Most General Fractional Representation formula for functions and implications

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present the most general fractional representation formulae for a function in terms of the most general fractional integral operators due to S. Kalla, [3], [4], [5]. The last include most of the well-known fractional integrals such as of Riemann-Liouville, Erdélyi-Kober and Saigo, etc. Based on these we derive very general fractional Ostrowski type inequalities.

2010 AMS Mathematics Subject Classification : 26A33, 26D10, 26D15.
Keywords and Phrases: Fractional Representation, Kalla Fractional integral, Ostrowski inequality.

1 Introduction

Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$, and $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$, then the following Montgomery identity holds [10]:

$$
\begin{equation*}
f(x)=\frac{1}{b-a} \int_{a}^{b} f(t) d t+\int_{a}^{b} P_{1}(x, t) f^{\prime}(t) d t \tag{1}
\end{equation*}
$$

where $P_{1}(x, t)$ is the Peano kernel

$$
P_{1}(x, t)= \begin{cases}\frac{t-a}{b-a}, & a \leq t \leq x \tag{2}\\ \frac{t-b}{b-a}, & x<t \leq b\end{cases}
$$

The Riemann-Liouville integral operator of order $\alpha>0$ with anchor point $a \in \mathbb{R}$ is defined by

$$
\begin{equation*}
J_{a}^{\alpha} f(x):=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
J_{a}^{0} f(x):=f(x), \quad x \in[a, b] . \tag{4}
\end{equation*}
$$

Properties of the above operator can be found in [9].
When $\alpha=1, J_{a}^{1}$ reduces to the classical integral.
In [1] we proved the following fractional representation formula of Montgomery identity type.

Theorem 1 Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$, and $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b], \alpha \geq 1, x \in[a, b)$. Then
$f(x)=(b-x)^{1-\alpha} \Gamma(\alpha)\left\{\frac{J_{a}^{\alpha} f(b)}{b-a}-J_{a}^{\alpha-1}\left(P_{1}(x, b) f(b)\right)+J_{a}^{\alpha}\left(P_{1}(x, b) f^{\prime}(b)\right)\right\}$.
When $\alpha=1$ the last (5) reduces to classic Montgomery identity (1).
Motivated by (5), here we establish a very general fractional representation formula based on the most general fractional integral due to S. Kalla, [3], [4], [5]. The last integral includes almost all other fractional integrals as special cases. We then establish a very general fractional Ostrowski type inequality.

We finish with applications.

2 Main Results

Here let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ differentiable with $f^{\prime}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be integrable. Let also $\Phi:[0,1] \rightarrow \mathbb{R}_{+}$a general kernel function, which is differentiable with $\Phi^{\prime}:[0,1] \rightarrow \mathbb{R}_{+}$being integrable too. For z in $(0,1)$ we assume $\Phi(z)>0$.

Let here the parameters γ, δ be such that $\gamma>-1$ and $\delta \in \mathbb{R}$. Set $\varepsilon:=$ $\delta-\gamma-1$, that is $\delta=\varepsilon+\gamma+1$.

The most general fractional integral operator was defined by S. Kalla ([3], [4], [5]), see also [7], as follows:

$$
\begin{equation*}
I_{\Phi}^{\gamma, \delta} f(x):=x^{\delta} \int_{0}^{1} \Phi(\sigma) \sigma^{\gamma} f(x \sigma) d \sigma \tag{6}
\end{equation*}
$$

for any $x>0$, with $I_{\Phi}^{\gamma, \delta} f(0):=0$.
Here we consider $b>0$ fixed, and $0<x<b$. We operate on $[0, b]$.
By convenient change of variable we can rewrite $I_{\Phi}^{\gamma, \delta} f(x)$ as follows:

$$
\begin{equation*}
I_{\Phi}^{\gamma, \varepsilon} f(x):=x^{\varepsilon} \int_{0}^{x} \Phi\left(\frac{w}{x}\right) w^{\gamma} f(w) d w \tag{7}
\end{equation*}
$$

That is

$$
\begin{equation*}
I_{\Phi}^{\gamma, \varepsilon} f(x)=I_{\Phi}^{\gamma, \delta} f(x), \text { for any } x>0 \tag{8}
\end{equation*}
$$

We take $\gamma>0$ from now on.
We present the following most general fractional representation formula.

