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SIMPSON TYPE INTEGRAL INEQUALITIES AND
APPLICATIONS

AHMET OCAK AKDEMIR AND SEVER S. DRAGOMIR

ABSTRACT. In this paper, we obtain Simpson type inequalities for functions
whose derivatives in absolute value are m— and (o, m) — logarithmically con-
vex functions. We prove some new bounds based on the celebrated Hermite
Hadamard integral inequality for m— and (o, m)— logarithmically convex
functions. Some new error estimations for our results are also given via Simp-
son’s formula.

1. INTRODUCTION

Suppose f : [a,b] — R is a four times continuously differentiable mapping on
(a,b) and ||f(4) ||OO = sup |f(4)(:17)| < 00. The following inequality

;[f(a);f(b) +2f<a—21—b)] _bia/abf(x)dx

1@ H o)t
] A U
is well known in the literature as Simpson’s inequality.
For some recent results related to Simpson’s inequality see [1]-[5] and [7].
The function f : [a,b] — R, is said to be convex, if we have

flz+Q—=t)y) <tf(z)+ 1 —1)f(y)
for all z,y € [a,b] and ¢t € [0,1].
Convex functions play an important role in many branches of mathematics and
the other sciences as engineering, economics and optimization theory. Several ex-
tensions, generalizations and refinements have been presented by researchers.

Definition 1. ([6]) A function f :[0,b] — (0,00) is said to be m—logarithmically
convez if the inequality
(L1) fltw+m—t)y) < [f @) [f @™
holds for all z,y € [0,b], m € (0,1], and t € [0, 1].

Obviously, if putting m = 1 in Definition 3, then f is just the ordinary logarith-
mically convex function on [0, b].
Definition 2. ([6]) A function f : [0,b] — (0, 00) is said to be (v, m) —logarithmically
convez if
(1.2) fltz+m(1=1y) < [f @] [f @)
holds for all z,y € [0,b], (o, m) € (0,1] x (0,1], and ¢ € [0, 1].

Key words and phrases. Simpson Inequality, m— and (o, m)— logarithmically convex func-
tions, Holder Ineqality.
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Clearly, when taking « = 1 in Definition 4, then f becomes the standard
m—logarithmically convex function on [0, b].

The main purpose of this paper is to prove some new inequalities of Simpson’s
type for functions whose derivatives are m— and (o, m) —logarithmically convex
functions by using Lemma 1. Some applications in numerical integration are given.

2. INEQUALITIES OF SIMPSON TYPE AND HADAMARD TYPE

We have used the following Lemma to obtain our main results.

Lemma 1. (See [1]) Let f : I C R — R be an absolutely continuous mapping on
I1° where a,b € I with a < b. Then the following equality holds:

é[f( )+4f<a+b>+f }

= b—a/m "(tb+ (1 — t)a)dt,

where
t—%, te|0,3)
t—35,  teli ]
Theorem 1. Let f : [0,00) — (0,00) be differentiable mapping with a,b € [0, 00)
|

(
such that a < b. If |f' (x)| is (a,m) —logarithmically convexr function with f' €
La,b] and (a,m) € (0,1] x (0,1], then the following inequality holds:

@ (50) ] - 2

)

where
5 =1
f'(b 36 s
= O K (am) =
‘f (E)’ F(p,a) ,pu<l1
and
1 o a o a
Fl(u’a):m[mpﬁ +dap? +6(u* —1) —alnp(p® +1)].
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Proof. From Lemma 1 and using the (o, m) —logarithmically convexity of |f’ (x)]
we have

e (50) vsw] - [ s
(ba>{ [

PG ()
*/ (t_l) (\f’((bﬂl"L) A
0 () o)

If p =1, we have

IN

1
é‘|f’(tb+(1t)a)|dt+ t—

1

2

2‘ |f’(tb+(1t)a)dt}

IN

(b—a)

a

; (2 )( b;||m>t dt

E\D

s[rvar (S5 e s0)] - s [ s
ool (2

If o < 1, then p!” < p®t, so we can write

5 l@var () 450 - bla/abﬂx)dw
CRISERIEEE

- () e [ G ()
-5 (#e8) }

By making use of the neccessary process, the proof is completed. ([

- 36

< (b-a)

Corollary 1. In Theorem 1, if we choose f(a) = f(b) = f (“TH’), we obtain the
inequality;

b
1(*57) 52 | fas

where K1 (o, m) is as defined in Theorem 1.

