
DOUBLE INTEGRAL INEQUALITIES OF
HERMITE-HADAMARD TYPE FOR h-CONVEX FUNCTIONS

ON LINEAR SPACES

S. S. DRAGOMIR1;2

Abstract. Some double integral inequalities of Hermite-Hadamard type for
h-convex functions de�ned on convex subsets in real or complex linear spaces
are given. Applications for norm inequalities are provided as well.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) (b� a)f
�
a+ b

2

�
<

Z b

a

f(x)dx < (b� a)f(a) + f(b)
2

; a; b 2 R:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [41]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [41]. Since (1.1) was
known as Hadamard�s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.
For related results, see [10]-[19], [22]-[24], [31]-[34] and [44].
Let X be a vector space over the real or complex number �eld K and x; y 2

X; x 6= y. De�ne the segment

[x; y] := f(1� t)x+ ty; t 2 [0; 1]g:

We consider the function f : [x; y]! R and the associated function

g(x; y) : [0; 1]! R; g(x; y)(t) := f [(1� t)x+ ty]; t 2 [0; 1]:

Note that f is convex on [x; y] if and only if g(x; y) is convex on [0; 1].
For any convex function de�ned on a segment [x; y] � X, we have the Hermite-

Hadamard integral inequality (see [20, p. 2], [21, p. 2])

(1.2) f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty]dt � f(x) + f(y)

2
;

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x; y) : [0; 1]! R.
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Since f(x) = kxkp (x 2 X and 1 � p < 1) is a convex function, then for any
x; y 2 X we have the following norm inequality from (1.2) (see [45, p. 106])

(1.3)





x+ y2




p � Z 1

0

k(1� t)x+ tykpdt � kxkp + kykp
2

:

Motivated by the above results, in this paper we obtain double integral inequal-
ities of Hermite-Hadamard type in which upper and lower bounds for the quantity

1

(b� a) (d� c)

Z b

a

Z d

c

f

�
�x+ �y

�+ �

�
d�d�

are provided for some classes of h-convex functions de�ned on linear spaces. Ap-
plications for norm inequalities and for Godunova-Levin type of functions are also
given.

2. A Double Integral Inequality for Convex Functions

For a; b; c; d � 0 with b > a and d > c we de�ne the positive quantity

(2.1) I (a; b; c; d) :=

Z b

a

 Z d

c

�
�

�+ �

�
d�

!
d�:

We have the following representation:

Lemma 1. Let a; b; c; d � 0 with b > a and d > c: We have the equality

(2.2) I (a; b; c; d) = Id (a; b)� Ic (a; b) ;

where Iz (x; y) is de�ned for x; y; z � 0 with y > x by

Iz (x; y)(2.3)

:=
1

2

��
y2 � z2

�
ln (y + z) +

�
z2 � x2

�
ln (x+ z) + (y � x)

�
z � x+ y

2

��
:

In particular,

(2.4) I (a; b; a; b) = Ib (a; b)� Ia (a; b) =
1

2
(b� a)2 :

Proof. We have

I (a; b; c; d) =

Z b

a

 Z d

c

�
�

�+ �

�
d�

!
d�(2.5)

=

Z b

a

�

 Z d

c

d�

�+ �

!
d� =

Z b

a

� [ln (�+ d)� ln (�+ d)] d�

=

Z b

a

� ln (�+ d) d��
Z b

a

� ln (�+ d) d�

=

Z b+d

a+d

(u� d) lnudu�
Z b+c

a+c

(u� c) lnudu:
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Utilising the integration by parts formula, we have

Z b+d

a+d

(u� d) lnudu = (u� d)2

2
lnu

�����
b+d

a+d

� 1
2

Z b+d

a+d

(u� d)2

u
du(2.6)

=
b2

2
ln (b+ d)� a

2

2
ln (a+ d)� 1

2

Z b+d

a+d

(u� d)2

u
du:

Observe thatZ b+d

a+d

(u� d)2

u
du(2.7)

=

Z b+d

a+d

u2 � 2du+ d2
u

du =

Z b+d

a+d

�
u� 2d+ d

2

u

�
du

=
u2

2

����b+d
a+d

� 2d (b� a) + d2 ln (b+ d)� d2 ln (a+ d)

=
(b+ d)

