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INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
p-CONVEX FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. Some inequalities of Hermite-Hadamard type for ¢p-convex func-
tions defined on real intervals are given.

1. INTRODUCTION

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 1 ([37]). We say that f: I — R is a Godunova-Levin function or that
f belongs to the class Q (I) if [ is non-negative and for all z,y € T and t € (0,1)

we have
(11) Fltmt (1= 0)y) < 17 @) + 7 )

Some further properties of this class of functions can be found in [28], [29], [31],
[43], [46] and [47]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

Definition 2 ([31]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all x,y € I and t € [0,1] we have

(1.2) flz+ 1=ty < f(z)+f(y)-

Obviously @ (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convez functions, i.
e. nonnegative functions satisfying

(1.3) [tz + (1 —t)y) <max{f(z),f(y)}

for all z,y € I and t € [0,1].
For some results on P-functions see [31] and [44] while for quasi convex functions,
the reader can consult [30].

Definition 3 ([7]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00)

is said to be s-convex (in the second sense) or Breckner s-convex if
flrz+(1-t)y) <t°f(z)+ (1 1) f(y)

for all x,y € [0,00) and t € [0,1].
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For some properties of this class of functions see [1], [2], [7], [8], [26], [27], [38],
[40] and [49].

In order to unify the above concepts for functions of real variable, S. Varosanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and f are real
non-negative functions defined in J and I, respectively.

Definition 4 ([52]). Let h : J — [0,00) with h not identical to 0. We say that
f:1—10,00) is an h-convex function if for all x,y € I we have

(1.4) flez+A—=t)y) <h(@)f(z)+h(1-1)f(y)
for allt € (0,1).

For some results concerning this class of functions see [52], [6], [41], [50], [48] and
[51].
We can introduce now another class of functions.

Definition 5. We say that the function f : I — [0,00) is of s-Godunova-Levin
type, with s € [0,1], if

(15) Flm+(1-0)9) < 2 f @)+

for allt € (0,1) and z,y € I.

We observe that for s = 0 we obtain the class of P-functions while for s =1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions defined on I, then we obviously have

PI)=Qo(I) S Qs (I) CQs, (1) Q1 (1) =Q(])

for 0 < s; <s9<1.
The following inequality holds for any convex function f defined on R

(16)  (b—a)f <“+b> /f )z < ( )f()‘;f(), a,b e R.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [42]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [42]. Since (1.6) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[25], [32]-[35] and [45].

The following inequality of Hermite-Hadamard type holds [48]

Theorem 1. Assume that the function f : I — [0,00) is an h-convex function with
h € L[0,1]. Let y,x € I with y # x and assume that the mapping [0,1] > ¢ —
FI(1 —t)x + ty] is Lebesgue integrable on [0,1]. Then

00 gy () <5t [ rwas @ o) [ o
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If we write (1.7) for h(t) = ¢, then we get the classical Hermite-Hadamard
inequality for convex functions
[ ras L1210

(18) f<x+y>_

If we write (1.7) for the case of P-type functions f : I — [0,00), i.e., h(t) =
1,t € [0,1], then we get the inequality

(L9) f<x+y>

that has been obtained for functions of real variable in [31].
If f is Breckner s-convex on I, for s € (0,1), then by taking h (t) = ¢* in (1.7)

we get
(1.10) 93~ 1f($+y>_ /f < (21{(),

that was obtained for functions of a real variable in [26].
If f:1—]0,00) is of s-Godunova-Levin type, with s € [0,1), then

),
(1.11) QSlﬂf(Hy) ﬂ/f PPFICEII0)

We notice that for s = 1 the first inequality in (1.11) still holds, i.e.

(1.12) if(””y) /f (1—t)z + ty] dt.

The case for functions of real variables was obtained for the first time in [31].

— T

u)du < f(x) + f (),

— T

2. ¢-CONVEX FUNCTIONS
We introduce the following class of h-convex functions.

Definition 6. Let ¢ : (0,1) — (0,00) a measurable function. We say that the
function f : T — [0,00) is a p-convex function on the interval I if for all z,y € T
we have

(2.1) flz+ (1 —-t)y) <te()f(x)+ 1 -t)e(d-1)f(y)
for allt € (0,1).