< (b—a)

() o
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Corollary 2. Under the assumptions of Theorem 1, if we choose a = m = 1, we
have the inequality;

R GO ey

where

< (0—a)lf ()| K1 (1,1)

=1

gler

= Ifl’(b)l K1) =
‘ F1(/%1) 7/~L<1

and

Fi(p,1) = 12ué+4u%+6(u—1)—lnu(u+1)}-

1
12Ilnp

Theorem 2. Let f : [ ,00) — (0,00) be differentiable mapping with a,b € [0, 00)
such that a < b. If |f' (z)|? is (o, m) —logarithmically convex function with f' €
Lla,b] and (a,m) € (0,1] x (0,1] for some fized ¢ > 1, then the following inequality

holds:
/’f
b—a
(b— /i m (_142rt! g p? -1 uet %\ 1
a |f m)| 6P+1(p+1) aglnp + aglnp <

1
- a) | ()" () n=1

@+ ar (U50) 450 - ;

G:\H

Q=

; dt) ' (/O £ (th+ (1 — t)a)|th>
pdt>p </11|f’(tb+(1—t)a)|th>q}.
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Since | f’|? is (c, m) —logarithmically convex function, we obtain

s (S5 + ] - bla/abf(x)dx

@ Gy o [ () a)

< (b-a)

) ‘”) }
a\|m p+1 %
HONC==

foron NN (e Y
{(/ <<f'(f;)|’"> ‘“) *(/ <|f’(£§)|m> ““) }
EHO]

If ———=+= =1, we obtain
7))

= (b—a)

é [f(a)+4f (a;b) +f(b)] - bia/abf(x)dm
| .

t> agqt
rol ol N o e
If |f’ %)|m < 1, then ‘f/(%)‘m < |f'(ﬁ)|m , thereby

m +1
1 (Geem)

™) ()

By computing the above integrals, we get the desired result.
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Corollary 3. In Theorem 2, if we choose f(a) = f(b) = f (%), we obtain the
inequality;

a+b
‘f 2 b—a/ Ut
" 1 ag q ag
a\|™ (_142PFt P 2 -1 a4z
b—a ‘f/ )| (Gpjl(P-‘rl)) l(iqlnu) + (Maqlrﬁtu )

b—a) | ()" (2 ) =1

£
wherep:# anduzw

Corollary 4. Under the assumptios of Theorem 2, if we choose « = m = 1, we
obtain the inequality;

1

2

=Y}

s+ (50) +s0) - 2 Ny

a

1 1
b— ’ _142ptt % u2—1 ‘ #q—#% ! 1
( a’)|f ( )‘ 6P+1 p+1 qln'u‘ qlnp, 7M<

1
p+1 P
b_a’ |f/ (67114j12(p+1)) s =1
_ _ o)
where p = ﬁ and 1= 1r)
Theorem 3. Let f : [0,00) — (0,00) be differentiable mapping with a,b € [0, 00)
such that a < b. If |f' (z)|? is (o, m) —logarithmically convex function with f' €
1] x

Lia,b] and (a,m) € (0,1] x (0, 1] for some fized ¢ > 1, then the following inequality

holds:
< {f(a)+4f (a;b) +f(b)} - bia/abf(x)dw

b | ()" (277 [(F (100t + (B (maa)t] u<t

<
5(b—a a\|™m
(36)|f/(ﬁ)| sh=1
where
Fi(p,0q) = ——5— [12,u% -6 (1 —|—,u%> + ag (2,11% — lnu)}
12 (aq)" Inp
1 ag
F(pog) = ——s— [uo‘q (6 —aglnp)+p2 (6+2aq lnu)} .
12 (aq)  Inp
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Proof. From Lemma 1 and using the power-mean inequality, we have

@ () v o] - 1 [ s

x{(/j té'dt)lé (/Oé té'|f’(tb+(1t)a)th>é
| 1 2'|f’(tb+(1t)a)th>é}.

Since | f’|? is (c, m) —logarithmically convex function, we have

1

[

t— é‘ |f/(tb + (1 —t)a)|* dt
"G )
aGH (\f[f/air”)qt dt}

and
[ -3+ a-nora
) ()
D ()
1f 1F®)

- = 1, we obtain
1r(%)]

/ ’t—’|f (tb+ (1 — t)a)|
I~

1 G
and

5
72

qm

()

’|f (th+ (1 —t)a)|"dt < —
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e take 85 < 1. then (e ) < (i) e
/j o g a-oara
G G0 )
SACICES
" / o= 31 a-nara
S RINRICENIE

() ()l

Combining all the above inequalities gives us the desired result. O

Corollary 5. In Theorem 3, if we choose f(a) = f(b) = f (“7“7), we obtain the
inequality;

(45 -k [ s

(b-a) |7 ()" (H)' [ (n00)t + (B (nag)t] <1

<
Ol =1
where Fy (i, aq) and Fy (p, aq) are as defined in Theorem 3.

Corollary 6. Under the assumptions of Theorem 3, if we choose a = m = 1, we

have the inequality;
1 a+b
: [f(a) T af ( : ) +f(b)] -

(b-a) |7 @ (%) [(F (0)F + (B2 (ra)?] <

<
b—a
L 1S (@) =1
where

1 q q a
Fy (p1,9) 22 {12Mg —6(1+Mg)+Q(2Mg —IHM)}

1 a
Fy (1,9) 2@Inu {Mq(G—qlnM)‘Fﬂg (64‘2(]111#)}-
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3. APPLICATIONS IN NUMERICAL INTEGRATION

Consider a division of the interval [a,b], ie., d:a=2p < 1 < ... < Tp_1 <
&y, = b, h; = 5% and consider the Simpson’s formula

(Ti1 — ).