2 � (a+ d)2

2
� 2d (b� a) + d2 ln (b+ d)� d2 ln (a+ d)

=
(b� a) (b+ a+ 2d)

2
� 2d (b� a) + d2 ln (b+ d)� d2 ln (a+ d)

= (b� a)
�
a+ b

2
� d
�
+ d2 ln (b+ d)� d2 ln (a+ d) :

From (2.6) and (2.7) we haveZ b+d

a+d

(u� d) lnudu

=
b2

2
ln (b+ d)� a

2

2
ln (a+ d)

� 1
2

�
(b� a)

�
a+ b

2
� d
�
+ d2 ln (b+ d)� d2 ln (a+ d)

�
= Id (a; b) :

Similarly, Z b+c

a+c

(u� c) lnudu = Ic (a; b)

and by (2.5) we get the desired identity (2.2).
We have

Ib (a; b)

=
1

2

��
b2 � b2

�
ln (b+ b) +

�
b2 � a2

�
ln (a+ b) + (b� a)

�
b� a+ b

2

��
=
1

2

�
b2 � a2

�
ln (a+ b) +

1

4
(b� a)2
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and

Ia (a; b)

=
1

2

��
b2 � a2

�
ln (b+ a) +

�
a2 � a2

�
ln (a+ a) + (b� a)

�
a� a+ b

2

��
=
1

2

�
b2 � a2

�
ln (a+ b)� 1

4
(b� a)2 ;

which gives the desired equality (2.4). �

The following double integral inequality for convex functions holds.

Theorem 1. Let f : C � X ! [0;1) be a convex function on the convex set C in
a linear space X: Then for any x; y 2 C with x 6= y and for any a; b; c; d � 0 with
b > a and d > c we have

f

�
I (a; b; c; d)

(b� a) (d� c)x+
I (c; d; a; b)

(b� a) (d� c)y
�

(2.8)

� 1

(b� a) (d� c)

Z b

a

Z d

c

f

�
�x+ �y

�+ �

�
d�d�

� I (a; b; c; d)

(b� a) (d� c)f (x) +
I (c; d; a; b)

(b� a) (d� c)f (y) ;

where

I (a; b; c; d) :=

Z b

a

 Z d

c

�
�

�+ �

�
d�

!
d�

and

I (c; d; a; b) :=

Z b

a

 Z d

c

�
�

�+ �

�
d�

!
d�:

Proof. Consider the function gx;y : [0; 1] ! R, gx;y (s) = f (sx+ (1� s) y) : This
function is convex on [0; 1] and by Jensen�s double integral inequality for real func-
tions of real variable we have

gx;y

0@R ba R dc
�

�
�+�

�
d�d�

(b� a) (d� c)

1A � 1

(b� a) (d� c)

Z b

a

Z d

c

gx;y

�
�

�+ �

�
d�d�;

which is equivalent with

f

0@R ba R dc
�

�
�+�

�
d�d�

(b� a) (d� c) x+

0@1� R ba R dc
�

�
�+�

�
d�d�

(b� a) (d� c)

1A y
1A

� 1

(b� a) (d� c)

Z b

a

Z d

c

f

�
�

�+ �
x+

�
1� �

�+ �

�
y

�
d�d�:

By simple calculation we obtain

f

0@R ba R dc
�

�
�+�

�
d�d�

(b� a) (d� c) x+

R b
a

R d
c

�
�

�+�

�
d�d�

(b� a) (d� c) y

1A
� 1

(b� a) (d� c)

Z b

a

Z d

c

f

�
�

�+ �
x+

�

�+ �
y

�
d�d�
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and the �rst part of (2.8) is proved.
By the convexity of f we have

f

�
�x+ �y

�+ �

�
� �

�+ �
f (x) +

�

�+ �
f (y)

for any x; y 2 C and for all �; � � 0 with �+ � > 0:
Integrating on the rectangle [a; b]� [c; d] we haveZ b

a

Z d

c

f

�
�x+ �y

�+ �

�
d�d� � f (x)

Z b

a

Z d

c

�

�+ �
d�d�+ f (y)

Z b

a

Z d

c

�

�+ �
d�d�;

which proves the second part of (2.8). �

Corollary 1. Let f : C � X ! [0;1) be a convex function on the convex set C in
a linear space X: Then for any x; y 2 C with x 6= y and for any b > a � 0 we have

