
NORM INEQUALITIES OF µCEBY�EV TYPE FOR POWER
SERIES IN BANACH ALGEBRAS

S. S. DRAGOMIR1;2, M. V. BOLDEA3, AND C. BUŞE4

Abstract. Let f (�) =
P1
n=0 �n�

n be a function de�ned by power series with
complex coe¢ cients and convergent on the open disk D (0; R) � C, R > 0 and
x; y 2 B, a Banach algebra, with xy = yx:

In this paper we establish some upper bounds for the norm of the µCeby�ev
type di¤ erence

f (�) f (�xy)� f (�x) f (�y)
provide that the complex number � and the vectors x; y 2 B are such that the
series in the above expression are convergent. Applications for some funda-
mental functions such as the exponential function and the resolvent function
are provided as well.

1. Introduction

For two Lebesgue integrable functions f; g : [a; b] ! R, consider the µCeby�ev
functional :

(1.1) C (f; g) :=
1

b� a

Z b

a

f(t)g(t)dt� 1

(b� a)2
Z b

a

f(t)dt

Z b

a

g(t)dt:

In 1935, Grüss [18] showed that

(1.2) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided that there exists the real numbers m;M;n;N such that

(1.3) m � f (t) �M and n � g (t) � N for a.e. t 2 [a; b] :

The constant 1
4 is best possible in (1.1) in the sense that it cannot be replaced by

a smaller quantity.
Another, however less known result, even though it was obtained by µCeby�ev in

1882, [4], states that

(1.4) jC (f; g)j � 1

12
kf 0k1 kg

0k1 (b� a)
2
;

provided that f 0; g0 exist and are continuous on [a; b] and kf 0k1 = supt2[a;b] jf 0 (t)j :
The constant 1

12 cannot be improved in the general case.
The µCeby�ev inequality (1.4) also holds if f; g : [a; b] ! R are assumed to be

absolutely continuous and f 0; g0 2 L1 [a; b] while kf 0k1 = ess supt2[a;b] jf 0 (t)j :
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A mixture between Grüss�result (1.2) and µCeby�ev�s one (1.4) is the following
inequality obtained by Ostrowski in 1970, [23]:

(1.5) jC (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided that f is Lebesgue integrable and satis�es (1.3) while g is absolutely con-
tinuous and g0 2 L1 [a; b] : The constant 18 is best possible in (1.5).
The case of euclidean norms of the derivative was considered by A. Lupaş in [21]

in which he proved that

(1.6) jC (f; g)j � 1

�2
kf 0k2 kg

0k2 (b� a) ;

provided that f; g are absolutely continuous and f 0; g0 2 L2 [a; b] : The constant 1
�2

is the best possible.
Recently, P. Cerone and S.S. Dragomir [2] have proved the following results:

(1.7) jC (f; g)j � inf

2R

kg � 
kq �
1

b� a

 Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

�����
p

dt

! 1
p

;

where p > 1 and 1
p +

1
q = 1 or p = 1 and q =1; and

(1.8) jC (f; g)j � inf

2R

kg � 
k1 �
1

b� aess supt2[a;b]

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� ;
provided that f 2 Lp [a; b] and g 2 Lq [a; b] (p > 1; 1p +

1
q = 1; p = 1; q = 1 or

p =1; q = 1):
Notice that for q =1; p = 1 in (1.7) we obtain

jC (f; g)j � inf

2R

kg � 
k1 � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt(1.9)

� kgk1 � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt
and if g satis�es (1.3), then

jC (f; g)j � inf

2R

kg � 
k1 � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt(1.10)

�




g � n+N

2






1
� 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt
� 1

2
(N � n) � 1

b� a

Z b

a

�����f(t)� 1

b� a

Z b

a

f (s) ds

����� dt:
The inequality between the �rst and the last term in (1.10) has been obtained by
Cheng and Sun in [5]. However, the sharpness of the constant 1

2 ; a generalization
for the abstract Lebesgue integral and the discrete version of it have been obtained
in [3].
For other recent results on the Grüss inequality, see [1], [6]-[11], [17], [19], [22],

[24], [25] and the references therein.
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In order to consider a µCeby�ev type functional for functions of vectors in Banach
algebras, we need some preliminary de�nitions and results as follows.

