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QUASI GRUSS TYPE INEQUALITIES FOR COMPLEX
FUNCTIONS DEFINED ON UNIT CIRCLE WITH
APPLICATIONS FOR UNITARY OPERATORS IN HILBERT
SPACES

S.S. DRAGOMIR?:2

ABSTRACT. Some quasi Griiss type inequalities for the Riemann-Stieltjes inte-
gral of continuous complex valued integrands defined on the complex unit circle
C(0,1) and various subclasses of integrators are given. Natural applications
for functions of unitary operators in Hilbert spaces are provided.

1. INTRODUCTION

The concept of Riemann-Stieltjes integral f:f (t)du (t), where f is called the
integrand and u is called the integrator, plays an important role in Mathematics, for
instance in the definition of complex integral, the representation of bounded linear
functionals on the Banach space of all continuous functions on an interval [a, b] , in
the spectral representation of selfadjoint operators on complex Hilbert spaces and
other classes of operators such as the unitary operators etc...

One can approximate the Riemann-Stieltjes integral fab f(t) du (t) with the fol-
lowing simpler quantity:

b
(1) e @) [ r@d (22 (23,

In order to provide a priory sharp bounds for the approzimation error, consider
the functionals:

b b
DmW@w=/fwmw—;5W@—uwy/fww

If the integrand f is Riemann integrable on [a, b] and the integrator u : [a,b] — R
is L— Lipschitzian, i.e.,
(1.2) lu(t) —u(s)| < L|t— s for each t,s € [a,b],

then the Riemann-Stieltjes integral f; f(t) du (t) exists and, as pointed out in [22],
the following quasi Griiss type inequality holds

b
f(t)—/ ﬁf(s)ds dt.

b
(1.3) D(fuwenl <L [
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The inequality (1.3) is sharp in the sense that the multiplicative constant C' = 1
in front of L cannot be replaced by a smaller quantity. Moreover, if there exists the
constants m, M € R such that m < f(t) < M for a.e. t € [a,b], then [22]

(1.4) D (f,u0,0)| < ~L (M —m) (b—a).

[\

The constant % is best possible in (1.4).
We call this type of 1nequaht1es of quasi Griiss type since for integrators of
integral form w ( f g (s) ds the left hand side becomes

b b b
bialfamwwjﬁzéf@mjfzég@@

that is related with the well known Griiss inequality.
A different approach in the case of integrands of bounded variation were consid-
ered by the same authors in 2001, [23], where they showed that

b b
- [ 1asVw

provided that f is continuous and w is of bounded variation. Here \/Z (u) denotes
the total variation of u on [a,b]. The inequality (1.5) is sharp.
If we assume that f is K —Lipschitzian, then [23]

1.5 uja,b)| <
(1.5) |D (f,u;a,0)| < tren[%

b
(1.6) |D (f,u;a,b)| < K (b—a) \/

with % the best possible constant in (1.6).

For various bounds on the error functional D (f,u;a,b) where f and u belong
to different classes of function for which the Stieltjes integral exists, see [20], [19],
[18], and [12] and the references therein.

For other inequalities for the Riemann-Stieltjes integral see [1]-[5], [7]-[21], [25]
and the references therein.

For continuous functions f : C (0,1) — C, where C (0, 1) is the unit circle from
C centered in 0 and u : [a,b] C [0,27] — C is a function of bounded variation on
[a,b] , we can define the following functional of quasi Griiss type as well:

b b
(L.7) D¢ (f;u,a,b) = / f (e“) du (t) — 2 i P [u(b) — u(a)] / S (e“) dt.

a

In this paper we establish some bounds for the magnitude of S¢ (f;u,a,b) when
the integrand f : C (0,1) — C satisfies some Hélder’s type conditions on the circle
C (0,1) while the integrator u is of bonded variation.

It is shown that this functional can be naturally connected with continuous
functions of unitary operators on Hilbert spaces.

We recall here some basic facts on unitary operators and spectral families that
will be used in the sequel.

We say that the bounded linear operator U : H — H on the Hilbert space H is
unitary iff U* = UL,
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It is well known that (see for instance [24, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {E\} A€[0,27] called the spectral
family of U with the following properties:

a) By < E, for 0 < X< p < 2m;

b) Ey =0 and Ey,; = 1y (the identity operator on H);

¢) Exyo=FE) for 0 < X < 2m;

d) U= fOQW e*dEy, where the integral is of Riemann-Stieltjes type.

