x)j+ kf 0k1]

and the inequality (3.3) is proved. �

The following particular case is interesting.
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Corollary 1. With the assumptions of Theorem 10, we have the midpoint inequality�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt

�����(3.4)

� 1

4
(b� a)

�����f 0�a+ b2
�����+ kf 0k1� Z 1

0

h (t) dt;

provided f 0 2 L1[a; b]:
If f 0 2 Lp[a; b]; p > 1; 1p +

1
q = 1; then, we have,�����f

�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt

�����(3.5)

� 1

2
(b� a)

1
q

 Z b

a

�����f 0�a+ b2
�����+ jf 0(t)j�p dt

! 1
p Z 1

0

h (t) dt:

If f 0 2 L1[a; b], then�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt

�����(3.6)

� 1

2

"
(b� a)

����f 0�a+ b2
�����+ Z b

a

jf 0(t)j dt
#Z 1

0

h (t) dt:

Remark 1. We observe that if jf 0j is convex on (a; b); then Theorem 10 reduces
to Theorem 7.
Assume that jf 0j is Breckner s-convex on [a; b] ; for s 2 (0; 1) :
(a) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.7)

� 1

s+ 1

241
4
+

 
x� a+b

2

b� a

!235 (b� a) [jf 0(x)j+ kf 0k1] .
(aa) If f 0 2 Lp[a; b]; p > 1; 1p +

1
q = 1; then for any x 2 [a; b];�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.8)

� 1

(s+ 1) (q + 1)
1
q

"�
b� x
b� a

�q+1
+

�
x� a
b� a

�q+1# 1
q

� (b� a)
1
q kjf 0(x)j+ jf 0jkp :

(aaa) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

����� � 1

s+ 1

"
1

2
+

�����x� a+b
2

b� a

�����
#

(3.9)

� [(b� a) jf 0(x)j+ kf 0k1] .
Assume that jf 0j is of s-Godunova-Levin type, with s 2 [0; 1):
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(b) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.10)

� 1

1� s

241
4
+

 
x� a+b

2

b� a

!235 (b� a) [jf 0(x)j+ kf 0k1] .
(bb) If f 0 2 Lp[a; b]; p > 1; 1p +

1
q = 1; then for any x 2 [a; b];�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.11)

� 1

(1� s) (q + 1)
1
q

"�
b� x
b� a

�q+1
+

�
x� a
b� a

�q+1# 1
q

� (b� a)
1
q kjf 0(x)j+ jf 0jkp :

(bbb) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

����� � 1

1� s

"
1

2
+

�����x� a+b
2

b� a

�����
#

(3.12)

� [(b� a) jf 0(x)j+ kf 0k1] .

3.2. The Case of jf 0jp is h-Convex. The following result also holds:

Theorem 11. Let f : [a; b] ! C be an absolutely continuous function on [a; b] so
that jf 0jp with p > 1 is h-convex on (a; b) and h 2 L [0; 1].

(i) If f 0 2 L1[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.13)

�

241
4
+

 
x� a+b

2

b� a

!235 (b� a)
�
�
jf 0(x)jp + kf 0kp1

�1=p�Z 1

0

h (t) dt

�1=p
.

(ii) If f 0 2 Lp[a; b]; p > 1; 1p +
1
q = 1; then for any x 2 [a; b];�����f(x)� 1

b� a

Z b

a

f(t)dt

�����(3.14)

� (b� a)
1
q

(q + 1)
1=q

"�
b� x
b� a

�q+1
+

�
x� a
b� a

�q+1#1=q

�
h
(b� a) jf 0 (x)jp + kf 0kpp

i1=p�Z 1

0

h (t) dt

�1=p
:
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(iii) If f 0 2 Lp[a; b], then for any x 2 [a; b],�����f(x)� 1

b� a

Z b

a

f(t)dt

����� �
"
1

2
+

�����x� a+b
2

b� a

�����
#

(3.15)

�


jf 0 (x)jp + jf 0jp

p�Z 1

0

h (t) dt

�1=p
�
"
1

2
+

�����x� a+b
2

b� a

�����
#

�
�
(b� a) jf 0 (x)jp + kf 0kpp

�1=p�Z 1

0

h (t) dt

�1=p
:

Proof. As in the proof of Theorem 10 we have�����f(x)� 1

b� a

Z b

a

f(t)dt

����� = 1

b� a

�����
Z b

a

Z 1

0

(x� t) f 0 [(1� �)x+ �t] d�dt
�����

� 1

b� a

Z b

a

jx� tj
�Z 1

0

jf 0 [(1� �)x+ �t]j d�
�
dt

:= K

for any x 2 [a; b]:
By Hölder�s integral inequality we haveZ 1

0

jf 0 [(1� �)x+ �t]j d� �
�Z 1

0

1qd�

�1=q �Z 1

0

jf 0 [(1� �)x+ �t]jp d�
�1=p

=

�Z 1

0

jf 0 [(1� �)x+ �t]jp d�
�1=p

for any x 2 [a; b]; where 1
p +

1
q = 1; p > 1:

Since jf 0jp is h-convex on (a; b) with h 2 L [0; 1] ; thenZ 1

0

jf 0 [(1� �)x+ �t]jp d� �
�
jf 0 (x)jp + jf 0 (t)jp

� Z 1

0

h (�) d�;

for any x 2 [a; b]:
Therefore

(3.16) K � 1

b� a

�Z 1

0

h (�) d�

�1=p Z b

a

jx� tj
�
jf 0 (x)jp + jf 0 (t)jp

�1=p
dt

for any x 2 [a; b]:
(i). Now, if f 0 2 L1 [a; b] thenZ b

a

jx� tj
�
jf 0 (x)jp + jf 0 (t)jp

�1=p
dt

� ess sup
t2[a;b]

�
jf 0 (x)jp + jf 0 (t)jp

�1=p Z b

a

jx� tj dt

=
�
jf 0 (x)jp + kf 0kp1

�1=p 1
2

h
(x� a)2 + (b� x)2

i
for any x 2 [a; b]; and utilizing (3.16), the inequality (3.13) is proved.
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(ii). If f 0 2 Lp[a; b]; p > 1; 1p +
1
q = 1; then by Hölder�s inequality we haveZ b

a

jx� tj
�
jf 0 (x)jp + jf 0 (t)jp

�1=p
dt

�
 Z b

a

jx� tjq dt
!1=q  Z b

a

��
jf 0 (x)jp + jf 0 (t)jp

�1=p�p
dt

!1=p

=

"
(b� x)q+1 + (x� a)q+1

q + 1

#1=q h
(b� a) jf 0 (x)jp + kf 0kpp

i1=p
=
(b� a)1+

1
q

(q + 1)
1=q

"�
b� x
b� a

�q+1
+

�
x� a
b� a

�q+1#1=q
�
�
(b� a) jf 0 (x)jp + kf 0kp1

�1=p
for any x 2 [a; b]; and by (3.16) we deduce the desired inequality (3.14).
(iii). If f 0 2 Lp[a; b]; then by Hölder�s inequality we also haveZ b

a

jx� tj
�
jf 0 (x)jp + jf 0 (t)jp

�1=p
dt

� sup
t2[a;b]

jx� tj
Z b

a

�
jf 0 (x)jp + jf 0 (t)jp

�1=p
dt

= max fx� a; b� xg
Z b

a

�
jf 0 (x)jp + jf 0 (t)jp

�1=p
dt

= (b� a)
"
1

2
+

�����x� a+b
2

b� a

�����
# 

jf 0 (x)jp + jf 0jp

p

� (b� a)
"
1

2
+

�����x� a+b
2

b� a

�����
# Z b

a

�
jf 0 (x)jp + jf 0 (t)jp

�
dt

!1=p

= (b� a)
"
1

2
+

�����x� a+b
2

b� a

�����
# �
(b� a) jf 0 (x)jp + kf 0kpp

�1=p
for any x 2 [a; b]: �

The following midpoint type inequalities are of interest.

Corollary 2. With the assumptions of Theorem 11, we have the inequality�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt

�����(3.17)

� 1

4
(b� a)

�����f 0�a+ b2
�����p + kf 0kp1�1=p�Z 1

0

h (t) dt

�1=p
;

provided f 0 2 L1[a; b]:
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If f 0 2 Lp[a; b]; p > 1; 1p +
1
q = 1; then we have�����f

�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt

�����(3.18)

� 1

2 (q + 1)
1=q

(b� a)
1
q

�
�
(b� a)

����f 0�a+ b2
�����p + kf 0kpp�1=p�Z 1

0

h (t) dt

�1=p
:

If f 0 2 Lp[a; b], then�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt

�����(3.19)

� 1

2





����f 0�a+ b2
�����p + jf 0jp



p�Z 1

0

h (t) dt

�1=p
� 1

2

�
(b� a)

����f 0�a+ b2
�����p + kf 0kpp�1=p�Z 1

0

h (t) dt

�1=p
:

Remark 2. The interested reader can state the corresponding particular inequalities
for di¤erent h-convex functions. However the details are omitted.
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