INEQUALITIES OF JENSEN TYPE FOR *h*-CONVEX FUNCTIONS ON LINEAR SPACES

S. S. DRAGOMIR^{1,2}

ABSTRACT. Some inequalities of Jensen type for *h*-convex functions defined on convex subsets in real or complex linear spaces are given. Applications for norm inequalities are provided as well.

1. INTRODUCTION

We recall here some concepts of convexity that are well known in the literature. Let I be an interval in \mathbb{R} .

Definition 1 ([38]). We say that $f: I \to \mathbb{R}$ is a Godunova-Levin function or that f belongs to the class Q(I) if f is non-negative and for all $x, y \in I$ and $t \in (0, 1)$ we have

(1.1)
$$f(tx + (1-t)y) \le \frac{1}{t}f(x) + \frac{1}{1-t}f(y).$$

Some further properties of this class of functions can be found in [28], [29], [31], [44], [47] and [48]. Among others, its has been noted that non-negative monotone and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions $f: C \subseteq X \to [0, \infty)$ where C is a convex subset of the real or complex linear space X and the inequality (1.1) is satisfied for any vectors $x, y \in C$ and $t \in (0, 1)$. If the function $f: C \subseteq X \to \mathbb{R}$ is non-negative and convex, then is of Godunova-Levin type.

Definition 2 ([31]). We say that a function $f : I \to \mathbb{R}$ belongs to the class P(I) if it is nonnegative and for all $x, y \in I$ and $t \in [0, 1]$ we have

(1.2)
$$f(tx + (1 - t)y) \le f(x) + f(y).$$

Obviously Q(I) contains P(I) and for applications it is important to note that also P(I) contain all nonnegative monotone, convex and *quasi convex functions*, i. e. nonnegative functions satisfying

(1.3)
$$f(tx + (1 - t)y) \le \max\{f(x), f(y)\}\$$

for all $x, y \in I$ and $t \in [0, 1]$.

For some results on *P*-functions see [31] and [45] while for quasi convex functions, the reader can consult [30].

If $f: C \subseteq X \to [0, \infty)$, where C is a convex subset of the real or complex linear space X, then we say that it is of P-type (or quasi-convex) if the inequality (1.2) (or (1.3)) holds true for $x, y \in C$ and $t \in [0, 1]$.

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 25D10.

Key words and phrases. Convex functions, Integral inequalities, h-Convex functions.

Definition 3 ([7]). Let s be a real number, $s \in (0, 1]$. A function $f : [0, \infty) \to [0, \infty)$ is said to be s-convex (in the second sense) or Breckner s-convex if

$$f(tx + (1 - t)y) \le t^{s}f(x) + (1 - t)^{s}f(y)$$

for all $x, y \in [0, \infty)$ and $t \in [0, 1]$.

For some properties of this class of functions see [1], [2], [7], [8], [26], [27], [39], [41] and [50].

The concept of Breckner s-convexity can be similarly extended for functions defined on convex subsets of linear spaces.

It is well known that if $(X, \|\cdot\|)$ is a normed linear space, then the function $f(x) = \|x\|^p, p \ge 1$ is convex on X.

Utilising the elementary inequality $(a + b)^s \le a^s + b^s$ that holds for any $a, b \ge 0$ and $s \in (0, 1]$, we have for the function $g(x) = ||x||^s$ that

$$g(tx + (1 - t)y) = ||tx + (1 - t)y||^{s} \le (t ||x|| + (1 - t) ||y||)^{s}$$

$$\le (t ||x||)^{s} + [(1 - t) ||y||]^{s}$$

$$= t^{s}g(x) + (1 - t)^{s}g(y)$$

for any $x, y \in X$ and $t \in [0, 1]$, which shows that g is Breckner s-convex on X.

In order to unify the above concepts for functions of real variable, S. Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in $\mathbb{R}, (0, 1) \subseteq J$ and functions h and f are real non-negative functions defined in J and I, respectively.

Definition 4 ([53]). Let $h: J \to [0, \infty)$ with h not identical to 0. We say that $f: I \to [0, \infty)$ is an h-convex function if for all $x, y \in I$ we have

(1.4)
$$f(tx + (1-t)y) \le h(t) f(x) + h(1-t) f(y)$$

for all $t \in (0, 1)$.

For some results concerning this class of functions see [53], [6], [42], [51], [49] and [52].

This concept can be extended for functions defined on convex subsets of linear spaces in the same way as above replacing the interval I be the corresponding convex subset C of the linear space X.