Moreover, if {F)\} e[0,2n) 18 @ family of projections satisfying the requirements
a)-d) above for the operator U, then F\ = E) for all A € [0, 27].

Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle C (0,1), we have

27
(1.8) Fwy= [ reap,

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

2m
(19) W= [ () d B
0
and
5 2m ) 9 9 2w ) 9
) @l = [ e aimal = [ 1 ) a(Ba).
for any z,y € H.
From the above properties it follows that the function g, (\) := (Exz,z) is

monotonic nondecreasing and right continuous on [0,27] for any « € H.
Such functions of unitary operators are

27
exp (U) = / exp (eM) dE)
0
and
2 )
Un = / e dE
0

for n an integer.
We can also define the trigonometric functions for a unitary operator U by

2m 2m
sin (U) = / sin (e“‘) dE) and cos (U) = / cos (e”‘) dE)
0 0
and the hyperbolic functions by
2T . 27 .
sinh (U) = / sinh (¢"*) dE\ and cosh (U) = / cosh (e") dE),
0 0
where

1 1
sinh (z) := B [exp z — exp (—z)] and cosh (z) := 5 [exp z +exp (—2)],z € C.
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2. INEQUALITIES FOR RIEMANN-STIELTJES INTEGRAL

We say that the complex function f : C (0,1) — C satisfies an H-r-Hdlder’s type
condition on the circle C (0,1), where H > 0 and r € (0,1] are given, if

(2.1) If () = f(w)| < H|z —w|
for any w,z € C(0,1).

If r=1and L = H then we call it of L-Lipschitz type.

Consider the power function f : C\ {0} — C, f (z) = 2™ where m is a nonzero
integer. Then, obviously, for any z,w belonging to the unit circle C (0,1) we have
the inequality

1f (z) = f (w)] < [m][z — w|
which shows that f is Lipschitzian with the constant L = |m| on the circle C (0, 1) .

For a # +1, 0 real numbers, consider the function f : C (0,1) — C, f, (2) = ==.

Observe that

(2.2) fa (2) = fa (w)| =

1 —az| |1 - aw|

lal [z — w|

for any z,w € C(0,1).
If 2 = ¢! with ¢ € [0,27], then we have

1—azl” = 1-2aRe(2)+a?|z]>=1-2acost + a?
> 1-2lal+a® = (1—la])*
therefore
(2.3) 1 < 1 an 1 < 1
1 —az| = [1—all 11 —aw| = [1—al

for any z,w € C(0,1).
Utilising (2.2) and (2.3) we deduce

(2.4) [fa(2) = fa (w)] <

|al
2
(1~ a]
for any z,w € C (0, 1), showing that the function f, is Lipschitzian with the constant

L, = % on the circle C (0,1).

Theorem 1. Let f : C(0,1) — C satisfies an H-r-Holder’s type condition on the
circle C (0,1), where H > 0 and r € (0,1] are given. If u : [a,b] C [0,27] — C is a
function of bounded variation on [a,b], then

|2 = wl

b
2"H
2. D¢ (f; < B, (a,b;
(25) De (Frwa.b) < 5 max Br (ont50) /(@
b
H r
< .
< -V
where
t t—s b s—1
(2.6) B, (a,b;t) :z/ sin” 2) ds + sinr< 5 >ds
a t

2 r+1
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for any t € [a,b].
In particular, if f is Lipschitzian with the constant L > 0, and [a,b] C [0, 27]
with b — a # 2w, then we have the simpler inequality
b

8L . ,(b—a 1, b
e et <t () V@ < jre-a V.

a

If a =0 and b= 2m and f is Lipschitzian with the constant L > 0, then
2

(2.8) De (f:u,0,27)| < % \ ().

0
Proof. We have

b b
(2.9) D¢ (f;u,a,b) = / (f (e") — bia/ f(e”) ds) du (t)

([ e sena)me.

It is known that if p : [¢,d] — C is a continuous function and v : [¢,d] — C is of

bounded variation, then the Riemann-Stieltjes integral f p(t) dv (t) exists and the
following inequality holds

d
/ p () dv (t)

Utilising this property and (2.9) we have

d

< max [p(0)]\/ (v).