Theorem 2 All as above described. Then

$$
\begin{gather*}
f(x)=b^{\gamma+1-\delta} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\left[\frac{1}{b} I_{\Phi}^{\gamma, \delta} f(b)+\gamma I_{\Phi}^{\gamma-1, \delta}\left(P_{1}(x, b) f(b)\right)\right. \\
\left.\quad+\frac{1}{b} I_{\Phi^{\prime}}^{\gamma, \delta}\left(P_{1}(x, b) f(b)\right)+I_{\Phi}^{\gamma, \delta}\left(P_{1}(x, b) f^{\prime}(b)\right)\right] \tag{9}
\end{gather*}
$$

Proof. We observe that

$$
\begin{align*}
& I_{\Phi}^{\gamma, \varepsilon}\left(P_{1}(x, b) f^{\prime}(b)\right)=b^{\varepsilon} \int_{0}^{b} \Phi\left(\frac{w}{b}\right) w^{\gamma} P_{1}(x, w) f^{\prime}(w) d w= \tag{10}\\
& b^{\varepsilon}\left[\int_{0}^{x} \Phi\left(\frac{w}{b}\right) w^{\gamma} \frac{w}{b} f^{\prime}(w) d w+\int_{x}^{b} \Phi\left(\frac{w}{b}\right) w^{\gamma}\left(\frac{w-b}{b}\right) f^{\prime}(w) d w\right]= \tag{11}\\
& b^{\varepsilon-1}\left[\int_{0}^{x} \Phi\left(\frac{w}{b}\right) w^{\gamma+1} f^{\prime}(w) d w+\int_{x}^{b} \Phi\left(\frac{w}{b}\right)\left(w^{\gamma+1}-b w^{\gamma}\right) f^{\prime}(w) d w\right]= \\
& b^{\varepsilon-1}\left[\Phi\left(\frac{x}{b}\right) x^{\gamma+1} f(x)-\int_{0}^{x} f(w) d\left(\Phi\left(\frac{w}{b}\right) w^{\gamma+1}\right)-\right. \\
& \left.\Phi\left(\frac{x}{b}\right)\left(x^{\gamma+1}-b x^{\gamma}\right) f(x)-\int_{x}^{b} f(w) d\left(\Phi\left(\frac{w}{b}\right)\left(w^{\gamma+1}-b w^{\gamma}\right)\right)\right]= \\
& b^{\varepsilon-1}\left[b x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)-\int_{0}^{x} f(w)\left[\frac{1}{b} \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma+1}+(\gamma+1) \Phi\left(\frac{w}{b}\right) w^{\gamma}\right] d w-\right. \\
& \left.\int_{x}^{b} f(w)\left[\frac{1}{b} \Phi^{\prime}\left(\frac{w}{b}\right)\left(w^{\gamma+1}-b w^{\gamma}\right)+\Phi\left(\frac{w}{b}\right)\left((\gamma+1) w^{\gamma}-b \gamma w^{\gamma-1}\right)\right] d w\right]= \tag{12}\\
& b^{\varepsilon-1}\left[b x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)-\frac{1}{b} \int_{0}^{x} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma+1} d w-\right. \\
& (\gamma+1) \int_{0}^{x} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma} d w-\int_{0}^{b} f(w)\left[\frac{1}{b} \Phi^{\prime}\left(\frac{w}{b}\right)\left(w^{\gamma+1}-b w^{\gamma}\right)+\right. \\
& \left.\Phi\left(\frac{w}{b}\right)\left((\gamma+1) w^{\gamma}-b \gamma w^{\gamma-1}\right)\right] d w+\int_{0}^{x} f(w)\left[\frac{1}{b} \Phi^{\prime}\left(\frac{w}{b}\right)\left(w^{\gamma+1}-b w^{\gamma}\right)+\right. \\
& \left.\left.\Phi\left(\frac{w}{b}\right)\left((\gamma+1) w^{\gamma}-b \gamma w^{\gamma-1}\right)\right] d w\right]= \tag{13}\\
& b^{\varepsilon-1}\left[b x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)-\frac{1}{b} \int_{0}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma+1} d w+\int_{0}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma} d w-\right. \\
& (\gamma+1) \int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma} d w+b \gamma \int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma-1} d w-
\end{align*}
$$

$$
\begin{equation*}
\left.\int_{0}^{x} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma} d w-b \gamma \int_{0}^{x} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma-1} d w\right]=:(\eta) \tag{14}
\end{equation*}
$$