We can introduce now another class of functions.

Definition 5. We say that the function $f : C \subseteq X \to [0, \infty)$ is of s-Godunova-Levin type, with $s \in [0, 1]$, if

(1.5)
$$f(tx + (1-t)y) \le \frac{1}{t^s}f(x) + \frac{1}{(1-t)^s}f(y),$$

for all $t \in (0, 1)$ and $x, y \in C$.

We observe that for s = 0 we obtain the class of *P*-functions while for s = 1 we obtain the class of Godunova-Levin. If we denote by $Q_s(C)$ the class of *s*-Godunova-Levin functions defined on *C*, then we obviously have

$$P(C) = Q_0(C) \subseteq Q_{s_1}(C) \subseteq Q_{s_2}(C) \subseteq Q_1(C) = Q(C)$$

for $0 \le s_1 \le s_2 \le 1$.

For different inequalities related to these classes of functions, see [1]-[4], [6], [9]-[37], [40]-[42] and [45]-[52].

A function $h: J \to \mathbb{R}$ is said to be supermultiplicative if

(1.6)
$$h(ts) \ge h(t) h(s) \text{ for any } t, s \in J.$$

If the inequality (1.6) is reversed, then h is said to be *submultiplicative*. If the equality holds in (1.6) then h is said to be a multiplicative function on J.

In [53] it has been noted that if $h: [0, \infty) \to [0, \infty)$ with $h(t) = (x+c)^{p-1}$, then for c = 0 the function h is multiplicative. If $c \ge 1$, then for $p \in (0, 1)$ the function h is supermultiplicative and for p > 1 the function is submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, the same is their product. In particular, if h is supermultiplicative then its product with a power function $\ell_r(t) = t^r$ is also supermultiplicative.

The case of h-convex function with h supermultiplicative is of interest due to several Jensen type inequalities one can derive.

The following results were obtained in [53] for functions of a real variable. However, with similar proofs they can be extended to h-convex function defined on convex subsets in linear spaces.

Theorem 1. Let $h: J \to [0, \infty)$ be a supermultiplicative function on J. If the function $f: C \subseteq X \to [0, \infty)$ is h-convex on the convex subset C of the linear space X, then for any $w_i \ge 0$, $i \in \{1, ..., n\}$, $n \ge 2$ with $W_n := \sum_{i=1}^n w_i > 0$ we have

(1.7)
$$f\left(\frac{1}{W_n}\sum_{i=1}^n w_i x_i\right) \le \sum_{i=1}^n h\left(\frac{w_i}{W_n}\right) f(x_i).$$

In particular, we have the unweighted inequality

(1.8)
$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \leq h\left(\frac{1}{n}\right)\sum_{i=1}^{n}f\left(x_{i}\right).$$

Corollary 1 ([27]). If the function $f : C \subseteq X \to [0, \infty)$ is Breckner s-convex on the convex subset C of the linear space X with $s \in (0,1)$, then for any $x_i \in C$, $w_i \ge 0, i \in \{1, ..., n\}, n \ge 2$ with $W_n := \sum_{i=1}^n w_i > 0$ we have

(1.9)
$$f\left(\frac{1}{W_n}\sum_{i=1}^n w_i x_i\right) \le \frac{1}{W_n^s}\sum_{i=1}^n w_i^s f(x_i).$$

If $(X, \|\cdot\|)$ is a normed linear space, then for $s \in (0, 1)$, $x_i \in X$, $w_i \ge 0$, $i \in \{1, ..., n\}$, $n \ge 2$ with $W_n := \sum_{i=1}^n w_i > 0$ we have the norm inequality

(1.10)
$$\left\|\sum_{i=1}^{n} w_{i} x_{i}\right\|^{s} \leq \sum_{i=1}^{n} w_{i}^{s} \left\|x_{i}\right\|^{s}.$$

Corollary 2. If the function $f : C \subseteq X \to [0, \infty)$ is of s-Godunova-Levin type, with $s \in [0, 1]$, on the convex subset C of the linear space X, then for any $x_i \in C$, $w_i > 0, i \in \{1, ..., n\}, n \ge 2$ we have

(1.11)
$$f\left(\frac{1}{W_n}\sum_{i=1}^n w_i x_i\right) \le W_n^s \sum_{i=1}^n \frac{1}{w_i^s} f(x_i).$$

This result generalizes the Jensen type inequality obtained in [44] for s = 1.