2.10
( ) te(c,d]

b b
(2.11) \Dc(f;u,a,b)|:ﬁ/ (/ [f(eit)f(eis)]d5> du(t)
b ] b
<o | [ 1) st V@

Utilising the properties of the Riemann integral and the fact that f is of H-r-
Holder’s type on the circle C (0,1) we have

[ e s @< [ e a
SH/G |eisfe“|rds

(2.12)

Since
oS _ eit‘Q _ ’eis|2 9T (ei(s—t)) + ’e”‘z

—t
2 —2cos (s —t) = 4sin? (52>

sin st
2

for any t,s € R, then

T

(2.13) e —e't|" = 2"

for any t,s € R.



6 S.S. DRAGOMIR!:2
Therefore

b b T
o ar —t
(2.14) /|e’5—e” d5:2r/ Sin<52 >
¢ b
r .o [t—8 e [s5—1
=2 l/a sin < 5 >ds—|—/t sin <2 )ds}
for any ¢ € [a,b].

On making use of (2.12) and (2.14) we have

ds

< 2"H max B, (a,b;t)
t€la,b]

max
z€[a,b]

[ e s @

and the first inequality in (2.5) is proved.
Utilising the elementary inequality |sin (z)| < |z|, x € R we have

(2.15) B,.(a,b;t)g/at (t;‘g)rds+/tb<5;t>rds

7i(t_a,)’r‘+1+(b_t)’r’+1
o r+1

for any ¢ € [a,b], and the inequality (2.6) is proved.
If we consider the auxiliary function ¢ : [a,b] — R,

) =(t—a) T+ (b—t) re(01]
then
P t)=0r+1[t-a) —b-1)]
and

O (t)=(r+1)r [(t s Y t)“l} .

We have ¢/ (t) = 0 iff t = 22 o/ (t) < 0 for t € (a,*E?) and ¢’ (t) > 0 for

2
t € (“E2,b). We also have that ¢ (t) > 0 for any t € (a,b) showing that ¢ is
strictly decreasing on (a, QTH’) and strictly increasing on “;b,b) . We also have
that
. a+b (b—a) ™!
t) = =
e =e(%57) =55

and

_ a) = _ 7ar+1.
tlen[gfg]so(t)—w() ¢ (b)=(b—a)

Taking the maximum over ¢ € [a,b] in (2.15) we deduce the second inequality in
(2.5).
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For » = 1 we have

for any ¢ € [a,b].
Now, if we take the derivative in the first equality, we have

t— b—t
B’ (a,b;t) = sin <2a> — sin (2)
t — atb b—

—2sin< 22>cos( 4a>7

for [a,b] C [0,27] and b — a # 27.
We observe that B’ (a,b;t) = 0 iff t = “;‘b7 B’ (a,b;t) <0 fort € (a7 “T'H’) and
B’ (a,b;t) >0 fort € (“T'H’, b) . The second derivative is given by

t— atb b—
B//(a,b;t):cos< 22 )cos( 4a>

and we observe that B” (a,b;t) > 0 for ¢ € (a,b).
Therefore the function B (a,b;-) is strictly decreasing on (a, a—“’) and strictly

2
increasing on (“TH’, b) . It is also a strictly convex function on (a,b). We have
b b—
min B (a,b;t) = B | a,b; athy 8sin? [ —2
te(a,b] 2 8
and

b—
max B(a,b;t)=B(a,b;a)=B(a,,b;b):4sin2< a>.
t€[a,b] 4

This proves the bound (2.7).
If a =0 and b = 27, then

B(0,2mt) = 4{sin2 <i>+sin2<27f4t>}

= 4

and by (2.5) we get (2.8).
The proof is complete. (I

The following result also holds:
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Theorem 2. Let f: C(0,1) — C satisfies an H-r-Hélder’s type condition on the
circle C (0,1), where H > 0 and r € (0,1] are given. If u : [a,b] C [0,27] — C is a
function of Lipschitz type with the constant K > 0 on [a,b], then

(2.16) |De (f;u,a,b)| < %Cr (a,b) < m
where
(2.17) (a,b) //sm ( )dsdt+/ / sin” ( )dsdt

_ a)?"—‘r?

=g 1(r+1)(r+2)'

In particular, if f is Lipschitzian with the constant L > 0, then we have the
simpler inequality

16LK |[b—a b—a
(2.18) De(fruan) < 5o |25 —sin (23]
<LK(b—a)2.