2. Some Facts in Banach Algebras

Let B be an algebra. An algebra norm on B is a map k�k : B![0;1) such that
(B; k�k) is a normed space, and, further:

kabk � kak kbk
for any a; b 2 B: The normed algebra (B; k�k) is a Banach algebra if k�k is a complete
norm.
We assume that the Banach algebra is unital, this means that B has an identity

1 and that k1k = 1:
Let B be a unital algebra. An element a 2 B is invertible if there exists an

element b 2 B with ab = ba = 1: The element b is unique; it is called the inverse of
a and written a�1 or 1

a : The set of invertible elements of B is denoted by InvB. If
a; b 2InvB then ab 2InvB and (ab)�1 = b�1a�1:
For a unital Banach algebra we also have:

(i) If a 2 B and limn!1 kank1=n < 1; then 1� a 2InvB;
(ii) fa 2 B: k1� bk < 1g �InvB;
(iii) InvB is an open subset of B;
(iv) The map InvB 3 a 7�! a�1 2InvB is continuous.
For simplicity, we denote �1; where � 2 C and 1 is the identity of B, by �: The

resolvent set of a 2 B is de�ned by
� (a) := f� 2 C : �� a 2 InvBg ;

the spectrum of a is � (a) ; the complement of � (a) in C, and the resolvent function
of a is Ra : � (a) !InvB, Ra (�) := (�� a)�1 : For each �; 
 2 � (a) we have the
identity

Ra (
)�Ra (�) = (�� 
)Ra (�)Ra (
) :
We also have that � (a) � f� 2 C : j�j � kakg : The spectral radius of a is de�ned
as � (a) = sup fj�j : � 2 � (a)g :
If a; b are commuting elements in B, i.e. ab = ba; then

� (ab) � � (a) � (b) and � (a+ b) � � (a) + � (b) :

Let B a unital Banach algebra and a 2 B. Then
(i) The resolvent set � (a) is open in C;
(ii) For any bounded linear functionals � : B !C, the function ��Ra is analytic

on � (a) ;
(iii) The spectrum � (a) is compact and nonempty in C;
(iv) For each n 2 N and r > � (a) ; we have

an =
1

2�i

Z
j�j=r

�n (� � a)�1 d�;

(v) We have � (a) = limn!1 kank1=n :
Let f be an analytic functions on the open diskD (0; R) given by the power series

f (�) :=
P1

j=0 �j�
j (j�j < R) : If � (a) < R; then the series

P1
j=0 �ja

j converges
in the Banach algebra B because

P1
j=0 j�j j



aj

 < 1; and we can de�ne f (a) to
be its sum. Clearly f (a) is well de�ned and there are many examples of important
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functions on a Banach algebra B that can be constructed in this way. For instance,
the exponential map on B denoted exp and de�ned as

exp a :=
1X
j=0

1

j!
aj for each a 2 B.

If B is not commutative, then many of the familiar properties of the exponential
function from the scalar case do not hold. The following key formula is valid,
however with the additional hypothesis of commutativity for a and b from B

exp (a+ b) = exp (a) exp (b) :

In a general Banach algebra B it is di¢ cult to determine the elements in the range of
the exponential map exp (B) ; i.e. the element which have a "logarithm". However,
it is easy to see that if a is an element in B such that k1� ak < 1; then a is in
exp (B) : That follows from the fact that if we set

b = �
1X
n=1

1

n
(1� a)n ;

then the series converges absolutely and, as in the scalar case, substituting this
series into the series expansion for exp (b) yields exp (b) = a:
It is known that if x and y are commuting, i.e. xy = yx, then the exponential

function satis�es the property

exp (x) exp (y) = exp (y) exp (x) = exp (x+ y) :

Also, if x is invertible and a; b 2 R with a < b thenZ b

a

exp (tx) dt = x�1 [exp (bx)� exp (ax)] :

Moreover, if x and y are commuting and y � x is invertible, thenZ 1

0

exp ((1� s)x+ sy) ds =
Z 1

0

exp (s (y � x)) exp (x) ds

=

�Z 1

0

exp (s (y � x)) ds
�
exp (x)