We notice that

$$
\begin{gather*}
-\frac{1}{b} \int_{0}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma+1} d w=-\left[\int_{0}^{x} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) \frac{w}{b} w^{\gamma} d w+\right. \\
\left.\int_{x}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) \frac{(w-b)}{b} w^{\gamma} d w+\int_{x}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma} d w\right]= \tag{15}\\
-\int_{0}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) P_{1}(x, w) w^{\gamma} d w-\int_{0}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma} d w \\
+\int_{0}^{x} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) w^{\gamma} d w
\end{gather*}
$$

Furthermore we have

$$
\begin{gather*}
-\gamma \int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma} d w=-\gamma\left[b \int_{0}^{x} f(w) \Phi\left(\frac{w}{b}\right) \frac{w}{b} w^{\gamma-1} d w+\right. \\
\left.b \int_{x}^{b} f(w) \Phi\left(\frac{w}{b}\right) \frac{(w-b)}{b} w^{\gamma-1} d w+b \int_{x}^{b} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma-1} d w\right]= \tag{16}\\
-b \gamma \int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) P_{1}(x, w) w^{\gamma-1} d w-b \gamma \int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma-1} d w \\
+b \gamma \int_{0}^{x} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma-1} d w
\end{gather*}
$$

Putting together (10), (14), (15), (16) we obtain

$$
\begin{gather*}
I_{\Phi}^{\gamma, \varepsilon}\left(P_{1}(x, b) f^{\prime}(b)\right)=(\eta)= \\
b^{\varepsilon-1}\left[b x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)-\int_{0}^{b} f(w) \Phi^{\prime}\left(\frac{w}{b}\right) P_{1}(x, w) w^{\gamma} d w-\right. \tag{17}\\
\left.\int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) w^{\gamma} d w-b \gamma \int_{0}^{b} f(w) \Phi\left(\frac{w}{b}\right) P_{1}(x, w) w^{\gamma-1} d w\right]= \\
b^{\varepsilon-1}\left[b x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)-\frac{1}{b^{\varepsilon}} I_{\Phi^{\prime}}^{\gamma, \varepsilon}\left(P_{1}(x, b) f(b)\right)\right. \\
\left.-\frac{1}{b^{\varepsilon}} I_{\Phi}^{\gamma, \varepsilon} f(b)-\gamma b^{1-\varepsilon} I_{\Phi}^{\gamma-1, \varepsilon}\left(P_{1}(x, b) f(b)\right)\right]= \tag{18}\\
b^{\varepsilon} x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)-\frac{1}{b} I_{\Phi^{\prime}}^{\gamma, \varepsilon}\left(P_{1}(x, b) f(b)\right)-\frac{1}{b} I_{\Phi}^{\gamma, \varepsilon} f(b)-\gamma I_{\Phi}^{\gamma-1, \varepsilon}\left(P_{1}(x, b) f(b)\right) .
\end{gather*}
$$

That is

$$
\begin{gather*}
I_{\Phi}^{\gamma, \varepsilon}\left(P_{1}(x, b) f^{\prime}(b)\right)=b^{\varepsilon} x^{\gamma} \Phi\left(\frac{x}{b}\right) f(x)- \\
\frac{1}{b} I_{\Phi^{\prime}}^{\gamma, \varepsilon}\left(P_{1}(x, b) f(b)\right)-\frac{1}{b} I_{\Phi}^{\gamma, \varepsilon} f(b)-\gamma I_{\Phi}^{\gamma-1, \varepsilon}\left(P_{1}(x, b) f(b)\right) \tag{19}
\end{gather*}
$$