- 3
Proof. Tt is well known that if p : [¢,d] — C is a Riemann integrable function and
v : [¢,d] — C is Lipschitzian with the constant M > 0, then the Riemann-Stieltjes

integral fcd p(t) dv (t) exists and the following inequality holds

d d
/p(t)dv(t) SM/ Ip ()] dt.

Utilising the equality (2.9) and this property we have

/ab (/ab [£ (e") f(e"s)}ds> du (1)
= ( / 7 (@) —f(e“)}ds>

<
“b—a

(2.19)

1

(220) |DC (f;uaaab” = b—a

dt.

From (2.12) and (2.14) we have

(2.21)

/!f )~ £ ()] ds

< H/ |eis - e“’rds

t _ b _
=2"H [/ sin” (t S) ds +/ sin” <S t> ds]
a 2 t 2

and by (2.20) we deduce the first part of (2.16).
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Since, by (2.15), we have

then

cr(a,b)g/ab [/:(t;‘s>rds+/tb<8;t>rds] dt
O A R R )
_y/a r+1

B (b . a)T+2
2l (r+1)(r+2)
which proves the inequality (2.17).
For r = 1, we have

C (a,) ;:/ab Uatsm (’?) ds+/tbsin (‘tt) ds] dt
[ e (52) 2en(5) ]
= (ba)4sin<b_2a>4sin<bga>

which, by (2.16), produces the desired inequality (2.18). O

Remark 1. The case b = 21 and a = 0 the inequality (2.18) produces the simple
inequality

(2.22) |De (f;u,0,27)| < 8LK.
The following result for monotonic integrators also holds.

Theorem 3. Let f : C(0,1) — C satisfies an H-r-Holder’s type condition on the
circle C (0,1), where H > 0 and r € (0,1] are given. If u : [a,b] C [0,27] — R is a
monotonic nondecreasing function on [a,b], then

2'H
(223) |DC (f;uaCL)b)' < b—a

D, (aa b)

H b r4+1 r4+1
< (T+1)(bfa)/a (=0 + 0] du ()
H .
< s -0 )~ @)
where
b
(2.24) Dy (a,b) = / B, (a,b;t) du (t)

and By (a,b;t) is given by (2.6).
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In particular, if f is Lipschitzian with the constant L > 0, then we have the
simpler inequality

(2.25) |De (fiu,a,b)| < % ab {SmQ <t_4a>+sin2 (b;tﬂdu(t)
< S b-a)fu®) - u).

Proof. Tt is well known that if p : [¢,d] — C is a continuous function and v :
[c d] — R ib monotonic nondecreasing on [c, d] , then the Riemann-Stieltjes integral

f p(t ) exists and the following inequality holds

d d
/ p(t) do (1) s/ Ip ()] dov (1)

Utilising this property and the identity (2.9) we have
(2.27) |De (f;u,a,b)|

bia /ab (/b [f(e“)—f(eis)]d8> du (t)
S (/b[f<e“)f<eis>]ds)
b—a/ </| f(€“))|d8>dU(t)

<3 (/ et —e't|" ds> du (t
_5,27_Ha [/ sin” >d8+/tbsinr (S;t> ds] du (t).
We also have that
[ | (52 e [ (55 ]
< /b[ t t_s Cds+ /tb(s;t>rd51du(t)

r+1 o r+1
1 / HO=
27 r+1

_ 27(74—’_1)/(1 [(t—a)rﬂ—k(b )r+1] du (1)

and the first part of the inequality (2.23) is proved.
Since

(2.26)

du (t)

IN

t— r+1 b_tr+1 —(h— r+1
max (=)™ 4 (0= = (b - a)

then the last part of (2.23) is also proved
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For » = 1 we have

Dy (a,b) : = /b Bi (a,b;yt) du (t)
Z .oft—a .o f(b—t
= 4/@ {sm ( 1 > + sin (4)} du (t)
and the inequality (2.25) is obtained. O

Remark 2. The case a = 0,b = 27 can be stated as

(2.28) IDe (f5,0,2m)] < 22 [u(2m) — u (0)].
Indeed, by (2.25) we have '
\De (f;u,0,27)| < % 0277 :sin2 (i) + sin? (2”44)} du (t)
- % 0277 :sin2 (i) + sin? (727 - i)} du (t)
= % 0277 sin? (i) + cos? (i)] du (t)
= (o) —u(0)].

3. APPLICATIONS FOR FUNCTIONS OF UNITARY OPERATORS
We have the following vector inequality for functions of unitary operators.