(2.9) f

�
x+ y

2

�
� 1

(b� a)2
Z b

a

Z b

a

f

�
�x+ �y

�+ �

�
d�d� � f (x) + f (y)

2
:

The proof is obvious from (2.8) noticing that I (a; b; a; b) = 1
2 (b� a)

2
:

Remark 1. Let (X; k�k) be a real or complex linear spaces and p � 1: Then for
any x; y 2 X we have



 I (a; b; c; d)

(b� a) (d� c)x+
I (c; d; a; b)

(b� a) (d� c)y




p(2.10)

� 1

(b� a) (d� c)

Z b

a

Z d

c





�x+ �y�+ �





p d�d�
� I (a; b; c; d)

(b� a) (d� c) kxk
p
+

I (c; d; a; b)

(b� a) (d� c) kyk
p

for any a; b; c; d � 0 with b > a and d > c.
In particular, we have

(2.11)





x+ y2




p � 1

(b� a)2
Z b

a

Z b

a





�x+ �y�+ �





p d�d� � kxkp + kykp

2

for any b > a � 0:

3. Double Integral Inequalities for h-Convex Functions

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

De�nition 1 ([36]). We say that f : I ! R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all x; y 2 I and t 2 (0; 1)
we have

(3.1) f (tx+ (1� t) y) � 1

t
f (x) +

1

1� tf (y) :

Some further properties of this class of functions can be found in [27], [28], [30],
[42], [45] and [46]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.
The above concept can be extended for functions f : C � X ! [0;1) where C

is a convex subset of the real or complex linear space X and the inequality (3.1) is
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satis�ed for any vectors x; y 2 C and t 2 (0; 1) : If the function f : C � X ! R is
non-negative and convex, then is of Godunova-Levin type.

De�nition 2 ([30]). We say that a function f : I ! R belongs to the class P (I)
if it is nonnegative and for all x; y 2 I and t 2 [0; 1] we have

(3.2) f (tx+ (1� t) y) � f (x) + f (y) :

Obviously Q (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convex functions, i.
e. nonnegative functions satisfying

(3.3) f (tx+ (1� t) y) � max ff (x) ; f (y)g

for all x; y 2 I and t 2 [0; 1] :
For some results on P -functions see [30] and [43] while for quasi convex functions,

the reader can consult [29].
If f : C � X ! [0;1), where C is a convex subset of the real or complex linear

space X; then we say that it is of P -type (or quasi-convex) if the inequality (3.2)
(or (3.3)) holds true for x; y 2 C and t 2 [0; 1] :

De�nition 3 ([7]). Let s be a real number, s 2 (0; 1]: A function f : [0;1)! [0;1)
is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1� t) y) � tsf (x) + (1� t)s f (y)

for all x; y 2 [0;1) and t 2 [0; 1] :

For some properties of this class of functions see [1], [2], [7], [8], [25], [26], [37],
[39] and [48].
The concept of Breckner s-convexity can be similarly extended for functions

de�ned on convex subsets of linear spaces.
It is well known that if (X; k�k) is a normed linear space, then the function

f (x) = kxkp ; p � 1 is convex on X:
Utilising the elementary inequality (a+ b)s � as + bs that holds for any a; b � 0

and s 2 (0; 1]; we have for the function g (x) = kxks that

g (tx+ (1� t) y) = ktx+ (1� t) yks � (t kxk+ (1� t) kyk)s

� (t kxk)s + [(1� t) kyk]s

= tsg (x) + (1� t)s g (y)

for any x; y 2 X and t 2 [0; 1] ; which shows that g is Breckner s-convex on X:
In order to unify the above concepts for functions of real variable, S. Varo�anec

introduced the concept of h-convex functions as follows.
Assume that I and J are intervals in R; (0; 1) � J and functions h and f are real

non-negative functions de�ned in J and I; respectively.

De�nition 4 ([51]). Let h : J ! [0;1) with h not identical to 0. We say that
f : I ! [0;1) is an h-convex function if for all x; y 2 I we have

(3.4) f (tx+ (1� t) y) � h (t) f (x) + h (1� t) f (y)

for all t 2 (0; 1) :
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For some results concerning this class of functions see [51], [6], [40], [49], [47] and
[50].
This concept can be extended for functions de�ned on convex subsets of linear

spaces in the same way as above replacing the interval I be the corresponding
convex subset C of the linear space X:
We can introduce now another class of functions.