Solving the last (19) for $f(x)$ we get

$$
\begin{gather*}
f(x)=b^{-\varepsilon} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\left[\frac{1}{b} I_{\Phi}^{\gamma, \varepsilon} f(b)+\gamma I_{\Phi}^{\gamma-1, \varepsilon}\left(P_{1}(x, b) f(b)\right)+\right. \\
\left.\frac{1}{b} I_{\Phi^{\prime}}^{\gamma, \varepsilon}\left(P_{1}(x, b) f(b)\right)+I_{\Phi}^{\gamma, \varepsilon}\left(P_{1}(x, b) f^{\prime}(b)\right)\right] \tag{20}
\end{gather*}
$$

proving the claim.
Next we establish a very general fractional Ostrowski type inequality.
Theorem 3 Here all as in Theorem 2. Then

$$
\begin{gather*}
\left\lvert\, f(x)-b^{\gamma+1-\delta} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\left[\frac{1}{b} I_{\Phi}^{\gamma, \delta} f(b)+\right.\right. \\
\left.\gamma I_{\Phi}^{\gamma-1, \delta}\left(P_{1}(x, b) f(b)\right)+\frac{1}{b} I_{\Phi^{\prime}}^{\gamma, \delta}\left(P_{1}(x, b) f(b)\right)\right] \mid \leq \\
b^{-1} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\|\Phi\|_{\infty,[0,1]}\left\|f^{\prime}\right\|_{\infty,[0, b]}\left[\frac{\left(2 x^{\gamma+2}-b^{\gamma+2}\right)}{\gamma+2}+\frac{b\left(b^{\gamma+1}-x^{\gamma+1}\right)}{\gamma+1}\right] . \tag{21}
\end{gather*}
$$

Proof. We observe that

$$
\begin{gather*}
\left|I_{\Phi}^{\gamma, \delta}\left(P_{1}(x, b) f^{\prime}(b)\right)\right|=\left|I_{\Phi}^{\gamma, \varepsilon}\left(P_{1}(x, b) f^{\prime}(b)\right)\right|= \tag{22}\\
b^{\varepsilon}\left|\int_{0}^{b} \Phi\left(\frac{w}{b}\right) w^{\gamma} P_{1}(x, w) f^{\prime}(w) d w\right| \leq b^{\varepsilon} \int_{0}^{b} \Phi\left(\frac{w}{b}\right) w^{\gamma}\left|P_{1}(x, w)\right|\left|f^{\prime}(w)\right| d w \leq \\
b^{\varepsilon}\|\Phi\|_{\infty,[0,1]}\left\|f^{\prime}\right\|_{\infty,[0, b]} \int_{0}^{b} w^{\gamma}\left|P_{1}(x, w)\right| d w= \tag{23}\\
b^{\varepsilon}\|\Phi\|_{\infty,[0,1]}\left\|f^{\prime}\right\|_{\infty,[0, b]}\left[\frac{1}{b} \int_{0}^{x} w^{\gamma+1} d w+\frac{1}{b} \int_{x}^{b} w^{\gamma}(b-w) d w\right]= \\
b^{\varepsilon-1}\|\Phi\|_{\infty,[0,1]}\left\|f^{\prime}\right\|_{\infty,[0, b]}\left[\frac{2 x^{\gamma+2}}{\gamma+2}+\frac{b}{\gamma+1}\left(b^{\gamma+1}-x^{\gamma+1}\right)-\frac{b^{\gamma+2}}{\gamma+2}\right] \tag{24}
\end{gather*}
$$

That is we derived

$$
\begin{gather*}
\left|I_{\Phi}^{\gamma, \delta}\left(P_{1}(x, b) f^{\prime}(b)\right)\right| \leq \\
b^{\delta-\gamma-2}\|\Phi\|_{\infty,[0,1]}\left\|f^{\prime}\right\|_{\infty,[0, b]}\left[\frac{\left(2 x^{\gamma+2}-b^{\gamma+2}\right)}{\gamma+2}+\frac{b\left(b^{\gamma+1}-x^{\gamma+1}\right)}{\gamma+1}\right] \tag{25}
\end{gather*}
$$

The claim is proved.