If we denote £ (t) = t, the identity function, then it is obvious that f is h-convex
with h = lp. Also, all the examples from the introduction can be seen as p-convex
functions with appropriate choices of .

If we take ¢ (t) = it with s € [0,1] then we get the class of s-Godunova-Levin
functions. Also, if we put ¢ (t) = t*~! with s € (0,1), then we get the concept of
Breckner s-convexity. We notice that for all these examples we have

4 (0) = lim o (t) = co.

The case of convex functions, i.e. when ¢ () = 1 is the only example from above
for which ¢, (0) is finite, namely ¢, (0) = 1.
Consider the family of functions, for p > 1 and k& > 0

(2.2) 5 (p k) [0,1] = Ry, 0 (p. k) (£) = k(1= 1) + 1.
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We observe that §4 (p, k) (0) =0 (p, k) (0) =k + 1, § (p, k) is strictly decreasing on
[0,1] and & (p, k) (t) = 6 (p, k) (1) = 1.

Definition 7. We say that the function f : I — [0,00) is a § (p, k)-convez function
on the interval I if for all z,y € I we have
(2.3) fllz+(1-t)y) <tk(@—t)’ +1]f(z) + (1 —t) (k" +1) f (y)
for allt € (0,1).
It is obvious that any nonnegative convex function is a ¢ (P%)_convex function for

any p > 1 and k > 0.
For m > 0 we consider the family of functions

n(m):[0,1] = Ry,n(m) (t) := exp [m (1 —1)].
We observe that 1, (m) (0) = 7 (m) (0) = exp (m), n(m) is strictly decreasing on
[0,1] and n (m) (¢) > n(m) (1) = 1.
Definition 8. We say that the function f : I — [0,00) is a n(m)-convex function
on the interval I if for all x,y € I we have

(24)  flz+(1-t)y) <texp[m(l—1)]f(z)+ (1-t)exp(mt)f(y)
for allt € (0,1).

It is obvious that any nonnegative convex function is a 7 (m)-convex function for
any m > 0.

There are many other examples one can consider. In fact any continuos function
¢ :[0,1] — [1,00) can generate a class of ¢-convex function that contains the class
of nonnegative convex functions.

Utilising Theorem 1 we can state the following result.

Theorem 2. Assume that the function f: I — [0,00) is a p-convex function with
Lo € L[0,1]. Let y,x € I with y # x and assume that the mapping [0,1] > t —
FI(1—t)x +ty] is Lebesgue integrable on [0,1]. Then

29 () < [T W@ o) [ o

2
The proof follows from (1.7) by taking h (t) = te (t), t € (0,1).

Remark 1. We notice that, since fo te (t)dt can be seen as the expectation of a
random variable X with the density functzon ©, the inequality (2.5) provides a con-
nection to Probability Theory and motivates the introduction of p-convex function
as a natural concept, having available many examples of density functions ¢ that
arise in applications.

We have the following particular cases:

Corollary 1. Assume that the function f : I — [0,00) is a a ¢ (p, k)-convex func-
tion on the interval I with p > 1 and k > 0. Let y,x € I with y # x and assume
that the mapping [0,1] 3 t — f[(1 —t) z + ty] is Lebesgue integrable on [0,1]. Then

2p rT+y
(2:6) k+21’f< 2 )S —x/f

@)+ )}[

Lk
(p+1)(p+2)

IN
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Proof. For ¢ (t) = k(1 —1t)" + 1 we have ¢ (3) = k2% and

/Ot<p(t)dt=/o (1—t)<p(1—t)dt:/0 (1 —t) (kt? +1)dt

=k 1(#’ thrl)dt—Fl_—k 41
0 2 (+1p+2) 2

and utilizing (2.5) we get (2.6). O
and

Corollary 2. Assume that the function f : I — [0,00) is a n(m)-convex function
on the interval I with m > 0. Let y,x € I with y # x and assume that the mapping
[0,1] 3t f[(1 —¢t)x+ty] is Lebesgue integrable on [0,1]. Then

(2.7) e’z”f(“y)< . /:f(wdusemi”[f(z)w(y)]-

2 T y—x m

m
2

Proof. For ¢ (t) = exp [m (1 — t)] we have ¢ (3) =€ and

1

/1t<p(t)dt:/1(1—t)<p(1—t)dt: (1 —t)e™dt
0 0

0

—1/1(1—t)d(emt)—1 (1—t)emt‘1+/lemtdt
N m Jo - m 0 o
1 1 e —m-—1
| s e -] ’
and utilizing (2.5) we get (2.7). O

3. SOME RESULTS FOR DIFFERENTIABLE FUNCTIONS

If we assume that the function f : I — [0, 00) is differentiable on the interior of
I denoted by I then we have the following "gradient inequality” that will play an
essential role in the following.

Theorem 3. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit ¢ (0) exists and is finite, the left limit p_ (1) = 1 and the left derivative in
1 denoted ¢’ (1) exists and is finite. If the function f: I — [0,00) is differentiable
on I and p-convezx, then

(3.1) 0 (0)f () = [¢L () +1] f(y) = ' () (z — )
for any x,y € I with x #+.
Proof. Since f is p-convex on I, then

to() f(@)+(1—-t)e(l—=t)f(y) = fltz+(1—-1)y)
for any ¢t € (0,1) and for any z,y € I, which is equivalent to

to() f(2)+[1-)eA-0)=1]f(y) = flz+1-1)y) - f(y)
and by dividing by ¢ > 0 we get

(32) () f(z)+ (I-the(l-t)—1

t
for any t € (0,1).

flz+(1-D)y) = f(y)
t

fy) >
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Now, since f is differentiable on y € I , then we have

fle+A-y) —fl) _ . Fly+tle—y)-f)

(3.3)  lim
t—0+ t t—0+ t
—(z—1) lim fly+tx—y)—fy)
N t—0+ t(zx—vy)
=(z—y) f (v

for any = € I with z # .
Also since ¢_ (1) =1 and ¢’ (1) exists and is finite, we have

1-1¢ 1—-t)—-1 -1 -1
(3.4) i EZ0eU=D =L sele) 2l e =]
t—0+ t s~>17 1—s s—1— s—1
s em) ts1
s—1— S — 1

=—¢ (1)-1.

Taking the limit over t — 0+ in (3.2) and utilizing (3.3) and (3.4) we get the desired

result (3.1). O

Remark 2. If we assume that

(3.5) P (0) —p_(1) > . (1),

then the inequality (3.1) also holds for © = y.

There are numerous examples of such functions, for instance, if , as above. we
take () =k (1—t)" +1,t€[0,1] (p > 1,k >0) then o, (0)=k+1, ¢_(1)=1
and " (1) = 0, which satisfy the condition (3.5).

If we take ¢ (t) = exp [m (1 —t)] (m > 0), then ¢, (0) =expm, p_ (1) =1 and
¢’ (1) = —m. We have

e (0)—p (1) —¢_(1)=e"=1+m>0
for m > 0.
The following result holds:

Theorem 4. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit ¢ (0) exists and is finite, the left limit p_ (1) = 1 and the left derivative in 1
denoted ¢’ (1) exists and is finite. Assume also that ¢’ (1) > —1. If the function
f:1—10,00) is differentiable on I and p-convez, then

e (0)  fl@)+f(y L ()+1 (z+y
(36) <pg+1)+1' 2 = —x/f LES ¢4 (0) f( 2 )

for any x,y € I.

Proof. Assume that y > x with z,y € I. From (3.1) we get

0 (0)f (w) — [ (1) +1] f (;y) S p (—;y) (x_ x;y)

for any w € [x,y] with u # %ﬂ
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Integrating this inequality over u on [z,y] we get

o [ 1@ e+ 1] w0 ()

() [ (24

which implies (3.6).

The case y < z goes likewise and the proof of the second inequality in (3.6) is
completed.

Assume that y > z with ,y € I. From (3.1) we get

(3.7) 60 (0)f (2) = [ () +1] (L= 1)z +ty)
> (1= t)a+ty) (5 — (1— )z — ty)
=tf' (1-t)z+ty) (z—y)

for any ¢ € (0,1) and

(3.8) e (0 f() = [ W +1] fF((L-t)z+1ty)
> f(A-ta+ty)(y—(1-t)z—ty)
=(1=-0)f((A-t)z+ty) (y—=2)

for any t € (0,1).
Now, if we multiply (3.7) by 1 — ¢, (3.8) by t and add the obtained inequalities,
then we get

(3.9) e (O [A =t f(@)+tf W] = [¢- () +1] fF((1—t)z +1ty)

for any t € (0,1), that is of interest in itself as well.
Now, if we integrate this inequality on [0, 1] we get

1 1
(3.10) o1 [ a-na s [l
1
> [ap'_(1)+1}/ (L =t)z +ty)dt.
0
Since
1 1
“Bdt = dt — =
/0 (1—1t)dt /O tdt
and
/f (1-t)a+ty)d _$/f
then by (3.11) we get the desired inequality (3.7). O

Remark 3. Since the function f takes nonnegative values, then the second inequal-
ity in (3.6) and the inequality (3.10) are trivially satisfied if ¢’ (1) +1 <0, so we
must assume that ¢ (1) +1 > 0.

This condition is satisfied for the function ¢ (t) = k(1 —t)’ +1,¢t € [0,1] (p >
1,k > 0). If o (t) = exp [m (1 — t)] (m > 0) then the condition ¢’ (1)+1 =1-m >0
is satisfied only for m € (0,1).
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Now, if we write the inequality (3.6) for ¢ (t) = k(1 — t)” + 1,we get

(3.11) (k:+1)f()+f > _m/f du_k+1f<x+y>

From (2.6) we also have
312 U@+ |54 ey 2 s [ S

(p+1)(p+2)
2 T+y
> o (5 )~

Since
2» L _Pk+? k-2  (2-Dk
k+20 k+1  (k+20)(k+1)  (k+2°)(k+1) ~
and
E+1 1 k k k

- = >
22 (p+D@+2) 2 (+D(@+2)
it follows that the inequality (3.12) is better than (3.11).
Now, consider the family of functions

ﬁ(kvpa q) = kt? (1 _t)q +1
where £ > 0,p > 0 and g > 1.

Definition 9. We say that the function f : I — [0,00) is a 9 (k,p,q)-convex
function on the interval I if for all z,y € I we have

(313) ftz+(1—-t)y) <tkt" 1 —t)"+1]f(x)+ Q1 —=t)[k(Q—-8)"tT+1] f (y)
for allt € (0,1).

We observe that this class contains the class of nonnegative convex functions for
any k> 0,p >0 and g > 1.

Corollary 3. If the function f : I — [0,00) is differentiable on I and 9 (k,p,q)-
convex with k > 0,p > 0 and g > 1 then

- CESIOISE Sy LY >f<x+y>

2
for any x,y € 1.

If we write the inequality (2.5) for ¢ = ¥ (k,p,q), then we get

(3.15) k(;):*ulf(m;ry)g _x/ flu

<w@»+f@n%5@+zq+u+;}

where )
B (u,v) = / 1= w0 >0

is Euler’s Beta function.

Since . . .
——<land kB (p+ 2,9+ 1)+ = > -,
EE :

it follows that the inequality (3.14) is better than (3.15).

N}
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Now, more generally, assume that

©(9,9) : [0,1] = [1,00), ¢(g,9) () =g () (1 =1)" +1

where g : [0, 1] — [0, 00) is continuous and ¢ > 1.
We then have

0. (9,9)(0)=g(0)+1, o_(g9,9) (1) =1, ¢" (9,9) (1) =0

«p(i) =g<;) <;>q+1, /Oltgo(t)dt:/Olt(l—t)qg(t)dt+;

If we apply Theorem 2 to the function ¢ (g, q) we have

and

1 Y
(3.16) [f<x>+f<y>}[/0t<1t)qg<t>dt+1}z L

2
“70 o ()

If we apply Theorem 4 to the same function ¢ (g, ¢q) we also have

>g(0;+1f<$;y)'

(3.17) (g(0) +1) f(x);f(y) > 1 /yf(u) du

Consider the difference

and the difference

t(l—t)qg(t)dt—%g(O).

We observe that if Ay, Ay > (<) 0 then the double inequality (3.17) is better (worse)
than (3.17).

If we take g (0) = 0, then (3.17) is better than (3.16) for any ¢ > 1.

If we take g (t) =kt +1, k > 0 then

gB @' -9 kG 0
90 +1[g(3) (3)"+1] k()™ +1

showing that the second inequality in (3.17) is better than the same inequality in
(3.16) for any £ > 0 and ¢ > 1.

1=
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We also have
1

do= [t 0tg@ar-Jo) = [t s var- |

1 1
1
:k/ t2(1—t)th+/ t(1—t)%dt — =
0 0 2

1
—kB(.a+ 1) +B2a+1) - 5.
If we take

5= B2at1) 3~ Grmary
BB,q+1) B3q+1)
2(¢+ 1) (¢+2)8B,q+1)
then Ay > 0 showing that the first inequality in (3.17) is better than the first
inequality in (3.16).
If we take

k>

(g+1)(¢g+2)—2

2(¢+1)(¢+2)8(3,q+1)
then Ay < 0 showing that the first inequality in (3.17) is worse than the first
inequality in (3.16).

0<k<

Conclusion 1. The inequalities (2.5) and (3.6) are not comparable, meaning that
some time one is better then the other, depending on the p-convex function involved.

4. SOME RELATED RESULTS

If we apply Theorem 2 on the subintervals |z, T;y] and [“;’ ,y] (provided z < y)
and add the corresponding inequalities we get:

Proposition 1. Assume that the function f : I — [0,00) is a @-convex function
with bp € L[0,1]. Let y, x € I withy # x and assume that the mappings [0,1] > ¢t —
flA =ty o+ =], f[(1—t) &5 + ty] are Lebesgue integrable on [0,1]. Then

(4.1) (15 { <3m+y) (x+3y>}
_m/ £ () du [ (“y)+f(x);f(y>ulw<t)dt.

Also, by Theorem 4 we have

¥
<

Proposition 2. Let ¢ : (0,1) — (0,00) a measurable function and such that the
right limit o (0) exists and is finite, the left limit ¢ _ (1) = 1 and the left derivative
in 1 denoted ¢’ (1) exists and is finite. Assume also that ¢’ (1) > —1. If the
function f: I — [0,00) is differentiable on I and (p-convez, then

SRR )
L[ s [1 (552) + LI 0] e ©

for any x,yGI.
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Now we can prove the following result as well:

Theorem 5. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit ¢, (0) exists and is finite, the left limit ¢ _ (1) = 1 and the left derivative in 1
denoted ©'_ (1) exists and is finite. Assume also that ¢’ (1) > —2. If the function
f:1—10,00) is differentiable on I and o-convex, then

1 Yy
(4.3) yfx/m f(u)du
v (0) T+y 1 fx)+f(y)
—<p’_(+1)+2f< 2 >+¢L(1)+2' 2

for any x,y € I.

Proof. Assume that z < y. From the inequality (3.1) we have

a0 e () - W@z s w (S )

for any u € [z,y] with u #
Integrating over u € [z,y] and dividing by y — x we have

(@5) e 01 () - - w1 L [ rwa

=
> [

TrY u> du.
2
Integrating by parts, we have

/:f’(u)(x;y—u>du

T4y
5 -

Y

(”T;y—u)f(u)x—k/:jf(u)du

= [ LU )

and by (4.5) we get
Tty , 1 Y
e 07 (S50) - [ @) [ rwa
o1 /yf(u)du_f(y)Jrf(x)

y—x

which is equivalent to

> /f(u)du—&—[@’,(l)—i—l]%%/x f () du

Y= Jg
, e

Since ¢’ (1) + 2 > 0, then on dividing by ¢’ (1) + 2 we get the desired result
(4.3). O
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Remark 4. We observe that

Pt (0) P+ (0)
el (1)+2 L (1)+1

and if we assume that ¢ is taken to satisfy the condition

o (1) +1

EADETRE

¢, (0) >

then

1 < 80+(0)
() +2 P (1)+1

and the inequality (4.3) is better than the second inequality in (4.2).
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