= (y � x)�1 [exp (y � x)� I] exp (x)
= (y � x)�1 [exp (y)� exp (x)] :

Let f (�) =
P1

n=0 �n�
n be a function de�ned by power series with complex

coe¢ cients and convergent on the open disk D (0; R) � C, R > 0 and x; y 2 B with
xy = yx: In this paper we establish some upper bounds for the norm of the µCeby�ev
type di¤erence

(2.1) f (�) f (�xy)� f (�x) f (�y)

provide that the complex number � and the vectors x; y 2 B are such that the series
in (2.1) are convergent. Applications for some fundamental functions such as the
exponential function and the resolvent function are provided as well.
Inequalities for functions of operators in Hilbert spaces may be found in the

recent monographs [12], [13], [16] and the references therein.
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3. The Results

We denote by C the set of all complex numbers. Let �n be nonzero complex
numbers and let

R :=
1

lim sup j�nj
1
n

:

Clearly 0 � R � 1, but we consider only the case 0 < R � 1.
Denote by:

D(0; R) =

�
fz 2 C : jzj < Rg; if R <1
C; if R =1;

consider the functions:

� 7! f(�) : D(0; R)! C; f(�) :=
1X
n=0

�n�
n

and

� 7! fA(�) : D(0; R)! C; fA(�) :=
1X
n=0

j�nj�n:

Let B be a unital Banach algebra and 1 its unity. Denote by

B(0; R) =

�
fx 2 B : kxk < Rg; if kxk < R
B; if R =1:

We associate to f the map:

x 7! f~(x) : B(0; R)! B; f~(x) :=
1X
n=0

�nx
n:

Obviously, f~ is correctly de�ned because the series
P1

n=0 �nx
n is absolutely con-

vergent, since
P1

n=0 k�nxnk �
P1

n=0 j�nj kxk
n.

In addition, we assume that s2 :=
P1

n=0 n
2 j�nj <1. Let s0 :=

P1
n=0 j�nj <1

and s1 :=
P1

n=0 n j�nj <1.
With the above assumptions have that:

Theorem 1. Let � 2 C such that maxfj�j ; j�j2g < R < 1 and let x; y 2 B with
kxk ; kyk � 1 and xy = yx. Then:

(i) We have 

f~(� � 1) f~(�xy)� f~(�x) f~(�y)

(3.1)

�
p
2 min fkx� 1k ; ky � 1kg fA

�
j�j2

�
where:

(3.2)  2 := s0s2 � s21:
(ii) We also have

f~(� � 1) f~(�xy)� f~(�x) f~(�y)

(3.3)

�
p
2min fkx� 1k ; ky � 1kg fA (j�j)

�
n
fA (j�j)

h
j�j f 0A (j�j) + j�j

2
f 00A (j�j)

i
� [j�j f 0A (j�j)]

2
o1=2

:
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Proof. For m � 1 and since xy = yx we have
mX
n=0

mX
j=0

�n�j�
n�j

�
xn � xj

�
yn(3.4)

=
mX
n=0

mX
j=0

�n�j�
n�jxnyn �

mX
n=0

mX
j=0

�n�j�
n�jxjyn

=
mX
j=0

�j�
j
mX
n=0

�n�
nxnyn �

mX
j=0

�j�
jxj

mX
n=0

�n�
nyn

=
mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn

for any � 2 C.
Taking the norm in (3.4) we have







mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn







(3.5)

�
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj


�xn � xj� yn



�
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj


xn � xj

 kynk

�
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj


xn � xj

 kykn

�
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj


xn � xj



= 2
X

0�j<n�m
j�nj j�j j j�jn j�jj



xn � xj

 ;
for any � 2 C and m � 1:
Observe that

L :=
X

0�j<n�m
j�nj j�j j j�jn j�jj



xn � xj

(3.6)

=
X

0�j<n�m
j�nj j�j j j�jn j�jj








n�1X
`=j

�
x`+1 � x`

�






=

X
0�j<n�m

j�nj j�j j j�jn j�jj







n�1X
`=j

x` (x� 1)








