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Abstract. In this paper, we establish a new integral identity for n-times
differentiable functions defined on an invex subset of R. Hermite-Hadamard
type integral inequalities for n-times differentiable preinvex functions are then
established by using this identity and the Hölder’s inequality.

1. Introduction

It is well-known in mathematical literature that a function f : I ⊆ R → R is
convex on I if the inequality

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y)

holds for all x, y ∈ I and λ ∈ [0, 1]. The above inequality holds in reversed direction
if the function f is concave.
A number of papers have been written containing inequalities for convex func-

tions but the most famous is the Hermite-Hadamard inequality, due to its rich
geometrical significance and applications, which is stated as follows(see [10]):
Let f : I ⊆ R→ R be a convex mapping and a, b ∈ I with a < b. Then

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Both the inequalities hold in reversed direction if f is concave.
Recently, Hermite-Hadamard type inequality has been the subject of intensive

research. Various refinements of the Hermite-Hadamard inequalities for the con-
vex functions and its variant forms are being obtained in the literature by many
researchers see for instance [5, 6, 7, 9, 11, 12, 14, 15, 17, 28, 29, 30, 34, 37, 40].
In recent years, several extensions and generalizations have been considered for

classical convexity. A significant generalization of convex functions is that of prein-
vex functions introduced by Weir and Mond [39]. Many researchers have studied
the basic properties of the preinvex functions and their role in optimization, vari-
ational inequalities and equilibrium problems, for example Mohn and Neogy [20],
Noor [23] and Yang et al. [42].
Let us recall some known results concerning invexity and preinvexity.
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A set K ⊆ Rn is said to be invex if there exists a function η : K ×K → Rn such
that

x+ tη(y, x) ∈ K, ∀x, y ∈ K, t ∈ [0, 1].

The invex set K is also called an η-connected set.

Definition 1. [32] The function f on the invex set K is said to be preinvex with
respect to η, if

f(u+ tη(v, u)) ≤ (1− t) f(u) + tf(v),∀u, v ∈ K, t ∈ [0, 1].

The function f is said to be preconcave if and only if −f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map
η (x, y) = x− y but the converse is not true see for instance [39].
Noor [22] has obtained the following Hermite-Hadamard inequalities for the

preinvex functions:

Theorem 1. [22] Let f : [a, a+ η(b, a)] → (0,∞) be a preinvex function on the
interval of the real numbers K◦ (the interior of K) and a, b ∈ K◦ with a <
a+ η(b, a). Then the following inequality holds:

(1.2) f

(
2a+ η(b, a)

2

)
≤ 1

η(b, a)

∫ a+η(b,a)

a

f (x) dx ≤ f (a) + f (b)

2
.

For several new results on inequalities connected with the right and left part
of the inequalities (1.2) for preinvex functions, we refer the interested reader to
[3, 18, 21, 36], [43] and closely related articles references therein.
Most recently, Wei-Dong Jiang et al. [7], Shu-HongWang et al. [9, 40], Dah-Yang

Hwang [11] and Latif [18] obtained a number of inequalities for n-times differentiable
functions which are s-convex, m-convex, convex and preinvex. The main source of
inspiration of the present paper is [40] in which more general inequalities for n-
times differentiable functions convex functions are presented. In section 2, a more
general identity for n-times differentiable functions defined on an invex subset of R
is established and by using this identity and the Hölder’s integral inequality, several
new integral inequalities for n-times preinvex functions are established, which are
more general than those proved in [11] and extend those given in [40].

2. Main Results

The following Lemmas are essential in establishing our main results in this sec-
tion:

Lemma 1. Let n ∈ N and K ⊆ R be an invex subset with respect to η : K×K → R
and f : K → R be a mapping such that f (n−1)(x) is absolutely continuous on
[a, a+ η (b, a)], a, b ∈ K with η (b, a) > 0. If f (n)(x) exists on [a, a+ η (b, a)], then
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for λ, µ ∈ R and t ∈ [0, 1], we have the following identity:

(2.1) S (t;λ, µ)
∆
= −λf (a)− (1− µ) f (a+ η (b, a))

+
1

η (b, a)

∫ a+η(b,a)

a

f (x) dx−
n−1∑
k=0

(−1)k (η (b, a))k

(k + 1)!

{
tk [t− (k + 1)λ]

− (t− 1)k [t− 1 + (k + 1) (1− µ)]
}
f (k) (a+ tη (b, a))

=
(−1)n−1

(η (b, a))
n

n!

{∫ t

0

zn−1 (nλ− z) f (n) (a+ zη (b, a)) dz

+

∫ 1

t

(z − 1)n−1
(1− z − n (1− µ)) f (n) (a+ zη (b, a)) dz

}
.

Proof. When n = 1, we have by integrating by parts that

(2.2) η (b, a)

{∫ t

0

(λ− z) f
′
(a+ zη (b, a)) dz

+

∫ 1

t

(µ− z) f
′
(a+ zη (b, a)) dz

}
= −λf (a)− (1− µ) f (a+ η (b, a))

− (µ− λ) f (a+ tη (b, a)) + 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx.

Suppose (2.1) is valid for n = m− 1, that is

(2.3) − λf (a)− (1− µ) f (a+ η (b, a))

+
1

η (b, a)

∫ a+η(b,a)

a

f (x) dx−
m−2∑
k=0

(−1)k (η (b, a))k

(k + 1)!

{
tk [t− (k + 1)λ]

− (t− 1)k [t− 1 + (k + 1) (1− µ)]
}
f (k) (a+ tη (b, a))

=
(−1)m−2

(η (b, a))
m−1

(m− 1)!

{∫ t

0

zm−2 ((m− 1)λ− z) f (m−1) (a+ zη (b, a)) dz

+

∫ 1

t

(z − 1)m−2
(1− z − (m− 1) (1− µ)) f (m−1) (a+ zη (b, a)) dz

}
.
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Now for n = m, we have by integrating by parts that

(2.4)
(−1)m−1

(η (b, a))
m

m!

{∫ t

0

zm−1 (mλ− z) f
′
(a+ zη (b, a)) dz

+

∫ 1

t

(z − 1)m−1
(1− z −m (1− µ)) f

′
(a+ zη (b, a)) dz

}
= − (−1)

m−1
(η (b, a))

m−1

m!

{[
tm−1 (t−mλ)− (t− 1)m−1

(t− 1 +m (1− µ))
]

× f (a+ tη (b, a)) + (−1)
m−2

(η (b, a))
m−1

(m− 1)!

×
{∫ t

0

zm−2 ((m− 1)λ− z) f
′
(a+ zη (b, a)) dz

+

∫ 1

t

(z − 1)m−2
(1− z − (m− 1) (1− µ)) f

′
(a+ zη (b, a)) dz

}
Using (2.4) in (2.3) and simplifying, we get (2.1). This completes the proof of the
Lemma. �
Remark 1. If η (b, a) = b− a in Lemma 1. Then

(2.5) − λf (a)− (1− µ) f (b) + 1

b− a

∫ b

a

f (x) dx

−
n−1∑
k=0

(−1)k (b− a)k

(k + 1)!

{
tk [t− (k + 1)λ]

− (t− 1)k [t− 1 + (k + 1) (1− µ)]
}
f (k) (tb+ (1− t) a)

=
(−1)n−1

(b− a)n

n!

{∫ t

0

zn−1 (nλ− z) f (n) (zb+ (1− z) a) dz

+

∫ 1

t

(z − 1)n−1
(1− z − n (1− µ)) f (n) (zb+ (1− z) a) dz

}
.

Lemma 2. [40] Let α, β ∈ R, ξ, c ≥ 0 and r > −1. Then∫ c

0

ur |ξ − u| du

=
1

(r + 1) (r + 2)

 [(r + 2) ξ − (r + 1) c] cr+1, ξ ≥ c

(r + 1) cr+2 − (r + 2) cr+1ξ + 2ξr+2, 0 ≤ ξ ≤ c
and∫ c

0

(αu+ β) |ξ − u|r du = 1

(r + 1) (r + 2)

×

 [(r + 2)β + αξ] ξr+1 − [αc (r + 1) + β (r + 2) + αξ] (ξ − c)r+1
, ξ ≥ c

[(r + 2)β + αξ] ξr+1 + [β (r + 2) + α (c+ cr + ξ) + αξ] (c− ξ)r+1
, 0 ≤ ξ ≤ c.

Theorem 2. Let n ∈ N and K ⊆ R be an open invex subset with respect to
η : K × K → R and f : K → R be a mapping such that f (n−1)(x) is absolutely
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continuous on [a, a+ η (b, a)], a, b ∈ K with η (b, a) > 0. If
∣∣f (n)

∣∣q is preinvex
function on K for q ≥ 1, then for all t ∈ [0, 1] and λ, µ ∈ [0, 1], we have the
inequality

(2.6) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{
[A (λ, t;n)]

1−1/q

×
[
A (λ, t;n)

∣∣∣f (n) (a)
∣∣∣q +A (λ, t;n+ 1)(∣∣∣f (n) (b)

∣∣∣q − ∣∣∣f (n) (a)
∣∣∣q)]1/q

+ [A (1− µ, 1− t;n)]1−1/q
[
A (1− µ, 1− t;n)

∣∣∣f (n) (b)
∣∣∣q

+A (1− µ, 1− t;n+ 1)
(∣∣∣f (n) (a)

∣∣∣q − ∣∣∣f (n) (b)
∣∣∣q)]1/q} ,

where for c ≥ 0 and r > −1

A (ξ, c; r + 1) =

∫ c

0

ur |nξ − u| du

=
1

(r + 1) (r + 2)


[nξ (r + 2)− (r + 1) c] cr+1, nξ ≥ c

(r + 1) cr+2 − nξ (r + 2) cr+1 + 2 (nξ)
r+2

, 0 ≤ nξ ≤ c.

Proof. By Lemma 1, the Hölder’s inequality and the preinvexity of
∣∣f (n)

∣∣q on K,
q ≥ 1, n ∈ N, we have

(2.7) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{∫ t

0

zn−1 |nλ− z|
∣∣∣f (n) (a+ zη (b, a))

∣∣∣ dz
+

∫ 1

t

(z − 1)n−1 |1− z − n (1− µ)|
∣∣∣f (n) (a+ zη (b, a))

∣∣∣ dz}
≤ (η (b, a))

n

n!

{(∫ t

0

zn−1 |nλ− z| dz
)1−1/q

×
[∫ t

0

zn−1 |nλ− z|
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q

+

(∫ 1

t

(z − 1)n−1 |1− z − n (1− µ)|
)1−1/q

×
[∫ 1

t

(z − 1)n−1 |1− z − n (1− µ)|
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q
}
.

Using Lemma 2, we observe that∫ t

0

zn−1 |nλ− z| dz = A (λ, t;n) ,∫ 1

t

(z − 1)n−1 |1− z − n (1− µ)| = A (1− µ, 1− t;n) ,

∫ t

0

zn−1 |nλ− z|
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz
= A (λ, t;n)

∣∣∣f (n) (a)
∣∣∣q +A (λ, t;n+ 1)(∣∣∣f (n) (b)

∣∣∣q − ∣∣∣f (n) (a)
∣∣∣q)
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and

∫ 1

t

(z − 1)n−1 |1− z − n (1− µ)|
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz
= A (1− µ, 1− t;n)

∣∣∣f (n) (b)
∣∣∣q +A (1− µ, 1− t;n+ 1)(∣∣∣f (n) (a)

∣∣∣q − ∣∣∣f (n) (b)
∣∣∣q) .

Substituting the above inequalities into (2.7), gives us the desired inequality (2.6).
�

Remark 2. If we take n = 1, t = 1
2 and 0 ≤ λ ≤

1
2 ≤ µ ≤ 1 in Theorem 2, we get

the following inequality:

(2.8)

∣∣∣∣λf (a) + (1− µ) f (a+ η (b, a)) + (µ− λ) f (a+ 12η (b, a)
)

− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ η (b, a)

24

[(
8− 9λ+ 24λ2 − 8λ3 − 21µ+ 24µ2 − 8µ3

) ∣∣∣f (n) (a)
∣∣∣

+
(
10− 3λ+ 8λ3 − 15µ+ 8µ3

) ∣∣∣f (n) (b)
∣∣∣] .

Theorem 3. Let n ∈ N and K ⊆ R be an open invex subset with respect to
η : K × K → R and f : K → R be a mapping such that f (n−1)(x) is absolutely
continuous on [a, a+ η (b, a)], a, b ∈ K with η (b, a) > 0. If

∣∣f (n)
∣∣q is preinvex

function on K for q > 1 and q (n− 1) ≥ r ≥ 0, then for all t ∈ [0, 1] and λ,
µ ∈ [0, 1], we have the inequality

(2.9) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{[
A

(
λ, t;

nq − r − 1
q − 1

)]1−1/q

×
[
A (λ, t; r + 1)

∣∣∣f (n) (a)
∣∣∣q +A (λ, t; r + 2)(∣∣∣f (n) (b)

∣∣∣q − ∣∣∣f (n) (a)
∣∣∣q)]1/q

+

[
A

(
1− µ, 1− t; nq − r − 1

q − 1

)]1−1/q [
A (1− µ, 1− t; r + 1)

∣∣∣f (n) (b)
∣∣∣q

+A (1− µ, 1− t; r + 2)
(∣∣∣f (n) (a)

∣∣∣q − ∣∣∣f (n) (b)
∣∣∣q)]1/q} ,

where A (ξ, c; r + 1) is defined as in Theorem 2, c ≥ 0, r > 1.



HERMITE-HADAMARD TYPE INEQUALITIES VIA PREINVEXITY 7

Proof. From Lemma 1, Hölder’s inequality and the preinvexity of
∣∣f (n)

∣∣q on K,
q > 1 and q (n− 1) ≥ r ≥ 0, n ∈ N, we have

(2.10) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{(∫ t

0

z[(n−1)q−r]/(q−1) |nλ− z| dz
)1−1/q

×
[∫ t

0

zr |nλ− z|
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q

+

(∫ 1

t

(z − 1)[(n−1)q−r]/(q−1) |1− z − n (1− µ)|
)1−1/q

×
[∫ 1

t

(z − 1)r |1− z − n (1− µ)|
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q
}
.

The rest of the proof is similar to that of the proof of Theorem 2 �

Corollary 1. Under the assumptions of Theorem 3

(1) If r = 0, we have

(2.11) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{[
A

(
λ, t;

nq − 1
q − 1

)]1−1/q

×
[
A (λ, t; 1)

∣∣∣f (n) (a)
∣∣∣q +A (λ, t; 2)(∣∣∣f (n) (b)

∣∣∣q − ∣∣∣f (n) (a)
∣∣∣q)]1/q

+

[
A

(
1− µ, 1− t; nq − 1

q − 1

)]1−1/q [
A (1− µ, 1− t; 1)

∣∣∣f (n) (b)
∣∣∣q

+A (1− µ, 1− t; 2)
(∣∣∣f (n) (a)

∣∣∣q − ∣∣∣f (n) (b)
∣∣∣q)]1/q} .

(2) If r = (n− 1) q, we get

(2.12) |S (t;λ, µ)|

≤ (η (b, a))
n

n!

{
[A (λ, t; 1)]

1−1/q
[
A (λ, t; (n− 1) q + 1)

∣∣∣f (n) (a)
∣∣∣q

+A (λ, t; (n− 1) q + 2)
(∣∣∣f (n) (b)

∣∣∣q − ∣∣∣f (n) (a)
∣∣∣q)1/q

]
+ [A (1− µ, 1− t; 1)]1−1/q

[
A (1− µ, 1− t; (n− 1) q + 1)

∣∣∣f (n) (b)
∣∣∣q

+A (1− µ, 1− t; (n− 1) q + 2)
(∣∣∣f (n) (a)

∣∣∣q − ∣∣∣f (n) (b)
∣∣∣q)]1/q} .

Theorem 4. Let n ∈ N and K ⊆ R be an open invex subset with respect to
η : K × K → R and f : K → R be a mapping such that f (n−1)(x) is absolutely
continuous on [a, a+ η (b, a)], a, b ∈ K with η (b, a) > 0. If

∣∣f (n)
∣∣q is preinvex

function on K for q > 1, then for all t ∈ [0, 1] and λ, µ ∈ [0, 1], we have the
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inequality

(2.13) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{[
B

(
λ, 0, 1, t;

2q − 1
q − 1

)]1−1/q

×
[
A (0, t; (n− 1) q + 1)

∣∣∣f (n) (b)
∣∣∣q +B (0,−1, 1; (n− 1) q + 1) ∣∣∣f (n) (a)

∣∣∣q]1/q
+

[
B

(
1− µ, 0, 1, 1− t; 2q − 1

q − 1

)]1−1/q

×
[
B (0,−1, 1, 1− t; (n− 1) q + 1)

∣∣∣f (n) (b)
∣∣∣q

+A (0, 1− t; (n− 1) q + 1)
∣∣∣f (n) (a)

∣∣∣q]1/q} ,
where A (ξ, c; r + 1) is defined as in Theorem 2 and

B (ξ, α, β, c; r + 1) =
1

(r + 1) (r + 2)

×



[nξβ + αnξ] (nξ)
r+1

− [αc (r + 1) + β (r + 2) + αnξ] (nξ − c)r+1
, nξ ≥ c

[(r + 2)β + αnξ] (nξ)
r+1

+ [β (r + 2) + α (c+ cr + nξ)] (c− nξ)r+1
, 0 ≤ nξ ≤ c,

c ≥ 0, r > 1, α, β ∈ R.

Proof. Applying Lemma 1, Hölder’s inequality and preinvexity of
∣∣f (n)

∣∣q on K,
q > 1, we have

(2.14) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{(∫ t

0

|nλ− z|q/(q−1)
dz

)1−1/q

×
[∫ t

0

z(n−1)q
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q

+

(∫ 1

t

|1− z − n (1− µ)|q/(q−1)

)1−1/q

×
[∫ 1

t

(z − 1)(n−1)q
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q
}
.

Using the similar arguments as that of the proof of Theorem 2, we get the inequality
(2.13). �

Theorem 5. Let n ∈ N and K ⊆ R be an open invex subset with respect to
η : K × K → R and f : K → R be a mapping such that f (n−1)(x) is absolutely
continuous on [a, a+ η (b, a)], a, b ∈ K with η (b, a) > 0. If

∣∣f (n)
∣∣q is preinvex

function on K for q > 1, then for all t ∈ [0, 1] and λ, µ ∈ [0, 1], we have the
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inequality

(2.15) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{[
B

(
λ, 0, 1, t;

2q − 1
q − 1

)]1−1/q

×
[
A (0, t; (n− 2) q + 2)

∣∣∣f (n) (b)
∣∣∣q +B (0,−1, 1, t; (n− 2) q + 2) ∣∣∣f (n) (a)

∣∣∣q]1/q
+

[
B

(
1− µ, 1, 0, 1− t; 2q − 1

q − 1

)]1−1/q

×
[
B (0,−1, 1, 1− t; (n− 2) q + 2)

∣∣∣f (n) (b)
∣∣∣q +A (0, 1− t; (n− 2) q + 2) ∣∣∣f (n) (a)

∣∣∣q]1/q} ,
where A (ξ, c; r + 1) and B (ξ, α, β, c; r + 1) are defined as in Theorem 2 and Theo-
rem 4 respectively, c ≥ 0, r > 1, α, β ∈ R.

Proof. Applying Lemma 1, using Hölder’s inequality and preinvexity of
∣∣f (n)

∣∣q on
K, q > 1, results in

(2.16) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{(∫ t

0

z |nλ− z|q/(q−1)
dz

)1−1/q

×
[∫ t

0

z(n−2)q+1
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q

+

(∫ 1

t

(1− z) |1− z − n (1− µ)|q/(q−1)

)1−1/q

×
[∫ 1

t

(z − 1)(n−2)q+1
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q
}
.

The rest of the proof is similar to that of the proof of Theorem 2. �

Theorem 6. Let n ∈ N and K ⊆ R be an open invex subset with respect to
η : K × K → R and f : K → R be a mapping such that f (n−1)(x) is absolutely
continuous on [a, a+ η (b, a)], a, b ∈ K with η (b, a) > 0. If

∣∣f (n)
∣∣q is preinvex

function on K for q > 1, then for all t ∈ [0, 1] and λ, µ ∈ [0, 1], we have the
inequality

(2.17) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

(
q − 1
nq − 1

)1−1/q

×
{
t(nq−1)/q

[
B (λ, 1, 0, t; q + 1)

∣∣∣f (n) (b)
∣∣∣q +B (λ,−1, 1, t; q + 1) ∣∣∣f (n) (a)

∣∣∣q]1/q
+ (1− t)(nq−1)/q

[
B (1− µ,−1, 1, 1− t; q + 1)

∣∣∣f (n) (b)
∣∣∣q

+B (1− µ, 1, 0, 1− t; q + 1)
∣∣∣f (n) (a)

∣∣∣q]1/q} ,
where B (ξ, α, β, c; r + 1) is defined as in Theorem 4, c ≥ 0, r > 1, α, β ∈ R.
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Proof. Utilizing Lemma 1, using Hölder’s inequality and preinvexity of
∣∣f (n)

∣∣q on
K, q > 1, results in

(2.18) |S (t;λ, µ)| ≤ (η (b, a))
n

n!

{(∫ t

0

z(n−1)q/(q−1)dz

)1−1/q

×
[∫ t

0

|nλ− z|q
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q

+

(∫ 1

t

(1− z)(n−1)q/(q−1)

)1−1/q

×
[∫ 1

t

|1− z − n (1− µ)|q
(
(1− z)

∣∣∣f (n) (a)
∣∣∣q + z ∣∣∣f (n) (b)

∣∣∣q) dz]1/q
}
.

The rest of the proof is similar to that of the Theorem 2. �
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