SOME INEQUALITIES INVOLVING THE BESSEL FUNCTIONS OF THE FIRST KIND

NGUYEN NGOC HUE

ABSTRACT. In this paper, in view of the integral representation of Bessel functions of the first kind and the inequalities for concave and r-concave functions, we establish some inequalities for the Bessel functions of the first kind.

INTRODUCTION

The Bessel function of the first kind of order ν , denoted by $J_{\nu}(x)$, is defined as a particular solution of the second order differential equation

$$x^{2}y''(x) + xy'(x) + (x^{2} - \nu^{2})y(x) = 0$$

which is also called the Bessel equation with index ν . It is known (see [4]) that

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^m (x/2)^{2m}}{m! \Gamma(\nu+m+1)}, \quad x \in \mathbb{R}.$$

In [1], M. Abramowitz and I. A. Stegun mentioned the integral representation of the function under the form

$$J_{\nu}(x) = \frac{(x/2)^{\nu}}{\Gamma(1/2)\Gamma(\nu+1/2)} \int_0^1 (1-t^2)^{\nu-1/2} \cos(xt) dt.$$
(1)

From this expression we can define the following function

$$f_{\nu}(x) = \begin{cases} \frac{J_{\nu}(x)}{x^{\nu}}, & \text{if } x \neq 0\\ \lim_{x \to 0} \frac{J_{\nu}(x)}{x^{\nu}}, & \text{if } x = 0. \end{cases}$$
(2)

It is easy to see that $f_{\nu}(-x) = f_{\nu}(x)$ for every $x \in \mathbb{R}$ and $f_{\nu}(0) = \frac{1}{2^{\nu}\Gamma(\nu+1)}$. Moreover, f_{ν} is a differentiable and continuous function on \mathbb{R} . In addition, we also have

$$f'_{\nu}(x) = -xf_{\nu+1}(x), \tag{3}$$

for all $x \in \mathbb{R}$.

Date: June, 2013.

Key words and phrases. Bessel functions of the first kind, Inequalities, concave functions.

²⁰⁰⁰ Mathematics Subject Classification. 33C10, 26D20.

NGUYEN NGOC HUE

In this paper we use the equality (1) to advance some new properties and inequalities for f_{ν} based on the properties of concave and r-concave function.

1. Preliminaries

Here we recall some definitions and results related our main results.

Definition 1.1 ([9]). A function f is called to be *concave* on [a, b] if and only if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
(1.1)

for every $\lambda \in [0, 1]$ and $x, y \in [a, b]$.

In [9], A. W. Roberts and D. E. Vargerg referred to the condition for a twice differentiable function f is concave on I to be

$$f''(x) \le 0$$
, for all $x \in I$.

Definition 1.2 ([10]). A positive valued function f is called to be *r*-concave on [a, b], if for each $x, y \in [a, b]$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \ge \begin{cases} [\lambda f^r(x) + (1 - \lambda)f^r(y)]^{1/r}, & r \neq 0, \\ [f(x)]^{\lambda}[f(y)]^{1-\lambda}, & r = 0. \end{cases}$$
(1.2)

It is obvious 0-concave functions are simply log-concave functions and 1-concave functions are ordinary concave functions. One should note that if f is a r-concave on [a, b], then f^r is concave function with r > 0.

Definition 1.3 ([11]). A function $f : [a, b] \subset (0, +\infty) \to (0, +\infty)$ is said to be geometrically concave if and only if

$$f(x^{\alpha}y^{1-\alpha}) \ge f^{\alpha}(x)f^{1-\alpha}(y) \tag{1.3}$$

for all $\alpha \in [0, 1]$ and $x, y \in [a, b]$.

In [11], X. Zhang and N. Zheng referred to the condition for a twice differentiable function f is geometrically concave on interval I to be

$$x[f''(x)f(x) - [f'(x)]^2] + f(x)f'(x) \le 0, \quad \text{for all } x \in I.$$
(1.4)

Remark 1.1. Suppose that a positive function f defined on [a, b] is to be concave. Then by using Lemma 2.5 in [10] we have the following inequalities

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y) \ge [\lambda f^{r}(x) + (1 - \lambda)f^{r}(y)]^{1/r} \ge [f(x)]^{\lambda}[f(y)]^{1-\lambda}$$
(1.5)

hold for all $r \in (0, 1]$. This gives us the related between above functional classes.