Theorem 4. Assume that f : C(0,1) — C satisfies an L-Lipschitz type condition
on the circle C (0,1), where L > 0 is given. If the operator U : H — H on the
Hilbert space H is unitary and {E/\}/\e[o o) 18 its spectral family, then

2m
(3.) G- g [ 1 i )
2m
< 22V ((Bowp)) < 2 el )
0

for any x,y € H.

Proof. For given z,y € H, define the function u (\) := (Exz,y), A € [0,27]. We
will show that w is of bounded variation and

(3.2) V @) =\ (Eoz,v) < el Iyl -

It is well known that, if P is a nonnegative selfadjoint operator on H, i.e., (Px,z) >
0 for any = € H, then the following inequality is a generalization of the Schwarz
inequality in H

(3.3) [(Pz,y)|* < (Pz,x) (Py,y),
for any z,y € H.
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Now, if d: 0 =ty < t; < .. < th_1 < t, = 27 is an arbitrary partition of
the interval [0, 27, then we have by Schwarz’s inequality for nonnegative operators
(3.3) that

27

B4V ({(EBozy)
= Sl;p {S |((Btiyr — Er) x,y>’}

=0
n—1

< Sl;p {Z {< (Eti+1 - Eti) .')S,LL'>1/2 <(Eti+1 - Eti) y7y>1/2} } = I
=0

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

— 1/2 0 g 1/2
(3.5) I <sup [Z <(Eti+1 — Etj) x, x>] lz <(Et7:+1 - Eti) Y, y>]

d i=0 i=0
n—1 1/2 n—1 1/2
< sup Z <(Eti+1 - Efz‘) z w>] lz <(Etz'+1 - Eti) Y, y>‘|
i=0 i=0

2

1/2
V (<E(->$vx>)]

2

1/2
V (<E<->y’y>)] = ||| ly|

0 0

for any z,y € H.
Utilising the inequality (2.8) we can write that

(3.6) /0 " F(e") d(Era,y) — %[<E2wa¢,y>— (Eoz, )] - /0 ") dt’

4L 2
< —V{(Byhzy)),

™
0

for any z,y € H.
On making use of the representation theorem (1.9) and the inequality (3.2) we

deduce the desired result (3.1). O
Remark 3. Consider the function f : C(0,1) — C, f,(2) = 1_1az with a real
and 0 < |a| < 1. We know that this function is Lipschitzian with the constant
L= ﬁ Since |ae'| = |a| < 1, then

o0

2m it 2m 1 27 i
o0 27 ) 27
— Z a"/ (e”)n dt = dt = 2,
n=0 0 0

since for any natural number n > 1 we have fozﬂ (ei)" dt = 0.
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Applying the inequality (3.1) we have

(3.7) ‘<(1H — aU)71 m,y> - <x7y>‘
4lal ¥ 4 |al
< i Y (Bomw) < s el

for any x,y € H.

4. A QUADRATURE RULE
We consider the following partition of the interval [a, b]
Apia=20<21 < .. < Tpp_1 <Xy =0b.

Define hy := xp11 — 2, 0 <k <n-—1and v(A,) =max{h; : 0 < k <n—1} the
norm of the partition A,.

For the continuous function f : C (0,1) — C and the function « : [a, ] C [0, 27] —
C of bounded variation on [a, b], define the quadrature rule

n—1 Tha1 )
(41) D, (f,U,An) — Z u(xk+1) - u(xk?) / f (elt) dt

T — T
= k+1 — Tk x

and the remainder R, (f,u,A,) in approximating the Riemann-Stieltjes integral
f: f (e) du (t) by Dy (f,u,Ay). Then we have

b
(4.2) / F (@) du(t) = Dy (o, An) + R (o0, ).

The following result provides a priory bounds for R,, (f,u,A,) in several instances
of f and u as above.