� kx� 1k

X
0�j<n�m

j�nj j�j j j�jn j�jj
n�1X
`=j

kxk`

for any � 2 C and m � 1:
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We have
n�1X
`=j

kxk` � (n� j) max
`2fj;:::;n�1g

kxk` � (n� j) max
`2f1;:::;m�1g

kxk`

and then

(3.7) L � kx� 1k max
`2f1;:::;m�1g

kxk`
X

0�j<n�m
j�nj j�j j j�jn j�jj (n� j) :

From the �rst inequality in (3.7) and since kxk < 1 we have






mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn







(3.8)

� 2 kx� 1k
X

0�j<n�m
j�nj j�j j j�jn j�jj (n� j)

= kx� 1k
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj jn� jj :

(i) Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums

mX
n=0

mX
j=0

pn;jan;jbn;j �

0@ mX
n=0

mX
j=0

pn;ja
2
n;j

1A1=20@ mX
n=0

mX
j=0

pn;jb
2
n;j

1A1=2

where pn;j ; an;j ; bn;j � 0 for n; j 2 f0; :::;mg ;we have
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj jn� jj(3.9)

�

0@ mX
n=0

mX
j=0

j�nj j�j j j�j2n j�j2j
1A1=20@ mX

n=0

mX
j=0

j�nj j�j j jn� jj2
1A1=2

=
p
2

 
mX
n=0

j�nj j�j2n
!24 mX

n=0

j�nj
mX
n=0

n2 j�nj �
 

mX
n=0

n j�nj
!2351=2

for any � 2 C and m � 1:
From (3.8) and (3.9) we get the inequality







mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn







(3.10)

�
p
2 kx� 1k

 
mX
n=0

j�nj j�j2n
!

�

24 mX
n=0

j�nj
mX
n=0

n2 j�nj �
 

mX
n=0

n j�nj
!2351=2 :
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Since the series
1X
j=0

�j�
j ;

1X
n=0

�n�
n (xy)

n
;
1X
j=0

�j�
jxj ;

1X
n=0

�n�
nyn

are convergent in B,
P1

n=0 j�nj j�j
2n is convergent and the limit

lim
m!1

24 mX
n=0

j�nj
mX
n=0

n2 j�nj �
 

mX
n=0

n j�nj
!2351=2

exists, then by letting m ! 1 in (3.10) we deduce the desired result in (3.1) for
x. Due to the commutativity of x with y; a similar result can be stated for y; and
taking the minimum, we deduce the desired result.
(ii) Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums

mX
n=0

mX
j=0

pn;jan;j �

0@ mX
n=0

mX
j=0

pn;j

1A1=20@ mX
n=0

mX
j=0

pn;ja
2
n;j

1A1=2

where pn;j ; an;j � 0 for n; j 2 f0; :::;mg ; we also have
mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj jn� jj(3.11)

�

0@ mX
n=0

mX
j=0

j�nj j�j j j�jn j�jj
1A1=20@ mX

n=0

mX
j=0

j�nj j�j j j�jn j�jj jn� jj2
1A1=2

=
p
2

 
mX
n=0

j�nj j�jn
!

�

24 mX
n=0

j�nj j�jn
mX
n=0

n2 j�nj j�jn �
 

mX
n=0

n j�nj j�jn
!2351=2

for any � 2 C and m � 1:
From (3.8) and (3.11) we have







mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn







(3.12)

�
p
2 kx� 1k

 
mX
n=0

j�nj j�jn
!

�

24 mX
n=0

j�nj j�jn
mX
n=0

n2 j�nj j�jn �
 

mX
n=0

n j�nj j�jn
!2351=2

for any � 2 C and m � 1:
If we denote f (u) :=

P1
n=0 �nu

n; then for juj < R we have
1X
n=0

n�nu
n = uf 0 (u)
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and
1X
n=0

n2�nu
n = u (ug0 (u))

0
:

However
u (ug0 (u))

0
= ug0 (u) + u2g00 (u)

and then
1X
n=0

n2�nu
n = ug0 (u) + u2g00 (u) :

Therefore
1X
n=0

n2 j�nj j�jn = j�j f 0A (j�j) + j�j
2
f 00A (j�j)

and
mX
n=0

n j�nj j�jn = j�j f 0 (j�j)

for j�j < R:
Since all the series whose partial sums are involved in (3.12) are convergent, then

by letting m ! 1 in (3.12) we deduce the desired inequality (3.3) for x. Due to
the commutativity of x with y; a similar result can be stated for y; and taking the
minimum, we deduce the desired result. �

Remark 1. If R =1, Theorem 1 holds true. Moreover, in this case the restrictions
kxk ; kyk � 1 need no longer be imposed.