Remark 1.2. Let $0 \le r \le s$ and suppose that f is a s-concave function on [a, b]. Then by using Lemma 2.5 in [10], it's easy to deduce that f is also r-concave on the interval [a, b].

S. S. Dragomir and C. E. M. Pearce [5] referred to two well-known results for a convex function. Here we present these results for concave function.

Theorem 1.3 ([5]). Let p,q be given positive numbers and f is a continuous concave function on $[a_1, b_1]$. Then for $a_1 \le a < b \le b_1$ the following inequalities

$$f\left(\frac{pa+qb}{p+q}\right) \ge \frac{1}{2y} \int_{A-y}^{A+y} f(t)dt \ge \frac{1}{2} (f(A-y) + f(A+y)) \ge \frac{pf(a) + qf(b)}{p+q}$$
(1.6)

hold for $A = \frac{pa+qb}{p+q}$ and $0 < y \le \frac{b-a}{p+q} \min\{p,q\}$.

Theorem 1.4 ([5]). Let f be a concave function on [a, b]. Then for all $t \in [a, b]$ we have the following inequality

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \ge \frac{f(t)}{2} + \frac{1}{2} \frac{bf(b) - af(a) - t[f(b) - f(a)]}{b-a}.$$
 (1.7)

2. Main results

In this section, firstly we advance some properties of the function f_{ν} . Then we use it to advance some new inequalities.

Theorem 2.1. For $\nu \geq 0$ we have the following statements:

- (i) f_{ν} is concave on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$;
- (ii) f_{ν} is r-concave on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with $r \in [0, 1]$;
- (iii) f_{ν} is geometrically concave on $(0, \frac{\pi}{2})$.

Proof. (i) It's easy to check that for all $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ we have

$$f_{\nu}''(x) = \frac{-1}{2^{\nu}\Gamma(1/2)\Gamma(\nu+1/2)} \int_0^1 t^2 (1-t^2)^{\nu-1/2} \cos(xt) dt \le 0.$$
(2.1)

So the function f_{ν} is concave on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

- (ii) This case is directly consequence of the statement (i) and the inequality (1.5).
- (iii) For every $x \in (0, \frac{\pi}{2})$, we have $f_{\nu}(x) \ge 0$ and

$$f'_{\nu}(x) = \frac{-1}{2^{\nu} \Gamma(1/2) \Gamma(\nu + 1/2)} \int_0^1 t(1 - t^2)^{\nu - 1/2} \cos(xt) dt \le 0.$$
(2.2)

Thus, combining (2.1) and (2.2) give us, for all $x \in (0, \frac{\pi}{2})$,

$$x[f_{\nu}''(x)f_{\nu}(x) - [f_{\nu}'(x)]^2] + f_{\nu}(x)f_{\nu}'(x) \le 0.$$

Hence f_{ν} satisfies the condition (1.4) and therefore is geometrically concave on $(0, \frac{\pi}{2})$.

Remark 2.2. For $\nu \geq 0$ we have, in view of Jensen inequality,

$$\frac{f_{\nu}(x) + f_{\nu}(y)}{2} \le f_{\nu}\left(\frac{x+y}{2}\right), \quad x, y \in [-\pi/2, \pi/2].$$
(2.3)

Theorem 2.3. Suppose that $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$ and p,q > 0. Let $A = \frac{pa+qb}{p+q}$ and $0 < y \leq \frac{b-a}{p+q} \min\{p,q\}$. Then, for all $\nu \geq 0$ and $r \in (0,1]$, we have

$$f_{\nu}^{r}\left(\frac{pa+qb}{p+q}\right) \geq \frac{1}{(2y)^{r}}\left(\int_{A-y}^{A+y} f_{\nu}(t)dt\right)^{r} \geq \frac{1}{2y}\int_{A-y}^{A+y} f_{\nu}^{r}(t)dt$$
$$\geq \frac{1}{2}[f_{\nu}^{r}(A-y) + f_{\nu}^{r}(A+y)] \geq \frac{pf_{\nu}^{r}(a) + qf_{\nu}^{r}(b)}{p+q}.$$
 (2.4)