Let K be a finite non-empty set of positive integers. We can define the index set function, see also [53]

(1.12)
$$J(K) := \sum_{i \in K} h(w_i) f(x_i) - h(W_K) f\left(\frac{1}{W_K} \sum_{i \in K} w_i x_i\right),$$

where $W_K := \sum_{i \in K} w_i > 0, x_i \in C, i \in K$. We notice that if $h : [0, \infty) \to [0, \infty)$ is a supermultiplicative function on $[0, \infty)$ and the function $f: C \subseteq X \to [0,\infty)$ is h-convex on the convex subset C of the linear space X, then

(1.13)
$$J(K) \ge h(W_K) \left[\sum_{i \in K} h\left(\frac{w_i}{W_K}\right) f(x_i) - f\left(\frac{1}{W_K}\sum_{i \in K} w_i x_i\right) \right] \ge 0.$$

Theorem 2. Assume that $h: [0, \infty) \to [0, \infty)$ is a supermultiplicative function on $[0,\infty)$ and the function $f: C \subseteq X \to [0,\infty)$ is h-convex on the convex subset C of the linear space X. Let M and K be finite non-empty sets of positive integers, $w_i > 0, x_i \in C, i \in K \cup M$. Then

(1.14)
$$J(K \cup M) \ge J(K) + J(M) \ge 0,$$

i.e., J is a superadditive index set functional.

This results was proved in an equivalent form in [53] for functions of a real variable. The proof is similar for functions defined on convex sets in linear spaces.

Corollary 3. With the assumptions of Theorem 2 and if we note $M_k := \{1, ..., k\}$, then

(1.15)
$$J(M_n) \ge J(M_{n-1}) \ge ... \ge J(M_2) \ge 0$$

and

(1.16)
$$J(M_n)$$

$$\geq \max_{1 \le i < j \le n} \left\{ h(w_i) f(x_i) + h(w_j) f(x_j) - h(w_i + w_j) f\left(\frac{w_i x_i + w_j x_j}{w_i + w_j}\right) \right\}$$

$$> 0.$$

If we consider the functional

$$J_{s}(K) := \sum_{i \in K} w_{i}^{s} \|x_{i}\|^{s} - \left\|\sum_{i \in K} w_{i}x_{i}\right\|^{s}$$

for $s \in (0, 1)$, then we have the norm inequalities

(1.17)
$$\sum_{i=1}^{n} w_{i}^{s} \|x_{i}\|^{s} - \left\|\sum_{i=1}^{n} w_{i}x_{i}\right\|^{s} \ge \sum_{i=1}^{n-1} w_{i}^{s} \|x_{i}\|^{s} - \left\|\sum_{i=1}^{n-1} w_{i}x_{i}\right\|^{s}$$
$$\ge \dots \ge \sum_{i=1}^{2} w_{i}^{s} \|x_{i}\|^{s} - \left\|\sum_{i=1}^{2} w_{i}x_{i}\right\|^{s} \ge 0$$

and

(1.18)
$$\sum_{i=1}^{n} w_{i}^{s} \|x_{i}\|^{s} - \left\|\sum_{i=1}^{n} w_{i}x_{i}\right\|^{s} \\ \geq \max_{1 \leq i < j \leq n} \left\{w_{i}^{s} \|x_{i}\|^{s} + w_{j}^{s} \|x_{j}\|^{s} - \|w_{i}x_{i} + w_{j}x_{j}\|^{s}\right\} \geq 0$$

where $w_i \ge 0, x_i \in X, i \in \{1, ..., n\}, n \ge 2$.

2. More Jensen Type Results

Let $h(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}$, R > 0. We have the following examples

(2.1)
$$h(z) = \sum_{n=1}^{\infty} \frac{1}{n} z^n = \ln \frac{1}{1-z}, \ z \in D(0,1);$$
$$h(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n} = \cosh z, \ z \in \mathbb{C};$$
$$h(z) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1} = \sinh z, \ z \in \mathbb{C};$$
$$h(z) = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \ z \in D(0,1).$$

Other important examples of functions as power series representations with nonnegative coefficients are:

$$(2.2) h(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n = \exp(z) z \in \mathbb{C},$$

$$h(z) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1} = \frac{1}{2} \ln\left(\frac{1+z}{1-z}\right), z \in D(0,1);$$

$$h(z) = \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi} (2n+1) n!} z^{2n+1} = \sin^{-1}(z), z \in D(0,1);$$

$$h(z) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1} = \tanh^{-1}(z), z \in D(0,1)$$

$$h(z) =_2 F_1(\alpha, \beta, \gamma, z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha) \Gamma(n+\beta) \Gamma(\gamma)}{n! \Gamma(\alpha) \Gamma(\beta) \Gamma(n+\gamma)} z^n, \alpha, \beta, \gamma > 0,$$

$$z \in D(0,1);$$

where Γ is *Gamma function*.