3 Applications

We mention
Definition 4 Let $\alpha>0, \beta, \eta \in \mathbb{R}$, then the Saigo fractional integral $I_{0, t}^{\alpha, \beta, \eta}$ of order α for $f \in C\left(\mathbb{R}_{+}\right)$is defined by ([12], see also [6, p. 19], [11]):

$$
\begin{equation*}
I_{0, t}^{\alpha, \beta, \eta}\{f(t)\}=\frac{t^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}{ }_{2} F_{1}\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\tau}{t}\right) f(\tau) d \tau \tag{26}
\end{equation*}
$$

where the function ${ }_{2} F_{1}$ in (26) is the Gaussian hypergeometric function defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; t)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \tag{27}
\end{equation*}
$$

and $(a)_{n}$ is the Pochhammer symbol $(a)_{n}=a(a+1) \ldots(a+n-1),(a)_{0}=1$; where $c \neq 0,-1,-2, \ldots$.

Note 5 Given that $a+b<c,{ }_{2} F_{1}$ converges on $[-1,1]$, see [2].
Furthermore we have

$$
\begin{equation*}
\frac{d_{2} F_{1}(a, b ; c ; t)}{d t}=\left(\frac{a b}{c}\right){ }_{2} F_{1}(a+1, b+1 ; c+1 ; t) \tag{28}
\end{equation*}
$$

which converges on $[-1,1]$ when $1+a+b<c$. So when $1+a+b<c$, then both (27) and (28) converge on $[-1,1]$. Therefore when $\eta>1+\beta$ we get that both ${ }_{2} F_{1}\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\tau}{t}\right)$ and its derivative with respect to $\tau:\left(\frac{(\alpha+\beta) \eta}{t \alpha}\right)$ ${ }_{2} F_{1}\left(\alpha+\beta+1,-\eta+1 ; \alpha+1 ; 1-\frac{\tau}{t}\right)$, converge on $[0,1]$; notice here $0 \leq 1-\frac{\tau}{t} \leq$ $1, t>0$.

Remark 6 The integral operator $I_{0, t}^{\alpha, \beta, \eta}$ includes both the Riemann-Liouville and the Erdélyi-Kober fractional integral operators given by

$$
\begin{equation*}
J_{0}^{\alpha}\{f(x)\}=I_{0, t}^{\alpha,-\alpha, \eta}\{f(t)\}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau \quad(\alpha>0) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
I^{\alpha, \eta}\{f(t)\}=I_{0, t}^{\alpha, 0, \eta}\{f(t)\}=\frac{t^{-\alpha-\eta}}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} \tau^{\eta} f(\tau) d \tau \quad(\alpha>0, \eta \in \mathbb{R}) \tag{30}
\end{equation*}
$$

Remark 7 By a simple change of variable ($w=\frac{\tau}{t}$) we get

$$
\begin{equation*}
I_{0, t}^{\alpha, \beta, \eta}\{f(t)\}=\frac{t^{-\beta}}{\Gamma(\alpha)} \int_{0}^{1}(1-w)^{\alpha-1}{ }_{2} F_{1}(\alpha+\beta,-\eta ; \alpha ; 1-w) f(t w) d w \tag{31}
\end{equation*}
$$

Similarly we find

$$
\begin{equation*}
J_{0}^{\alpha}\{f(t)\}=\frac{t^{\alpha}}{\Gamma(\alpha)} \int_{0}^{1}(1-w)^{\alpha-1} f(t w) d w \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
I^{\alpha, \eta}\{f(t)\}=\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-w)^{\alpha-1} w^{\eta} f(t w) d w \tag{33}
\end{equation*}
$$

Remark 8 ([8]) The above Saigo fractional integral (26) and its special cases of Riemann-Liouville and Erdélyi-Kober fractional integrals (29), (30), are all examples of the S. Kalla ([5]) generalized fractional integral in the reduced form

$$
\begin{equation*}
K_{\Phi}^{\gamma} f(x)=x^{-\gamma-1} \int_{0}^{x} \Phi\left(\frac{w}{x}\right) w^{\gamma} f(w) d w=\int_{0}^{1} \Phi(\sigma) \sigma^{\gamma} f(x \sigma) d \sigma \tag{34}
\end{equation*}
$$

where $x>0, \gamma>-1$ and Φ continuous arbitrary Kernel function.
Notice that (by (6) and (34))

$$
\begin{equation*}
I_{\Phi}^{\gamma, \delta} f(x)=x^{\delta} K_{\Phi}^{\gamma} f(x), \tag{35}
\end{equation*}
$$

for any $x>0$, where $\gamma>-1$ and $\delta \in \mathbb{R}$.
So for $b>0$ we get

$$
\begin{equation*}
I_{\Phi}^{\gamma, \delta} f(b)=b^{\delta} K_{\Phi}^{\gamma} f(b) \tag{36}
\end{equation*}
$$