Proof. It's easy to see that the function $f_{\nu}(t) \ge 0$ for all $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Therefore, by Hölder inequality for $r \in (0, 1]$, we have

$$\frac{1}{2y} \int_{A-y}^{A+y} f_{\nu}^{r}(t) dt \leq \frac{1}{(2y)^{r}} \left(\int_{A-y}^{A+y} f_{\nu}(t) dt \right)^{r}.$$
(2.5)

By (ii) of Theorem 2.1, the function f_{ν} is r-concave on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with $r \in (0, 1]$. Hence, applying the inequalities (1.14) in [5] and Theorem 2.1, we get

$$\frac{1}{2y} \int_{A-y}^{A+y} f_{\nu}^{r}(t) dt \le \frac{1}{(2y)^{r}} \left(\int_{A-y}^{A+y} f_{\nu}(t) dt \right)^{r} \le f_{\nu}^{r} \left(\frac{pa+qb}{p+q} \right),$$
(2.6)

and

$$\frac{1}{2y} \int_{A-y}^{A+y} f_{\nu}^{r}(t)dt \ge \frac{1}{2} [f_{\nu}^{r}(A-y) + f_{\nu}^{r}(A+y)] \ge \frac{pf_{\nu}^{r}(a) + qf_{\nu}^{r}(b)}{p+q}.$$
(2.7)
(2.6) and (2.7) give us the proved.

Combining (2.6) and (2.7) give us the proved.

Theorem 2.4. Suppose that $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$ and $r \in (0,1]$. Then, for every $t \in [a,b]$ and $\nu \geq 0$ we have the following inequalities

$$\frac{1}{(b-a)^r} \left(\int_a^b f_\nu(t) dt \right)^r \ge \frac{1}{b-a} \int_a^b f_\nu^r(t) dt$$
$$\ge \frac{f_\nu^r(t)}{2} + \frac{1}{2} \frac{b f_\nu^r(b) - a f_\nu^r(a) - t [f_\nu^r(b) - f_\nu^r(a)]}{b-a}. \quad (2.8)$$

Proof. The proof is run analogously to Theorem 2.3 but applying Theorem 19 in [5] and Theorem 2.1.

Theorem 2.5. Let $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$. Then for all $t \in [a, b]$ one has the inequality

$$f_{\nu}(t) + t f_{\nu+1}(t) \left(t - \frac{a+b}{2} \right) \ge \frac{1}{b-a} \int_{a}^{b} f_{\nu}(x) dx.$$
(2.9)

Proof. Directly applying Theorem 18 in [5] and Theorem 2.1.

Theorem 2.6. Let $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$ and $q = \frac{p}{p-1}$ where p > 1. Then one has the inequality

$$\left|\frac{f_{\nu}(a) + f_{\nu}(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f_{\nu}(x) dx\right| \ge \frac{1}{2} \frac{(b-a)^{1/p}}{(p+1)^{1/p}} \left(\int_{a}^{b} |x|^{q} |f_{\nu+1}(x)|^{q} dx\right)^{1/q}.$$
 (2.10)

Proof. Directly applying Theorem 26 in [5] and Theorem 2.1.

Corollary 2.7. For $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$ and $q = \frac{p}{p-1}$ where p > 1 we have the inequality

$$\frac{1}{b-a} \int_{a}^{b} f_{\nu}(x) dx - \frac{f_{\nu}(a) + f_{\nu}(b)}{2} \ge \frac{1}{2} \frac{(b-a)^{1/p}}{(p+1)^{1/p}} \left(\int_{a}^{b} |x|^{q} |f_{\nu+1}(x)|^{q} dx \right)^{1/q}.$$
 (2.11)

Proof. Directly applying the inequality (2.10) and Theorem 2.1.