The following result may provide many examples of supemultiplicative functions.

Theorem 3. Let $h(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}$, R > 0. Assume that 0 < r < R and define $h_r : [0, 1] \to [0, \infty)$, $h_r(t) := \frac{h(rt)}{h(r)}$. Then h_r is supemultiplicative on [0, 1]. *Proof.* We use the Čebyšev inequality for synchronous (the same monotonicity) sequences $(c_i)_{i \in \mathbb{N}}, (b_i)_{i \in \mathbb{N}}$ and nonnegative weights $(p_i)_{i \in \mathbb{N}}$:

(2.3)
$$\sum_{i=0}^{n} p_i \sum_{i=0}^{n} p_i c_i b_i \ge \sum_{i=0}^{n} p_i c_i \sum_{i=0}^{n} p_i b_i,$$

for any $n \in \mathbb{N}$.

Let $t, s \in (0, 1)$ and define the sequences $c_i := t^i$, $b_i := s^i$. These sequences are decreasing and if we apply Čebyšev's inequality for these sequences and the weights $p_i := a_i r^i \ge 0$ we get

(2.4)
$$\sum_{i=0}^{n} a_{i}r^{i}\sum_{i=0}^{n} a_{i} (rts)^{i} \ge \sum_{i=0}^{n} a_{i} (rt)^{i}\sum_{i=0}^{n} a_{i} (rs)^{i}$$

for any $n \in \mathbb{N}$.

Since the series

$$\sum_{i=0}^{\infty} a_i r^i, \quad \sum_{i=0}^{\infty} a_i (rts)^i, \quad \sum_{i=0}^{\infty} a_i (rt)^i \text{ and } \sum_{i=0}^{\infty} a_i (rs)^i$$

are convergent, then by letting $n \to \infty$ in (2.4) we get

$$h(r) h(rts) \ge h(rt) h(rs)$$

i.e.

$$h_r\left(ts\right) \ge h_r\left(t\right)h_r\left(s\right).$$

This inequality is also obviously satisfied at the end points of the interval [0, 1] and the proof is completed.

Remark 1. Utilising the above theorem, we then conclude that the functions

$$h_r: [0,1] \to [0,\infty), \ h_r(t) := \frac{1-r}{1-rt}, \ r \in (0,1)$$

and

$$h_r: [0,1] \to [0,\infty), \ h_r(t) := \exp\left[-r(1-t)\right], \ r > 0$$

are supermultiplicative.

We say that the function $f: C \subseteq X \to [0, \infty)$ is r-resolvent convex with r fixed in (0, 1), if f is h-convex with $h(t) = \frac{1-r}{1-rt}$, i.e.

(2.5)
$$f(tx + (1-t)y) \le (1-r) \left[\frac{1}{1-rt} f(x) + \frac{1}{1-r+rt} f(y) \right]$$

for any $x, y \in C$ and $t \in [0, 1]$.

In particular, for $r = \frac{1}{2}$ we have $\frac{1}{2}$ -resolvent convex functions defined by the condition

(2.6)
$$f(tx + (1-t)y) \le \frac{1}{2-t}f(x) + \frac{1}{1+t}f(y)$$

for any $t \in [0,1]$ and $x, y \in C$.

Since

$$t < \frac{1}{2-t} < \frac{1}{t}$$
 and $1-t < \frac{1}{1+t} < \frac{1}{1-t}$ for $t \in (0,1)$

it follows that any nonnegative convex function is $\frac{1}{2}$ -resolvent convex which, in its turn, is of Godunova-Levin type.

We say that the function $f : C \subseteq X \to [0, \infty)$ is r-exponential convex with r fixed in $(0, \infty)$, if f is h-convex with $h(t) = \exp[-r(1-t)]$, i.e.

(2.7)
$$f(tx + (1-t)y) \le \exp\left[-r(1-t)\right]f(x) + \exp\left(-rt\right)f(y)$$

for any $t \in [0,1]$ and $x, y \in C$.

Since

$$t \le \exp[-r(1-t)]$$
 and $1-t \le \exp(-rt)$ for $t \in [0,1]$

it follows that any nonnegative convex function is r-exponential convex with $r \in (0,\infty)$.

