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Abstract

Here we present the most general fractional representation formulae
for a function in terms of the most general fractional integral operators
due to S. Kalla, [3], [4], [5]. The last include most of the well-known frac-
tional integrals such as of Riemann-Liouville, Erdélyi-Kober and Saigo,
etc. Based on these we derive very general fractional Ostrowski type in-
equalities.
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1 Introduction

Let f : [a,b] — R be differentiable on [a, ], and f’ : [a,b] — R be integrable on
[a, b], then the following Montgomery identity holds [10]:
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where P; (z,t) is the Peano kernel
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The Riemann-Liouville integral operator of order o > 0 with anchor point a € R

is defined by
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Jof (x):=f(z), w€lal. (4)
Properties of the above operator can be found in [9].
When a = 1, J! reduces to the classical integral.
In [1] we proved the following fractional representation formula of Mont-
gomery identity type.

Theorem 1 Let f : [a,b] — R be differentiable on [a,b], and f’: [a,b] — R be

integrable on [a,b], « > 1, x € [a,b). Then
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When o =1 the last (5) reduces to classic Montgomery identity (1).

Motivated by (5), here we establish a very general fractional representation
formula based on the most general fractional integral due to S. Kalla, [3], [4], [5].
The last integral includes almost all other fractional integrals as special cases.
We then establish a very general fractional Ostrowski type inequality.

We finish with applications.

2 Main Results

Here let f : Ry — R differentiable with f/ : Ry — R be integrable. Let
also @ : [0,1] — Ry a general kernel function, which is differentiable with
@’ : [0,1] — Ry being integrable too. For z in (0,1) we assume ® (z) > 0.

Let here the parameters v, be such that v > —1 and § € R. Set ¢ :=
6—v—1,thatisd=e+~v+ 1.

The most general fractional integral operator was defined by S. Kalla ([3],
[4], [5]), see also [7], as follows:
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for any z > 0, with I2° f (0) := 0.

Here we consider b > 0 fixed, and 0 < z < b. We operate on [0, b].

By convenient change of variable we can rewrite I, ;’)’5 f (z) as follows:

I°f () == a° /j@ (%) W f (w) duw. (7)
That is
I35 f (2) = 17°f (z), for any x> 0. (8)

We take v > 0 from now on.
We present the following most general fractional representation formula.



Theorem 2 All as above described. Then
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Proof. We observe that

b w
B £ O) =¥ [0 (F)wPi e f o= (0)

[ o) [[o(5)w (452) rwa] -
bl l/o”f(@ (%) Wt (w) dw+/:q) (%) (W — b £ (w) dw] _

x

o (D) e - [ rwa(e(f)ur)-

bE

@ (%> (@7 = ba?) f (z) — /:f (w)d (q) (%) (Wt — bwv))] —

bt [bgﬂq» (%) £ () /wa(w) Ll)cb’ (%) w4+ (y+1) D (%) uﬂ} dw—

/wa (w) [2@’ (%) (W™ —bw?) + @ (%) (v+1)w” — bvuﬂl)} dw} =




/ 7 )@ (YY) wdw — by / f (w i)uﬂ—ldw} —m). (1)

‘We notice that
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Furthermore we have

—’Y/ [ (w w'ydw——’y{/ f(w wv dw+
/f wy lw=") b w’™ 1dw+b/ f(w (Z)uﬂldw] (16)

—b’y/ f(w P1 (z,w) wtdw — b'y/ f(w (I:)w'y_ldw
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Putting together (10), (14), (15), (16) we obtain
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That is -
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Solving the last (19) for f (z) we get
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proving the claim. m
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Next we establish a very general fractional Ostrowski type inequality.

Theorem 3 Here all as in Theorem 2. Then

e (5(5)) " [t o

A (P @) £ 0) + 13 (P 0 1 ) ' :

b
-1 2272 b’v+2) b (b7+1 _ xv-&-l)
—1.,.-7 z (
e (0(3)) 19l o 17 e Ob][ T e N &
(21)
Proof. We observe that
139 (P @) £ )] = 113 (P (2,0) ()] = @)
5w b w
b* / @(—)w”Pl(m,w)f’(w)dw Sba/ <I>(—)w7|P1(a:,w)|\f’(w)\dw§
0 b 0 b
b
B 100y 1 oy | 7 1P )] o = (23)
€ 1 ’ v+1 L v
O N1l 0,11 11 lloo 0. [ wded ] w (b—w)dw| =
2272 b prt2
=1 || — (prtl ety 24
012 o, 0,1 1 oo 0b]{7+2+7+1(b 27t ,YJFQ] (24)

That is we derived
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The claim is proved. =



3 Applications
We mention

Definition 4 Let a > 0, 3,7 € R, then the Saigo fractional integral Igff’" of
order o for f € C'(Ry) is defined by ([12], see also [6, p. 19], [11]):

t—a=p
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where the function o Fy in (26) is the Gaussian hypergeometric function defined
by

2F1 (avb;C;t):iMﬁa (27)

n=0

and (a),, is the Pochhammer symbol (a)
where ¢ £ 0,—1,-2, ... .

=a(a+1)...(a+n—-1), (a), = 1;

n

Note 5 Given that a +b < ¢, oFy converges on [—1,1], see [2].
Furthermore we have
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which converges on [—1,1] when 1+ a+b < c¢. So when 1+ a+b < ¢, then
both (27) and (28) converge on [—1,1]. Therefore when n > 1+ 5 we get that

both oI (a +06,—-ma;1 — %) and its derivative with respect to T : (%)

o Fy (a +8+1,—n+1La+1;1- %), converge on [0,1]; notice here0 < 1—7 <
1,¢>0.

Remark 6 The integral operator I{i’tﬁ’" includes both the Riemann-Liouville

and the Erdélyi-Kober fractional integral operators given by

Jo{f (@)} = Ig; “"{f (1)} = F(la)/o (t—=7)""f(r)dr (a>0), (29)
and
PO} =IO} = oy [ =T o @>0.neR)
(30)
Remark 7 By a simple change of variable (w = 7 ) we get
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Sitmilarly we find
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Remark 8 ([8]) The above Saigo fractional integral (26) and its special cases

of Riemann-Liouville and Erdélyi-Kober fractional integrals (29), (30), are all

examples of the S. Kalla ([5]) generalized fractional integral in the reduced form
w
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where x > 0, v > —1 and ® continuous arbitrary Kernel function.
Notice that (by (6) and (34))

I3°f (x) = 2" K} f (), (35)

for any x > 0, where v > —1 and § € R.
So for b > 0 we get
I3°f (6) = VK3f (b). (36)

Next we restrict ourselves to 4 > 0. By Theorem 2 and (36) we obtain the
following general fractional representation formula

Theorem 9 [t holds
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We finish the following very general fractional Ostrowski type inequality, a
direct application of (21) and (36).
Theorem 10 All as in Theorem 3. Then
T
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Comment 11 One can apply (37) and (38) for the Riemann-Liouville and
Erdélyi-Kober fractional integrals, as well as many other fractional integrals.
To keep article short we omit this task.
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