Corollary 2.8. For $-\frac{\pi}{2} \le a < b \le \frac{\pi}{2}$ we have the inequality

$$\frac{1}{b-a} \int_{a}^{b} f_{\nu}(x) dx - \frac{f_{\nu}(a) + f_{\nu}(b)}{2} \ge \frac{[af_{\nu+1}(a) - bf_{\nu+1}(b)](b-a)}{4}.$$
 (2.12)

Proof. Directly applying Corollary 10 in [5] and Theorem 2.1.

Theorem 2.9. Let $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$. Then for all $y \in [a, b]$ we have the following inequalities

$$\frac{1}{b-a} \int_{a}^{b} f_{\nu}(x) dx \ge \frac{1}{b-a} \int_{y}^{b} f_{\nu}(x) dx + \frac{y-a}{b-a} \frac{f_{\nu}(a) + f_{\nu}(y)}{2} \ge \frac{f_{\nu}(a) + f_{\nu}(b)}{2}$$
(2.13)

and

$$f_{\nu}\left(\frac{a+b}{2}\right) \ge f_{\nu}\left(\frac{a+b}{2}\right) - \frac{y-a}{b-a}f_{\nu}\left(\frac{a+y}{2}\right) + \frac{1}{b-a}\int_{a}^{y}f_{\nu}(x)dx \ge \frac{1}{b-a}\int_{a}^{b}f_{\nu}(x)dx.$$
(2.14)

Proof. Directly applying Theorem 67 in [5] and Theorem 2.1.

Theorem 2.10. Let $-\frac{\pi}{2} \leq a < b \leq \frac{\pi}{2}$ and $0 \leq s \leq r \leq 1$. Then for $\nu \geq 0$ we have the following inequalities

$$\frac{1}{b-a} \int_{a}^{b} f_{\nu}(x) dx \geq \frac{r}{r+1} \frac{f_{\nu}^{r+1}(b) - f_{\nu}^{r+1}(a)}{f_{\nu}^{r}(b) - f_{\nu}^{r}(a)} \geq \frac{s}{s+1} \frac{f_{\nu}^{s+1}(b) - f_{\nu}^{s+1}(a)}{f_{\nu}^{s}(b) - f_{\nu}^{s}(a)} \geq [f_{\nu}(b) - f_{\nu}(a)] [\ln f_{\nu}(b) - \ln f_{\nu}(a)]. \quad (2.15)$$

Proof. Directly applying Theorem 2.6 in [10] and Theorem 2.1.

5

NGUYEN NGOC HUE

References

- M. Abramowitz and I. A. Stegun, (Eds.), "Bessel Functions of Integer Order," "Bessel Functions of Fractional Order," and "Integrals of Bessel Functions." Chs. 9-11 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 355-389, 435-456, and 480-491, (1972).
- [2] V. Adamchik, The Evaluation of Integrals of Bessel Functions via G-Function Identities, J. Comput. Appl. Math., 64 (1995), 283-290.
- [3] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function, Int. J. Math. Anal., Vol. 2, 13 (2008), 639 - 646.
- [4] B. Árpád and E. Neuman, Inequalities involving generalized Bessel functions, J. Inequal. pure. appl. math., Vol. 6, 4 (2005), art. 126.
- [5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (2000).
- [6] B. G. Korenev, Bessel Functions and their Applications, Taylor & Francis Inc. (2002).
- [7] E. Neuman, Inequalities involving Bessel functions of the first kind, J. Inequal. pure. appl. math., Vol. 5, 4 (2004).
- [8] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge at the University press, (1944).
- [9] A. W. Roberts and D. E. Vargerg, Convex functions, Academic press, Inc. (1973).
- [10] G. Zabandan, A. Bodaghi and A. Kiliçman, The Hermite Hadamard inequality for r-convex functions, J. Inequal. Appl., (2012) 2012:215.
- [11] X. Zhang and N. Zheng, Geometrically convex functions and estimation of remainder terms for Taylor expansion of some functions, J. Math. Inequal., Vol. 4, 1 (2010), 15-25.

DEPARTMENT OF NATURAL SCIENCE AND TECHNOLOGY, TAY NGUYEN UNIVERSITY, DAKLAK, VIETNAM.

 $E\text{-}mail\ address: \texttt{nguyenngochue2009@gmail.com}$