Corollary 4. Let $h(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}$, R > 0. Assume that 0 < r < R and define $h_r : [0,1] \to [0,\infty)$, $h_r(t) := \frac{h(rt)}{h(r)}$. If the function $f : C \subseteq X \to [0,\infty)$ is h_r -convex on the convex subset C of the linear space X, namely

(2.8)
$$f(tx + (1-t)y) \le \frac{1}{h(r)} [h(rt) f(x) + h(r(1-t)) f(y)]$$

for any $t \in [0,1]$ and $x, y \in C$, then for any $x_i \in C$, $w_i \ge 0$, $i \in \{1, ..., n\}$, $n \ge 2$ with $W_n := \sum_{i=1}^n w_i > 0$ we have

(2.9)
$$f\left(\frac{1}{W_n}\sum_{i=1}^n w_i x_i\right) \le \frac{1}{h\left(r\right)}\sum_{i=1}^n h\left(r\frac{w_i}{W_n}\right) f\left(x_i\right).$$

Remark 2. If the function $f : C \subseteq X \to [0, \infty)$ is $\frac{1}{2}$ -resolvent convex on C, then for any $x_i \in C$, $w_i \ge 0$, $i \in \{1, ..., n\}$, $n \ge 2$ with $W_n := \sum_{i=1}^n w_i > 0$ we have

$$f\left(\frac{1}{W_n}\sum_{i=1}^n w_i x_i\right) \le W_n \sum_{i=1}^n \frac{1}{2W_n - w_i} f\left(x_i\right).$$

If the function $f : C \subseteq X \to [0, \infty)$ is r-exponential convex with r fixed in $(0, \infty)$, then for any $x_i \in C$, $w_i \ge 0$, $i \in \{1, ..., n\}$, $n \ge 2$ with $W_n := \sum_{i=1}^n w_i > 0$ we have

$$f\left(\frac{1}{W_n}\sum_{i=1}^n w_i x_i\right) \le \sum_{i=1}^n \exp\left[-r\left(1-\frac{w_i}{W_n}\right)\right] f(x_i).$$

3. Some Related Functionals

Let us fix $K \in \mathcal{P}_f(\mathbb{N})$ (the class of finite parts of \mathbb{N}) and $x_i \in C$ $(i \in K)$. Now consider the functional $J_K : S_+(K) \to \mathbb{R}$ given by

(3.1)
$$J_K(\mathbf{p}) := h\left(P_K\right) f\left(\frac{1}{P_K} \sum_{i \in K} p_i x_i\right) \ge 0$$

where $S_+(K) := \{ \mathbf{p} = (p_i)_{i \in I} | p_i \ge 0, i \in K \text{ and } P_K > 0 \}$ with $h : (0, \infty) \rightarrow (0, \infty)$ and f is nonnegative on C.

Theorem 4. Let $h: (0, \infty) \to (0, \infty)$ be a supermultiplicative (submultiplicative) function on J. If the function $f: C \subseteq X \to [0, \infty)$ is h-convex (h-concave) on the convex subset C of the linear space X, then for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ we have

(3.2)
$$J_{K}(\mathbf{p}+\mathbf{q}) \leq (\geq) J_{K}(\mathbf{p}) + J_{K}(\mathbf{q}),$$

i.e., J_K is a subadditive (superadditive) functional on $S_+(K)$.

Proof. If the function $f: C \subseteq X \to [0,\infty)$ is h-convex, then we have for any $\mathbf{p},\mathbf{q}\in S_{+}\left(K\right)$

$$(3.3) J_K (\mathbf{p} + \mathbf{q}) = h \left(P_K + Q_K \right) f \left(\frac{1}{P_K + P_K} \sum_{i \in K} \left(p_i + q_i \right) x_i \right) \\ = h \left(P_K + Q_K \right) f \left(\frac{P_K \cdot \frac{1}{P_K} \sum_{i \in K} p_i x_i + Q_K \cdot \frac{1}{Q_K} \sum_{i \in K} q_i x_i}{P_K + P_K} \right) \\ \leq h \left(P_K + Q_K \right) \left[h \left(\frac{P_K}{P_K + P_K} \right) f \left(\frac{1}{P_K} \sum_{i \in K} p_i x_i \right) \right. \\ \left. + h \left(\frac{Q_K}{P_K + P_K} \right) f \left(\frac{1}{Q_K} \sum_{i \in K} q_i x_i \right) \right] \\ := A.$$