Next we restrict ourselves to $\gamma>0$. By Theorem 2 and (36) we obtain the following general fractional representation formula

Theorem 9 It holds

$$
\begin{gather*}
f(x)=b^{\gamma+1-\delta} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\left[b^{\delta-1} K_{\Phi}^{\gamma} f(b)+\gamma b^{\delta} K_{\Phi}^{\gamma-1}\left(P_{1}(x, b) f(b)\right)+\right. \\
\left.b^{\delta-1} K_{\Phi^{\prime}}^{\gamma}\left(P_{1}(x, b) f(b)\right)+b^{\delta} K_{\Phi}^{\gamma}\left(P_{1}(x, b) f^{\prime}(b)\right)\right] \tag{37}
\end{gather*}
$$

We finish the following very general fractional Ostrowski type inequality, a direct application of (21) and (36).

Theorem 10 All as in Theorem 3. Then

$$
\begin{gather*}
\left\lvert\, f(x)-b^{\gamma+1-\delta} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\left[b^{\delta-1} K_{\Phi}^{\gamma} f(b)+\right.\right. \tag{38}\\
\left.\gamma b^{\delta} K_{\Phi}^{\gamma-1}\left(P_{1}(x, b) f(b)\right)+b^{\delta-1} K_{\Phi^{\prime}}^{\gamma}\left(P_{1}(x, b) f(b)\right)\right] \mid \leq \\
b^{-1} x^{-\gamma}\left(\Phi\left(\frac{x}{b}\right)\right)^{-1}\|\Phi\|_{\infty,[0,1]}\left\|f^{\prime}\right\|_{\infty,[0, b]}\left[\frac{\left(2 x^{\gamma+2}-b^{\gamma+2}\right)}{\gamma+2}+\frac{b\left(b^{\gamma+1}-x^{\gamma+1}\right)}{\gamma+1}\right] .
\end{gather*}
$$

Comment 11 One can apply (37) and (38) for the Riemann-Liouville and Erdélyi-Kober fractional integrals, as well as many other fractional integrals. To keep article short we omit this task.

References

[1] G. Anastassiou, M. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery Identities for Fractional Integrals and Related Fractional Inequalities, Journal of Inequalities in Pure And Applied Mathematics, Vol. 10 (2009), No. 4, Article 97, 6 pages.
[2] E.A. Chistova (originator), Hypergeometric function, Encyclopedia of Mathematics, URL:http://www.encyclopediaofmath.org/index.php?title= Hypergeometric_function\&oldid=12873, Encyclopedia of Mathematics ISBN 1402006098.
[3] S.L. Kalla, On operators of fractional integration, I. Mat. Notae 22, 1970, 89-93.
[4] S.L. Kalla, On operators of fractional integration, II Mat. Notae 25, 1976, 29-35.
[5] S.L. Kalla, Operators of fractional integration. In: Proc. Conf. Analytic Functions, Kozubnik 1979, Lecture Notes of Math. 798, 1980, 258-280, Springer, Berlin.
[6] V.S. Kiryakova, Generalized Fractional Calculus and Applications (Pitman Res. Notes Math. Ser. 301), Longman Scientific \& Technical, Harlow, 1994.
[7] V.S. Kiryakova, All the special functions are fractional differintegrals of elementary functions, J. Phys. A: Math. Gen. 30 (1997), 5085-5103.
[8] V.S. Kiryakova, On two Saigo's fractional integral operators in the class of univalent functions, Fractional Calculus \& Applied Analysis, Vol. 9, No. 2 (2006), 159-176.
[9] S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, USA, (1993).
[10] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Inequalities for functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, Netherlands, (1994).
[11] R.K. Raina, Solution of Abel-type integral equation involving the Appell hypergeometric function, Integral Transforms Spec. Funct., 21 (7) (2010), 515-522.
[12] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978), 135-143.