Proposition 1. Assume that f : C (0,1) — C satisfies the following Lipschitz type
condition
1f(z) = f(w)| < L]z —w)|
for any w,z € C(0,1), where L > 0 is given given.
If [a,b] C [0,27] and the function u : [a,b] — C is of bounded variation on [a,b],
then for any partition A, 1 a = 9 < 1 < ... < Tp_1 < T, = b with the norm
v(A,) < 21 we have the error bound

n—1 Frtl
(4.3) |Ro (fu, An)| < 8L 1 sin’ (xkﬂél_ xk> Vi

Ty,

Proof. Since v (A,,) < 27, then on writing inequality (2.7) on each interval [z, Tx11],
where 0 < k < n — 1, we have

/;:kﬂ 7 () dury - M) ) /“ F(e) dt‘

& Tr4+1 — Tk &
Tht1
8L . Tht1 — Tk
< —7 gin? (L \/ (u).
Th+1 — Tk 4

Ty
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Utilising the generalized triangle inequality we then have

> [ e - R [Ty

=0 % Tp+1 — Tk &

1 U:k+1 £ (e du t) - u (Tpy1) — u(wg) /;Hl f (e dtH

& Tk+1 — Tk &

n— Tk+1
8L a2 Thtl — Tk
< ——  sin <4 \/ (u)

|Rn (f,u, Ap)| =

n

Tk

n—1Tr41
1 .o [ Tyl — Tk
< -
< 8L0<II?33L(1{ sin ( 1 >} E \/ (u)

Tk41 — Tk
b
1 .o [ Tkl — Tk
=8L max —gin® [ —————— \/ (u) .
0<k<n—1 | Tpa1 — Tk 4

1 . T —x 1
sin? ( kil k) < — (g1 — xk)
Th+1 — Tk 4

1 — 1
max sin? | TRl T Tk < —v(Ay)
0<k<n—1 | Tg41 — Tk 4 16

and the last part of (4.3) also holds. O

Since

then

Remark 4. The above proposition has some particular cases of interest. If we take
for instance a =0, x1 = 7 and b = 2w, then we have from (4.3) that

/OQWf () du (t) — u(ﬂ)—u(O)/O”f (") dt — M/jﬁf () dt‘

™

Remark 5. We observe that the last bound in (4.3) provides a simple way to choose
a division such that the accuracy in approximation is better that a given smalle > 0.
Indeed, if we want

1 b
5Ly (An) \V(w)<e

then we need to take A, such that
2
v(A) < ———.
V, (u) L

The above proposition can be also utilized to approximate functions of unitary
operators as follows.
We consider the following partition of the interval [0, 27]

T,:0= X <M <..< 1<\, =27

where 0 < k <n—1.
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If U is a unitary operator on the Hilbert space H and {Ex},c(g 2., the spectral
family of U, then we can introduce the following sums:

Akt1

n—1
. ._ 1 it . -
(4.4) D, (f,UTp;z,y) = ;;) e _)\k/)\ fe®)dt- ((Bxey — Ex,) 2,y) .

k

Corollary 1. Assume that f : C(0,1) — C satisfies the following Lipschitz type
condition

[/ (2) = f(w)] < Lz = w|

for any w,z € C(0,1), where L > 0 is given. Assume also that U is a unitary
operator on the Hilbert space H and {EA})\G[O 21] is the spectral family of U.

If Ty, is a partition of the interval [0,2n] with v (T',,) < 2n then we have the
representation

(4.5) (f(U)z,y) =Dy (f,U,Ty;2,y) + Ry (f, U, sz, 9)

with the error R, (f,U, A,;x,y) satisfying the bounds

(4.6) |Ry (f, U, T, )
n—1 Akt1
1 o [ Aky1 — Mg

< SL;) L ( 1 ) y (Eoz,y))

= k
1 2 1
< SlLv o)V (Boz,y)) < oLy @) Ml ]yl
0

for any x,y € H.
Remark 6. Consider the exponential mean

exp (pz) — exp (¢2)

E. (p,q) = p—

defined for complex numbers z and the real numbers p,q with p # q.
For the function f (z) = 2™ with m an integer we have

p " P 1 iy ima
(2 dt — m dt: mp 1
[oa@ya = [Cemta= e
= (-0 B (p0)
- im p q eim \D,q) -
For a partition Ty, as above, define the sum

n—1

1
(47) P, (U7 s, y) = % Z Ecim ()‘kJrlv )‘k) <(E)\k+l - E)\k) Z, y> .
k=0

We can approzximate the power m of an unitary operator as follows:

(4.8) {Umx,y) =P, (U, Ty;z,y)+ T, (U, Tz, y)
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where the error T, (U, Ty;x,y) satisfies the bounds

(4.9) T, (U, Ts 2, )|
n—1 Ak+1
1 .92 )\k:Jrl - )\k
<8|ml I;) T ( I > y (Byz:y))
= k
27

< Sy )\ ((Boyz,)) < 5 lmlv ) o] ]

for any vectors xz,y € H.
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