Since h is supermultiplicative, then

$$h\left(P_{K}+Q_{K}\right)h\left(\frac{P_{K}}{P_{K}+P_{K}}\right) \leq h\left(P_{K}\right)$$

and

$$h(P_K + Q_K) h\left(\frac{Q_K}{P_K + P_K}\right) \le h(Q_K)$$

which imply that

(3.4)
$$A \leq h(P_K) f\left(\frac{1}{P_K}\sum_{i\in K}p_i x_i\right) + h(Q_K) f\left(\frac{1}{Q_K}\sum_{i\in K}q_i x_i\right)$$
$$= J_K(\mathbf{p}) + J_K(\mathbf{q}).$$

Making use of (3.3) and (3.4) we deduce the desired result (3.2).

The case when h is submultiplicative and $f: C \subseteq X \to [0, \infty)$ is h-concave goes likewise and the details are omitted.

Corollary 5. Let $h: (0,\infty) \to (0,\infty)$ be a submultiplicative function on J. If the function $f: C \subseteq X \to [0,\infty)$ is h-concave on the convex subset C of the linear space X, then for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ with $\mathbf{p} \geq \mathbf{q}$, i.e. $p_i \geq q_i$ for any $i \in K$, we have (---) 0,

$$(3.5) J_K(\mathbf{p}) \ge J_K(\mathbf{q}) \ge 0$$

i.e., J_{K} is monotonic nondecreasing on $S_{+}(K)$.

The proof is obvious from (3.2) on noticing that

$$J_{K}\left(\mathbf{p}\right) = J_{K}\left(\mathbf{p} - \mathbf{q} + \mathbf{q}\right) \ge J_{K}\left(\mathbf{p} - \mathbf{q}\right) + J_{K}\left(\mathbf{q}\right) \ge J_{K}\left(\mathbf{q}\right).$$

We also have:

Corollary 6. Let $h: (0, \infty) \to (0, \infty)$ be a submultiplicative function on J. If the function $f: C \subseteq X \to [0,\infty)$ is h-concave on the convex subset C of the linear space X, then for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ with $M\mathbf{p} \ge \mathbf{q} \ge m\mathbf{p}$, for some M > m > 0, we have

(3.6)
$$\frac{h\left(MP_{K}\right)}{h\left(P_{K}\right)}J_{K}\left(\mathbf{p}\right) \geq J_{K}\left(\mathbf{q}\right) \geq \frac{h\left(mP_{K}\right)}{h\left(P_{K}\right)}J_{K}\left(\mathbf{p}\right).$$

Proof. From the inequality (3.5) we have

$$J_K\left(M\mathbf{p}\right) \geq J_K\left(\mathbf{q}\right).$$

However

$$J_{K}(M\mathbf{p}) = h(MP_{K}) f\left(\frac{1}{MP_{K}}\sum_{i\in K}Mp_{i}x_{i}\right)$$
$$= h(MP_{K}) f\left(\frac{1}{P_{K}}\sum_{i\in K}p_{i}x_{i}\right) = \frac{h(MP_{K})}{h(P_{K})}J_{K}(\mathbf{p}),$$

which proves the first inequality in (3.6).

The second inequality can be proved similarly and the details are omitted. \Box

Further, consider the functional $L_K: S_+(K) \to \mathbb{R}$ given by

(3.7)
$$L_K(\mathbf{p}) := h(P_K) \sum_{i \in K} h\left(\frac{p_i}{P_K}\right) f(x_i) \ge 0$$

where $S_+(K) := \{ \mathbf{p} = (p_i)_{i \in I} | p_i \ge 0, i \in K \text{ and } P_K > 0 \}$ with $h : (0, \infty) \rightarrow (0, \infty)$ and f is nonnegative on C.