De�nition 5. We say that the function f : C � X ! [0;1) is of s-Godunova-
Levin type, with s 2 [0; 1] ; if

(3.5) f (tx+ (1� t) y) � 1

ts
f (x) +

1

(1� t)s f (y) ;

for all t 2 (0; 1) and x; y 2 C:

We observe that for s = 0 we obtain the class of P -functions while for s = 1
we obtain the class of Godunova-Levin. If we denote by Qs (C) the class of s-
Godunova-Levin functions de�ned on C, then we obviously have

P (C) = Q0 (C) � Qs1 (C) � Qs2 (C) � Q1 (C) = Q (C)

for 0 � s1 � s2 � 1:
We can prove now the following generalization of the Hermite-Hadamard in-

equality for h-convex functions de�ned on convex subsets of linear spaces.

Theorem 2. Assume that the function f : C � X ! [0;1) is an h-convex function
with h 2 L [0; 1] : Let y; x 2 C with y 6= x and assume that the mapping [0; 1] 3 t 7!
f [(1� t)x+ ty] is Lebesgue integrable on [0; 1] : Then

1

2h
�
1
2

�f �x+ y
2

�
(3.6)

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

�
f

�
�x+ �y

�+ �

�
+ f

�
�x+ �y

�+ �

��
d�d�

� f (x) + f (y)

2 (b� a) (d� c)

Z b

a

Z d

c

�
h

�
�

�+ �

�
+ h

�
�

�+ �

��
d�d�

for any a; b; c; d � 0 with b > a and d > c:

Proof. By the h-convexity of f we have

(3.7) f (tx+ (1� t) y) � h (t) f (x) + h (1� t) f (y)

and

(3.8) f ((1� t)x+ ty) � h (1� t) f (x) + h (t) f (y)

for any t 2 [0; 1] :
Summing the inequalities (3.7) and (3.8) and dividing by 2 we get

(3.9)
1

2
[f (tx+ (1� t) y) + f ((1� t)x+ ty)] � 1

2
[h (1� t) + h (t)] [f (x) + f (y)]

for any t 2 [0; 1] :
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Taking t = �
�+� in (3.9) we get

1

2

�
f

�
�x+ �y

�+ �

�
+ f

�
�x+ �y

�+ �

��
(3.10)

� 1

2

�
h

�
�

�+ �

�
+ h

�
�

�+ �

��
[f (x) + f (y)]

for any �; � � 0 with �+ � > 0:
Since the mapping [0; 1] 3 t 7! f [(1� t)x+ ty] is Lebesgue integrable on [0; 1] ;

then the double integralsZ b

a

Z d

c

f

�
�x+ �y

�+ �

�
d�d� and

Z b

a

Z d

c

f

�
�y + �x

�+ �

�
d�d�

exist and integrating the inequality on the rectangle [a; b]� [c; d] over (�; �) we get
the second inequality in (3.6).
From the h-convexity of f we also have

(3.11) f

�
z + w

2

�
� h

�
1

2

�
[f (z) + f (w)]

for any z; w 2 C:
If we take in (3.11) z = �x+�y

�+� and w = �x+�y
�+� ; then we get

(3.12) f

�
x+ y

2

�
� h

�
1

2

��
f

�
�x+ �y

�+ �

�
+ f

�
�x+ �y

�+ �

��
for any �; � � 0 with �+ � > 0:
Integrating the inequality on the rectangle [a; b] � [c; d] over (�; �) we get the

�rst inequality in (3.6). �
Corollary 2. With the assumptions of Theorem 2 we have

1

2h
�
1
2

�f �x+ y
2

�
� 1

(b� a)2
Z b

a

Z b

a

f

�
�x+ �y

�+ �

�
d�d�(3.13)

� f (x) + f (y)

(b� a)2
Z b

a

Z b

a

h

�
�

�+ �

�
d�d�

for any b > a � 0:
The following result holds for convex functions.