Remark 2. We observe that if the power series f (�) =
P1

n=0 �n�
n has the radius

of convergence R > 1; then
1X
n=0

j�nj = fA (1) ;

1X
n=0

n2 j�nj = f 0A (1) + f
00
A (1)

and
1X
n=0

n j�nj = f 0A (1) :

In this case  is �nite and

 = lim
m!1

24 mX
n=0

j�nj
mX
n=0

n2 j�nj �
 

mX
n=0

n j�nj
!2351=2

=
n
fA (1) [f

0
A (1) + f

00
A (1)]� [f 0A (1)]

2
o1=2

:

Therefore, if � 2 C with j�j ; j�j2 ; j�j kxk ; j�j kyk < R; then from (3.1) we have

f~(� � 1) f~(�xy)� f~(�x) f~(�y)

(3.13)

�
p
2
n
fA (1) [f

0
A (1) + f

00
A (1)]� [f 0A (1)]

2
o1=2

�min fkx� 1k ; ky � 1kg fA
�
j�j2

�
:
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Corollary 1. Under the assumptions of Theorem 1 we have the inequalities

(3.14)


f~(� � 1) f~��x2�� f~2 (�x)

 � p2 kx� 1k fA �j�j2�

provided � 2 C with j�j ; j�j2 ; j�j kxk < R; and

f~(� � 1) f~��x2�� f~2 (�x)

(3.15)

�
p
2 kx� 1k fA (j�j)

�
n
fA (j�j)

h
j�j f 0A (j�j) + j�j

2
f 00A (j�j)

i
� [j�j f 0A (j�j)]

2
o1=2

provided � 2 C with j�j ; j�j kxk < R:

Theorem 2. Let f (�) =
P1

n=0 �n�
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D (0; R) � C, R > 0 and
x; y 2 B with xy = yx and kxk ; kyk < 1:
If � 2 C with j�j ; j�j kxk ; j�j kyk < R; then

f~(� � 1) f~(�xy)� f~(�x) f~(�y)

(3.16)

� min
�
kx� 1k
1� kxk ;

ky � 1k
1� kyk

�h
f2A (j�j)� fA2

�
j�j2

�i
where

(3.17) fA2 (�) :=

1X
n=0

j�nj2 �n

has the radius of convergence R2:

Proof. As pointed out in (3.6), we have

L � kx� 1k
X

0�j<n�m
j�nj j�j j j�jn j�jj

n�1X
`=j

kxk`(3.18)

� kx� 1k
m�1X
`=0

kxk`
X

0�j<n�m
j�nj j�j j j�jn j�jj

for any � 2 C and m � 1:
Denote

Km :=
X

0�j<n�m
j�nj j�j j j�jn j�jj :

We obviously have

Km =
1

2

0@ mX
n;j=0

j�nj j�j j j�jn j�jj �
mX
n=0

j�nj2 j�j2n
1A

=
1

2

24 mX
n=0

j�nj j�jn
!2
�

mX
n=0

j�nj2 j�j2n
35 :
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From (3.8) and (3.18) we get the inequality






mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn







(3.19)

� kx� 1k
m�1X
`=0

kxk`

�

24 mX
n=0

j�nj j�jn
!2
�

mX
n=0

j�nj2 j�j2n
35 ;

for any � 2 C and m � 1:
Since all the series whose partial sums are involved in (3.19) are convergent, then

by letting m ! 1 in (3.19) we deduce the desired inequality (3.16) for x. Due to
the commutativity of x with y; a similar result can be stated for y; and taking the
minimum, we deduce the desired result. �

Remark 3. Since the power series fA2 (�) :=
P1

n=0 j�nj
2
�n is not easy to com-

pute, we can provide some bounds for the quantity

Df (j�j) := f2A (j�j)� fA2

�
j�j2

�
where j�j < R; as follows.
If j�j < 1 and a`1 := supn2N fjanjg <1, then

Km � a2`1

X
0�j<n�m

j�jn j�jj

=
1

2
a2`1

24 mX
n=0

j�jn
!2
�

mX
n=0

j�j2n
35

and by taking m!1 in this inequality we get

(3.20) Df (j�j) �
1

2
a2`1

"�
1

1� j�j

�2
� 1

1� j�j2

#
for j�j < 1:
If j�j < 1 and

a`1 := lim
m!1

24 mX
n=0

j�nj
!2
�

mX
n=0

j�nj2
35 <1

then

Km � max
n2f0;:::;mg

j�j2n
X

0�j<n�m
j�nj j�j j

� 1

2

24 mX
n=0

j�nj
!2
�

mX
n=0

j�nj2
35

and by taking m!1 in this inequality we get

(3.21) Df (j�j) �
1

2
a`1
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for j�j < 1:
If the series

P1
n=0 j�nj and

P1
n=0 j�nj

2 are convergent, then

(3.22) Df (j�j) �
1

2

24 1X
n=0

j�nj
!2
�

1X
n=0

j�nj2
35

for j�j < 1:
If j�j < 1; p; q > 1 with 1

p +
1
q = 1 and

a`q := lim
m!1

24 mX
n=0

j�njq
!2
�

mX
n=0

j�nj2q
35 <1

then by Hölder�s inequality we have

Km �

0@ X
0�j<n�m

j�njq j�j jq
1A1=q0@ X

0�j<n�m
j�jpn j�jpj

1A1=p

�

8<:12
24 mX

n=0

j�njq
!2
�

mX
n=0

j�nj2q
359=;

1=q

�

8<:12
24 mX

n=0

j�jpn
!2
�

mX
n=0

j�j2pn
359=;

1=p

and by taking m!1 in this inequality we get

(3.23) Df (j�j) �
1

2
a
1=q
`q

"�
1

1� j�jp
�2
� 1

1� j�j2p

#1=p
for j�j < 1:
If the series

P1
n=0 j�nj

q and
P1

n=0 j�nj
2q are convergent, then

Df (j�j) �
1

2

24 1X
n=0

j�njq
!2
�

1X
n=0

j�nj2q
351=p(3.24)

�
"�

1

1� j�jp
�2
� 1

1� j�j2p

#1=p
for j�j < 1:

The following result also holds:

Theorem 3. Let f (�) =
P1

n=0 �n�
n be a function de�ned by power series with

complex coe¢ cients and convergent on the open disk D (0; R) � C, R > 0 and
x; y 2 B with xy = yx and kxk ; kyk < 1:
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If p; q > 1 with 1
p +

1
q = 1and � 2 C with j�j ; j�j

p
; j�j kxk ; j�j kyk < R; then

f~(� � 1) f~(�xy)� f~(�x) f~(�y)

(3.25)

� 1

2
min

(
kx� 1k

(1� kxkp)1=p
;

ky � 1k
(1� kykp)1=p

)

� '1=q
h
f2A (j�j

p
)� fA2

�
j�j2p

�i1=p
;

where

(3.26) ' := lim
m!1

mX
n;j=0

j�nj j�j j jn� jj

is assumed to exists and be �nite.

Proof. Using Hölder�s inequality for p; q > 1 with 1
p +

1
q = 1and (3.6), we have

L � kx� 1k
X

0�j<n�m
j�nj j�j j j�jn j�jj (n� j)1=q

0@n�1X
`=j

kxk`p
1A1=p

(3.27)

� kx� 1k
 
m�1X
`=0

kxk`p
!1=p X

0�j<n�m
j�nj j�j j j�jn j�jj (n� j)1=q

for any � 2 C and m � 1:
Applying Hölder�s inequality once more we haveX

0�j<n�m
j�nj j�j j j�jn j�jj (n� j)1=q(3.28)

�

0@ X
0�j<n�m

j�nj j�j j j�jn (n� j)

1A1=q0@ X
0�j<n�m

j�nj j�j j j�jpn j�jpj
1A1=p

=

0@1
2

mX
n;j=0

j�nj j�j j jn� jj

1A1=q

�

0@1
2

24 mX
n=0

j�nj j�jnp
!2
�

mX
n=0

j�nj2 j�j2np
351A1=p

=
1

2

0@ mX
n;j=0

j�nj j�j j jn� jj

1A1=q

�

24 mX
n=0

j�nj j�jnp
!2
�

mX
n=0

j�nj2 j�j2np
351=p

for any � 2 C and m � 1:
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From (3.8) and (3.28) we get the inequality






mX
j=0

�j�
j
mX
n=0

�n�
n (xy)

n �
mX
j=0

�j�
jxj

mX
n=0

�n�
nyn







(3.29)

� 1

2
kx� 1k

 
m�1X
`=0

kxk`p
!1=p0@ mX

n;j=0

j�nj j�j j jn� jj

1A1=q

�

24 mX
n=0

j�nj j�jnp
!2
�

mX
n=0

j�nj2 j�j2np
351=p ;

for any � 2 C and m � 1:
Since all the series whose partial sums are involved in (3.29) are convergent, then

by letting m!1 in (3.29)) we deduce the desired inequality (3.25) for x. Due to
the commutativity of x with y; a similar result can be stated for y; and taking the
minimum, we deduce the desired result. �

Remark 4. Observe thath
f2A (j�j

p
)� fA2

�
j�j2p

�i1=p
= D

1=p
f (j�jp)

and then further bounds for the inequality (3.25) may be provided by the use of
Remark 3. However the details are not mentioned here.
We can obtain a simpler upper bound for ' as follows.
Using the Cauchy-Bunyakovsky-Schwarz inequality for double sums

mX
n=0

mX
j=0

pi;jai;j �

0@ mX
n=0

mX
j=0

pi;j

1A1=20@ mX
n=0

mX
j=0

pi;ja
2
i;j

1A1=2

where pi;j ; ai;j � 0 for i; j 2 f0; :::;mg ; we have
mX

n;j=0

j�nj j�j j jn� jj(3.30)

�

0@ mX
n;j=0

j�nj j�j j

1A1=20@ mX
n;j=0

j�nj j�j j jn� jj2
1A1=2

=
p
2

mX
n=0

j�nj

24 mX
n=0

j�nj
mX
n=0

n2 j�nj �
 

mX
n=0

n j�nj
!2351=2

for m � 1:
If the series

P1
n=0 j�nj is �nite and  de�ned by (3.2) is �nite, then from (3.30)

we have

(3.31) ' �
p
2

1X
n=0

j�nj :
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We observe that, if the power series f (�) =
P1

n=0 �n�
n has the radius of conver-

gence R > 1; then  is �nite and

 =
n
fA (1) [f

0
A (1) + f

00
A (1)]� [f 0A (1)]

2
o1=2

:

We have from (3.31) the inequality

(3.32) ' �
p
2fA (1)

n
fA (1) [f

0
A (1) + f

00
A (1)]� [f 0A (1)]

2
o1=2

4. Some Examples

As some natural examples that are useful for applications, we can point out that,
if

f (�) =
1X
n=1

(�1)n

n
�n = ln

1

1 + �
; � 2 D (0; 1) ;(4.1)

g (�) =

1X
n=0

(�1)n

(2n)!
�2n = cos�; � 2 C;

h (�) =

1X
n=0

(�1)n

(2n+ 1)!
�2n+1 = sin�; � 2 C;

l (�) =
1X
n=0

(�1)n �n = 1

1 + �
; � 2 D (0; 1) ;

then the corresponding functions constructed by the use of the absolute values of
the coe¢ cients are

fA (�) =
1X
n=1

1

n
�n = ln

1

1� �; � 2 D (0; 1) ;(4.2)

gA (�) =
1X
n=0

1

(2n)!
�2n = cosh�; � 2 C;

hA (�) =

1X
n=0

1

(2n+ 1)!
�2n+1 = sinh�; � 2 C;

lA (�) =
1X
n=0

�n =
1

1� �; � 2 D (0; 1) :
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Other important examples of functions as power series representations with non-
negative coe¢ cients are:

exp (�) =
1X
n=0

1

n!
�n � 2 C,(4.3)

1

2
ln

�
1 + �

1� �

�
=

1X
n=1

1

2n� 1�
2n�1; � 2 D (0; 1) ;

sin�1 (�) =
1X
n=0

�
�
n+ 1

2

�
p
� (2n+ 1)n!

�2n+1; � 2 D (0; 1) ;

tanh�1 (�) =
1X
n=1

1

2n� 1�
2n�1; � 2 D (0; 1)

2F1 (�; �; 
; �) =
1X
n=0

� (n+ �) � (n+ �) � (
)

n!� (�) � (�) � (n+ 
)
�n; �; �; 
 > 0;

� 2 D (0; 1) ;

where � is Gamma function.
If we apply the inequality (3.13) to the exponential function, then we have

(4.4) kexp [� (1 + xy)]� exp [� (x+ y)]k �
p
2emin fkx� 1k ; ky � 1kg exp

�
j�j2

�
for any x; y 2 B with xy = yx; kxk ; kyk < 1 and � 2 C.
If we take y = �x in (4.4), then we get

(4.5)


exp �� �1� x2��� 1

 � p2emin fkx� 1k ; kx+ 1kg exp�j�j2�

for any x 2 B with kxk < 1 and � 2 C
If we apply the inequality (3.3) for the exponential functions we also have

kexp [� (1 + xy)]� exp [� (x+ y)]k(4.6)

�
p
2min fkx� 1k ; ky � 1kg j�j1=2 exp (2 j�j) ;

for any x; y 2 B with xy = yx; kxk ; kyk < 1 and � 2 C.
If we take y = �x in (4.6), then we get

(4.7)


exp �� �1� x2��� 1

 � p2min fkx� 1k ; kx+ 1kg j�j1=2 exp (2 j�j)

Now, consider the function f (�) :=
P1

n=0 �
n = 1

1�� ; � 2 D (0; 1) : If we apply
the inequality (3.3) for this function, then we get the result:


(1� �)�1 (1� �xy)�1 � (1� �x)�1 (1� �y)�1


(4.8)

�
p
2min fkx� 1k ; ky � 1kg j�j1=2 (1� j�j)�3

for any x; y 2 B with xy = yx; kxk ; kyk < 1 and � 2 C with j�j < 1:
We have in particular the inequalities

(4.9)



(1� �)�1 �1� �x2��1 � (1� �x)�2


 � p2 kx� 1k j�j1=2 (1� j�j)�3
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and 


(1� �)�1 �1 + �x2��1 � �1� �2x2��1


(4.10)

�
p
2min fkx� 1k ; kx+ 1kg j�j1=2 (1� j�j)�3

for any x 2 B with kxk < 1 and � 2 C with j�j < 1:
Now, if we take � = 1


 with j
j > 1 then we get from (4.8) the inequality



2 (
 � 1)�1 (
 � xy)�1 � 
2 (
 � x)�1 (
 � y)�1



�
p
2min fkx� 1k ; ky � 1kg j
j�1=2 (j
j � 1)�3 j
j3

which is equivalent with


(
 � 1)�1 (
 � xy)�1 � (
 � x)�1 (
 � y)�1



�
p
2min fkx� 1k ; ky � 1kg j
j1=2 (j
j � 1)�3

for any x; y 2 B with xy = yx; kxk ; kyk < 1 and 
 2 C with j
j > 1:
If we use the resolvent function notation we then have the following inequality:


(
 � 1)�1Rxy (
)�Rx (
)Ry (
)


(4.11)

�
p
2min fkx� 1k ; ky � 1kg j
j1=2 (j
j � 1)�3

for any x; y 2 B with xy = yx; kxk ; kyk < 1 and 
 2 C with j
j > 1:
In particular, we have

(4.12)



(
 � 1)�1Rx2 (
)�R2x (
)


 � p2 kx� 1k j
j1=2 (j
j � 1)�3

for any x 2 B with kxk < 1 and 
 2 C with j
j > 1:

Remark 5. Similar inequalities may be stated for the other power series mentioned
at the beginning of this paragraph. However, the details are not presented here.
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