Theorem 5. Let $h : (0, \infty) \to (0, \infty)$ and $f : C \subseteq X \to [0, \infty)$. If h is convex (concave) on $(0, \infty)$ and $g : (0, \infty) \to (0, \infty)$ defined by $g(t) = \frac{h(t)}{t}$ is decreasing (increasing), then for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ we have

(3.8)
$$L_{K}(\mathbf{p}+\mathbf{q}) \leq (\geq) L_{K}(\mathbf{p}) + L_{K}(\mathbf{q}).$$

Proof. If h is convex on $(0, \infty)$, then we have for any $\mathbf{p}, \mathbf{q} \in S_+(K)$

$$(3.9) L_K (\mathbf{p} + \mathbf{q}) = h \left(P_K + Q_K \right) \sum_{i \in K} h \left(\frac{p_i + q_i}{P_K + Q_K} \right) f(x_i) = h \left(P_K + Q_K \right) \sum_{i \in K} h \left(\frac{P_K \frac{p_i}{P_K} + Q_K \frac{q_i}{Q_K}}{P_K + Q_K} \right) f(x_i) \leq h \left(P_K + Q_K \right) \times \sum_{i \in K} \left[\frac{P_K}{P_K + Q_K} h \left(\frac{p_i}{P_K} \right) + \frac{Q_K}{P_K + Q_K} h \left(\frac{q_i}{Q_K} \right) \right] f(x_i) = \frac{h \left(P_K + Q_K \right) P_K}{P_K + Q_K} \sum_{i \in K} h \left(\frac{p_i}{P_K} \right) f(x_i) + \frac{h \left(P_K + Q_K \right) Q_K}{P_K + Q_K} \sum_{i \in K} h \left(\frac{q_i}{Q_K} \right) f(x_i) := B.$$

Since $g(t) = \frac{h(t)}{t}$ is decreasing, then

$$\frac{h\left(P_{K}+Q_{K}\right)}{P_{K}+Q_{K}} \leq \frac{h\left(P_{K}\right)}{P_{K}}$$
$$\frac{h\left(P_{K}+Q_{K}\right)}{P_{K}+Q_{K}} \leq \frac{h\left(Q_{K}\right)}{Q_{K}}.$$

and

Therefore

(3.10)
$$B \leq h\left(P_{K}\right) \sum_{i \in K} h\left(\frac{p_{i}}{P_{K}}\right) f\left(x_{i}\right) + h\left(Q_{K}\right) \sum_{i \in K} h\left(\frac{q_{i}}{Q_{K}}\right) f\left(x_{i}\right)$$
$$= L_{K}\left(\mathbf{p}\right) + L_{K}\left(\mathbf{q}\right).$$

Making use of (3.9) and (3.10) we deduce the desired result (3.8).

The case when h is concave and g is increasing goes likewise and the details are omitted.

Corollary 7. Let $h: (0, \infty) \to (0, \infty)$ and $f: C \subseteq X \to [0, \infty)$. If h is concave on $(0, \infty)$ and $g: (0, \infty) \to (0, \infty)$ defined by $g(t) = \frac{h(t)}{t}$ is increasing, then for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ with $\mathbf{p} \ge \mathbf{q}$ we have

$$(3.11) L_K(\mathbf{p}) \ge L_K(\mathbf{q}) \ge 0.$$

Also, for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ with $M\mathbf{p} \geq \mathbf{q} \geq m\mathbf{p}$, for some M > m > 0, we have

(3.12)
$$\frac{h(MP_K)}{h(P_K)}L_K(\mathbf{p}) \ge L_K(\mathbf{q}) \ge \frac{h(mP_K)}{h(P_K)}L_K(\mathbf{p}).$$

We define the difference functional

$$S_{K}(\mathbf{p}) := L_{K}(\mathbf{p}) - J_{K}(\mathbf{p})$$
$$= h(P_{K}) \left[\sum_{i \in K} h\left(\frac{p_{i}}{P_{K}}\right) f(x_{i}) - f\left(\frac{1}{P_{K}}\sum_{i \in K} p_{i}x_{i}\right) \right].$$

We observe that, if h is supermultiplicative and $f: C \subseteq X \to [0, \infty)$ is h-convex, then by Jensen's type inequality (1.7) we have

$$S_K(\mathbf{p}) \ge 0$$
 for any $\mathbf{p} \in S_+(K)$.

Proposition 1. Let $h: (0, \infty) \to (0, \infty)$ be supermultiplicative and $f: C \subseteq X \to [0, \infty)$ a h-convex function on C. If h is concave on $(0, \infty)$ and $g: (0, \infty) \to (0, \infty)$ defined by $g(t) = \frac{h(t)}{t}$ is increasing, then for any $\mathbf{p}, \mathbf{q} \in S_+(K)$

(3.13)
$$S_K(\mathbf{p} + \mathbf{q}) \ge S_K(\mathbf{p}) + S_K(\mathbf{q}) \ge 0.$$

If $\mathbf{p}, \mathbf{q} \in S_+(K)$ with $\mathbf{p} \geq \mathbf{q}$, then we have

$$(3.14) S_K(\mathbf{p}) \ge S_K(\mathbf{q}) \ge 0.$$

Also, for any $\mathbf{p}, \mathbf{q} \in S_+(K)$ with $M\mathbf{p} \geq \mathbf{q} \geq m\mathbf{p}$, for some M > m > 0, we have

(3.15)
$$\frac{h(MP_K)}{h(P_K)}S_K(\mathbf{p}) \ge S_K(\mathbf{q}) \ge \frac{h(mP_K)}{h(P_K)}S_K(\mathbf{p})$$

The proof follows by Theorem 4 and Theorem 5 and we omit the details.