Corollary 3. Let f : C � X ! [0;1) be a convex function on the convex set C in
a linear space X: Then for any x; y 2 C with x 6= y and for any a; b; c; d � 0 with
b > a and d > c we have

f

�
x+ y

2

�
� 1

(b� a) (d� c)

Z b

a

Z d

c

24f
�
�x+�y
�+�

�
+ f

�
�x+�y
�+�

�
2

35 d�d�(3.14)

� I (a; b; c; d) + I (c; d; a; b)

(b� a) (d� c) � f (x) + f (y)
2

;

where I (a; b; c; d) and I (c; d; a; b) are de�ned by (2.1).

For two distinct positive numbers p and q we consider the Logarithmic mean

L (p; q) :=
p� q

ln p� ln q :
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Corollary 4. Assume that the function f : C � X ! [0;1) is of Godunova-Levin
type on C: Let y; x 2 C with y 6= x and assume that the mapping [0; 1] 3 t 7!
f [(1� t)x+ ty] is Lebesgue integrable on [0; 1]. Then for any a; b; c; d > 0 with
b > a and d > c we have

1

4
f

�
x+ y

2

�
(3.15)

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

�
f

�
�x+ �y

�+ �

�
+ f

�
�x+ �y

�+ �

��
d�d�

� f (x) + f (y)

2

�
2 +

A (c; d)

L (a; b)
+
A (a; b)

L (c; d)

�
;

where L is the logarithmic mean and A is the arithmetic mean of the numbers
involved.

Proof. We take h (t) = 1
t ; t 2 (0; 1) in (3.6) and have to integrate the double integralZ b

a

Z d

c

�
�+ �

�
+
�+ �

�

�
d�d�:

Observe thatZ b

a

Z d

c

�+ �

�
d�d� =

Z b

a

Z d

c

�
1 +

�

�

�
d�d�

= (b� a) (d� c) + (ln b� ln a) d
2 � c2
2

= (b� a) (d� c)
�
1 +

ln b� ln a
b� a � c+ d

2

�
= (b� a) (d� c)

�
1 +

A (c; d)

L (a; b)

�
and Z b

a

Z d

c

�+ �

�
d�d� = (b� a) (d� c)

�
1 +

A (a; b)

L (c; d)

�
;

which produce the second part of (3.15). �

Remark 2. With the assumptions of Corollary 4 we have the inequalities

1

4
f

�
x+ y

2

�
� 1

(b� a)2
Z b

a

Z b

a

f

�
�x+ �y

�+ �

�
d�d�(3.16)

�
�
1 +

A (a; b)

L (a; b)

�
[f (x) + f (y)]

for any b > a > 0:

Corollary 5. Assume that the function f : C � X ! [0;1) is of P -type on C:
Let y; x 2 C with y 6= x and assume that the mapping [0; 1] 3 t 7! f [(1� t)x+ ty]
is Lebesgue integrable on [0; 1]. Then for any a; b; c; d with b > a � 0 and d > c � 0
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we have

1

2
f

�
x+ y

2

�
(3.17)

� 1

2 (b� a) (d� c)

Z b

a

Z d

c

�
f

�
�x+ �y

�+ �

�
+ f

�
�x+ �y

�+ �

��
d�d�

� f (x) + f (y)

and, in particular

(3.18)
1

2
f

�
x+ y

2

�
� 1

(b� a)2
Z b

a

Z b

a

f

�
�x+ �y

�+ �

�
d�d� � f (x) + f (y) :

The interested reader may obtain similar results for other h-convex functions as
provided above. The details are omitted.
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1989.

[45] J. Peµcaríc and S. S. Dragomir, A generalization of Hadamard�s inequality for isotonic linear
functionals, Radovi Mat. (Sarajevo) 7 (1991), 103�107.

[46] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of
functions. Math. Inequal. Appl. 12 (2009), no. 4, 853�862.

[47] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-
convex functions. J. Math. Inequal. 2 (2008), no. 3, 335�341.

[48] E. Set, M. E. Özdemir and M. Z. Sar¬kaya, New inequalities of Ostrowski�s type for s-convex
functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012),
no. 1, 67�82.

[49] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type
involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265�272.

[50] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special
means. J. Inequal. Appl. 2013, 2013:326.

[51] S. Varo�anec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303�311.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.
E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2School of Computational & Applied Mathematics, University of the Witwater-
srand, Private Bag 3, Johannesburg 2050, South Africa