S(f,d) = z_: fla) +4f (i +hy) + f (zi41)

=0 6

It is known that if the function f : [a,b] — R, is differentiable function such that
f@ (z) exists on (a,b) and

M = sup ‘f(4) (a:)‘ < 00,
z€(a,b)

then
b
(3.1) I:/fqu:SUAHJ%UAL

where the approximation error Eg (f,d) of the integral I by the Simpson’s formula
S (f,d) satisfies

M n—1
E d) < —— Tip1 — i)’
S(fa )_288();(1—&-1 2)
In the case of the mapping f is not fourth differentiable or the fourth derivative is
not bounded on (a,b), then the formula (3.1) can’t be applied.
Now, we are in a position to obtain some new estimations for the remainder term

Es (f,d) in terms of logarithmically convex functions.

Proposition 1. Let f : [0,00) — (0,00) be differentiable mapping with a,b €
[0,00) such thata < b. If | f' (z)| is logarithmically convex function with ' € L|a,b],
then for every division d of [a,b], the following inequality holds:

n—1
Es (f,d)] < (g1 — @) |f (23)] 5 (1,1)
i=0
where .
5 =1
f/ z; 36 y 1
M1 = ||f(’($+;|)7 /i(l,l):
! Fl(:u'hl) HU'1<1
and

1 1
Fi(py,1) [12Hf +4pg +6(uy —1) = Inpy (g + 1)} :

T 12In 1y
Proof. By applying Corollary 2 on the subintervals [z;, x;41], (¢ =0,1,...,n — 1) of
the division d, we have

’(15 [f(xz-) +Af <$+2x“> +f(xi+1)] _ 1/;”1 F(a)de

. < (@ig1—a3) | f' (z)| £ (1,1).
Ti+1 Z;

i

By summing over 4 from 0 to n — 1, it is easy to see that

b
Smw—/fwm

n—1
<D (@i — @) |f (@) K (1,1)
=0

which completes the proof. (Il
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Proposition 2. Let f : [0,00) — (0,00) be differentiable mapping with a,b €
[0,00) such that a < b. If | f' (z)|? is ogarithmically convex function with f' € L|a,b]
for some fized q > 1, then for every division d of [a, ] the following inequality holds:

|ES' (fﬂ d)l

1 1 q 1
p+1 P —1 —1\? q_ 2 \ 1
(6?1:—12(er1)) Ty @i — @) [ f ()] [(f;fwz) + (lffln’;z > ] sHg <1

<
1
p+1 P —1
(#pﬂﬂ TS (@i — @) | (@) e =1
F(zitr)
where p = ﬁ and py = MG \f’(mt)ll |

Proof. By a similar argument to the proof of Proposition 1, by applying Corollary
4 on the subintervals [x;, z;1+1], (i = 0,1,...,n — 1) of the division d, we obtain

‘1 |:f(1‘i) +4f <W> + f(x¢+1)} . /:M f(z)dx

6 2 Ti+1 — X4

i

1 q 1 g\
p+1 P 2_1\17 a_,2 \1?
(i1 — @) | f (21)] (6£$2(p+1)) ' [(;‘fwz) + (lfflnzz ) ] sHg <1

1
1\ %
(@ip1 — i) [/ ()] (#;H)) ’ hg =1

By summing over ¢ from 0 to n — 1, we have

b
S (f.d) - / f(z)da

1 1

Lportl \ 7 can—1 / uio1)? AN
(W) Yico (@ivr — i) | (@) dng, | T Tma, sHg <1

IN

1
p+1 P n—1
(H225)" S0 @isn — 2 | (@) =1
which is the desired result. [

Proposition 3. Let f : [0,00) — (0,00) be differentiable mapping with a,b €
[0, 00) such that a < b. If | ' (x)|? is logarithmically convex function with f' € L [a,b]
for some fixed g > 1, then for every division d of [a,b] the following inequality holds:

[Bs (£,)
(%) S0 @i = w) 1 @] |(F) (1, 0) + (P2 (12, 0))7]opin <11

<
% Z?:_ol L/ (@) (i1 — ) Jig =1
where
1 ¢ ; ;
F (MQ,(]) m [12#5 —6(1+M2)+q(2/1,2 —]nuz)]
1 q
Fy (p12,9) m [,ug (6 —qlnpy) + p3 (6+2qlnu2)}
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and p4 is as defined in Proposition 2.

Proof. The proof is immediately follows from Corollary 6 and a similar argument

to the proof of the Proposition 2. We omit the details. (]
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