If we take h(t) = t, i.e. in the case of convex functions we obtain from Proposition 1 the superadditivity and monotonicity properties of the functional

$$Je_{K}(\mathbf{p}) := \sum_{i \in K} p_{i}f(x_{i}) - P_{K}f\left(\frac{1}{P_{K}}\sum_{i \in K} p_{i}x_{i}\right)$$

established in ([32]).

From (3.15) we get

(3.16)
$$MJe_{K}(\mathbf{p}) \geq Je_{K}(\mathbf{q}) \geq mJe_{K}(\mathbf{p})$$

that has been obtained in [24].

10

References

- M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639–646.
- [2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965–1975.
- [3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175–189.
- [4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro, and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. *In*equality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: *RGMIA Res. Rep. Coll.* 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
- [5] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
- [6] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869–1877.
- [7] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.
- [8] W. W. Breckner and G. Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea "Babeş-Bolyai", Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
- [9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, *Handbook of Analytic-Computational Methods in Applied Mathematics*, CRC Press, New York. 135-200.
- [10] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
- [11] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, *Demonstratio Mathematica*, **32**(2) (1999), 697– 712.
- [12] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3–11.
- [13] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
- [14] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
- [15] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
- [16] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. & Appl., 4(1) (2001), 33-40.
- [17] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_a^b f(t) du(t)$ where f is of Hölder type and u is of bounded variation and applications, *J. KSIAM*, **5**(1) (2001), 35-45.
- [18] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math., 3(5) (2002), Art. 68.
- [19] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
- [20] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
- [21] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
- [22] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, *Revista Math. Complutense*, 16(2) (2003), 373-382.

S. S. $DRAGOMIR^{1,2}$

- [23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
- [24] S. S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 74 (2006), pp. 471-478.
- [25] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, *Bull. Math. Soc. Sci. Math. Romanie*, **42(90)** (4) (1999), 301-314.
- [26] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. *Demonstratio Math.* **32** (1999), no. 4, 687–696.
- [27] S.S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. *Demonstratio Math.* 33 (2000), no. 1, 43–49.
- [28] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin. *Indian J. Math.* **39** (1997), no. 1, 1–9.
- [29] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin. *Period. Math. Hungar.* 33 (1996), no. 2, 93–100.
- [30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
- [31] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335–341.
- [32] S. S. Dragomir, J. Pečarić and L. Persson, Properties of some functionals related to Jensen's inequality, Acta Math. Hungarica, 70 (1996), 129-143.
- [33] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
- [34] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_1 -norm and applications to some special means and to some numerical quadrature rules, *Tamkang J. of Math.*, **28** (1997), 239-244.
- [35] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, *Appl. Math. Lett.*, 11 (1998), 105-109.
- [36] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_p-norm and applications to some special means and to some numerical quadrature rules, *Indian J. of Math.*, 40(3) (1998), 245-304.
- [37] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Ineq. 4 (2010), No. 3, 365–369.
- [38] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138–142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
- [39] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100–111.
- [40] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, *Math. Inequal. Appl.* (in press)
- [41] U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26–35.
- [42] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1473–1482.
- [43] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229–232.
- [44] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33–36.
- [45] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92–104.
- [46] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. *Itinerant Seminar on Functional Equations, Approximation and Convexity* (Cluj-Napoca, 1989), 263–268, Preprint, 89-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1989.
- [47] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, *Radovi Mat.* (Sarajevo) 7 (1991), 103–107.

12

- [48] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. *Math. Inequal. Appl.* **12** (2009), no. 4, 853–862.
- [49] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for hconvex functions. J. Math. Inequal. 2 (2008), no. 3, 335–341.
- [50] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. *Facta Univ. Ser. Math. Inform.* 27 (2012), no. 1, 67–82.
- [51] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265–272.
- [52] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013:326.
- [53] S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

 $^2 \rm School$ of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa