GENERALIZATION OF INEQUALITIES OF HERMITE-HADAMARD TYPE FOR n-TIMES DIFFERENTIABLE FUNCTIONS THROUGH PREINVEXITY

M. A. LATIF ${ }^{1}$ AND S. S. DRAGOMIR ${ }^{2,3}$

Abstract

In this paper, we establish a new integral identity for n-times differentiable functions defined on an invex subset of \mathbb{R}. Hermite-Hadamard type integral inequalities for n-times differentiable preinvex functions are then established by using this identity and the Hölder's inequality.

1. Introduction

It is well-known in mathematical literature that a function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is convex on I if the inequality

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in I$ and $\lambda \in[0,1]$. The above inequality holds in reversed direction if the function f is concave.

A number of papers have been written containing inequalities for convex functions but the most famous is the Hermite-Hadamard inequality, due to its rich geometrical significance and applications, which is stated as follows(see [10]):

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping and $a, b \in I$ with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

Both the inequalities hold in reversed direction if f is concave.
Recently, Hermite-Hadamard type inequality has been the subject of intensive research. Various refinements of the Hermite-Hadamard inequalities for the convex functions and its variant forms are being obtained in the literature by many researchers see for instance $[5,6,7,9,11,12,14,15,17,28,29,30,34,37,40]$.

In recent years, several extensions and generalizations have been considered for classical convexity. A significant generalization of convex functions is that of preinvex functions introduced by Weir and Mond [39]. Many researchers have studied the basic properties of the preinvex functions and their role in optimization, variational inequalities and equilibrium problems, for example Mohn and Neogy [20], Noor [23] and Yang et al. [42].

Let us recall some known results concerning invexity and preinvexity.

[^0]A set $K \subseteq \mathbb{R}^{n}$ is said to be invex if there exists a function $\eta: K \times K \rightarrow \mathbb{R}^{n}$ such that

$$
x+t \eta(y, x) \in K, \forall x, y \in K, t \in[0,1] .
$$

The invex set K is also called an η-connected set.
Definition 1. [32] The function f on the invex set K is said to be preinvex with respect to η, if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+t f(v), \forall u, v \in K, t \in[0,1] .
$$

The function f is said to be preconcave if and only if $-f$ is preinvex.
It is to be noted that every convex function is preinvex with respect to the map $\eta(x, y)=x-y$ but the converse is not true see for instance [39].

Noor [22] has obtained the following Hermite-Hadamard inequalities for the preinvex functions:

Theorem 1. [22] Let $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be a preinvex function on the interval of the real numbers K° (the interior of K) and $a, b \in K^{\circ}$ with $a<$ $a+\eta(b, a)$. Then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{2 a+\eta(b, a)}{2}\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

For several new results on inequalities connected with the right and left part of the inequalities (1.2) for preinvex functions, we refer the interested reader to [3, 18, 21, 36], [43] and closely related articles references therein.

Most recently, Wei-Dong Jiang et al. [7], Shu-Hong Wang et al. [9, 40], Dah-Yang Hwang [11] and Latif [18] obtained a number of inequalities for n-times differentiable functions which are s-convex, m-convex, convex and preinvex. The main source of inspiration of the present paper is [40] in which more general inequalities for n times differentiable functions convex functions are presented. In section 2 , a more general identity for n-times differentiable functions defined on an invex subset of \mathbb{R} is established and by using this identity and the Hölder's integral inequality, several new integral inequalities for n-times preinvex functions are established, which are more general than those proved in [11] and extend those given in [40].

2. Main Results

The following Lemmas are essential in establishing our main results in this section:

Lemma 1. Let $n \in \mathbb{N}$ and $K \subseteq \mathbb{R}$ be an invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $f: K \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}(x)$ is absolutely continuous on $[a, a+\eta(b, a)], a, b \in K$ with $\eta(b, a)>0$. If $f^{(n)}(x)$ exists on $[a, a+\eta(b, a)]$, then
for $\lambda, \mu \in \mathbb{R}$ and $t \in[0,1]$, we have the following identity:

$$
\begin{align*}
& S(t ; \lambda, \mu) \triangleq-\lambda f(a)-(1-\mu) f(a+\eta(b, a)) \tag{2.1}\\
& +\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-\sum_{k=0}^{n-1} \frac{(-1)^{k}(\eta(b, a))^{k}}{(k+1)!}\left\{t^{k}[t-(k+1) \lambda]\right. \\
& \left.\quad-(t-1)^{k}[t-1+(k+1)(1-\mu)]\right\} f^{(k)}(a+t \eta(b, a)) \\
& =\frac{(-1)^{n-1}(\eta(b, a))^{n}}{n!}\left\{\int_{0}^{t} z^{n-1}(n \lambda-z) f^{(n)}(a+z \eta(b, a)) d z\right. \\
& \left.\quad+\int_{t}^{1}(z-1)^{n-1}(1-z-n(1-\mu)) f^{(n)}(a+z \eta(b, a)) d z\right\}
\end{align*}
$$

Proof. When $n=1$, we have by integrating by parts that
(2.2) $\quad \eta(b, a)\left\{\int_{0}^{t}(\lambda-z) f^{\prime}(a+z \eta(b, a)) d z\right.$

$$
\begin{aligned}
& \left.+\int_{t}^{1}(\mu-z) f^{\prime}(a+z \eta(b, a)) d z\right\} \\
& =-\lambda f(a)-(1-\mu) f(a+\eta(b, a)) \\
& \quad-(\mu-\lambda) f(a+t \eta(b, a))+\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x
\end{aligned}
$$

Suppose (2.1) is valid for $n=m-1$, that is

$$
\begin{align*}
& \quad-\lambda f(a)-(1-\mu) f(a+\eta(b, a)) \tag{2.3}\\
& +\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x-\sum_{k=0}^{m-2} \frac{(-1)^{k}(\eta(b, a))^{k}}{(k+1)!}\left\{t^{k}[t-(k+1) \lambda]\right. \\
& \left.\quad-(t-1)^{k}[t-1+(k+1)(1-\mu)]\right\} f^{(k)}(a+t \eta(b, a)) \\
& =\frac{(-1)^{m-2}(\eta(b, a))^{m-1}}{(m-1)!}\left\{\int_{0}^{t} z^{m-2}((m-1) \lambda-z) f^{(m-1)}(a+z \eta(b, a)) d z\right. \\
& \left.\quad+\int_{t}^{1}(z-1)^{m-2}(1-z-(m-1)(1-\mu)) f^{(m-1)}(a+z \eta(b, a)) d z\right\} .
\end{align*}
$$

Now for $n=m$, we have by integrating by parts that

$$
\begin{align*}
& \frac{(-1)^{m-1}(\eta(b, a))^{m}}{m!}\left\{\int_{0}^{t} z^{m-1}(m \lambda-z) f^{\prime}(a+z \eta(b, a)) d z\right. \tag{2.4}\\
& \left.+\int_{t}^{1}(z-1)^{m-1}(1-z-m(1-\mu)) f^{\prime}(a+z \eta(b, a)) d z\right\} \\
& =-\frac{(-1)^{m-1}(\eta(b, a))^{m-1}}{m!}\left\{\left[t^{m-1}(t-m \lambda)-(t-1)^{m-1}(t-1+m(1-\mu))\right]\right. \\
& \times f(a+t \eta(b, a))+\frac{(-1)^{m-2}(\eta(b, a))^{m-1}}{(m-1)!} \\
& \times\left\{\int_{0}^{t} z^{m-2}((m-1) \lambda-z) f^{\prime}(a+z \eta(b, a)) d z\right. \\
& \left.\quad+\int_{t}^{1}(z-1)^{m-2}(1-z-(m-1)(1-\mu)) f^{\prime}(a+z \eta(b, a)) d z\right\}
\end{align*}
$$

Using (2.4) in (2.3) and simplifying, we get (2.1). This completes the proof of the Lemma.
Remark 1. If $\eta(b, a)=b-a$ in Lemma 1. Then

$$
\begin{align*}
& -\lambda f(a)-(1-\mu) f(b)+\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{2.5}\\
& \quad-\sum_{k=0}^{n-1} \frac{(-1)^{k}(b-a)^{k}}{(k+1)!}\left\{t^{k}[t-(k+1) \lambda]\right. \\
& \left.\quad-(t-1)^{k}[t-1+(k+1)(1-\mu)]\right\} f^{(k)}(t b+(1-t) a) \\
& =\frac{(-1)^{n-1}(b-a)^{n}}{n!}\left\{\int_{0}^{t} z^{n-1}(n \lambda-z) f^{(n)}(z b+(1-z) a) d z\right. \\
& \left.\quad+\int_{t}^{1}(z-1)^{n-1}(1-z-n(1-\mu)) f^{(n)}(z b+(1-z) a) d z\right\}
\end{align*}
$$

Lemma 2. [40] Let $\alpha, \beta \in \mathbb{R}, \xi, c \geq 0$ and $r>-1$. Then

$$
\begin{aligned}
& \int_{0}^{c} u^{r}|\xi-u| d u \\
& =\frac{1}{(r+1)(r+2)} \begin{cases}{[(r+2) \xi-(r+1) c] c^{r+1},} & \xi \geq c \\
(r+1) c^{r+2}-(r+2) c^{r+1} \xi+2 \xi^{r+2}, & 0 \leq \xi \leq c\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{c}(\alpha u+\beta)|\xi-u|^{r} d u=\frac{1}{(r+1)(r+2)} \\
\times & \begin{cases}{[(r+2) \beta+\alpha \xi] \xi^{r+1}-[\alpha c(r+1)+\beta(r+2)+\alpha \xi](\xi-c)^{r+1},} & \xi \geq c \\
{[(r+2) \beta+\alpha \xi] \xi^{r+1}+[\beta(r+2)+\alpha(c+c r+\xi)+\alpha \xi](c-\xi)^{r+1},} & 0 \leq \xi \leq c .\end{cases}
\end{aligned}
$$

Theorem 2. Let $n \in \mathbb{N}$ and $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $f: K \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}(x)$ is absolutely
continuous on $[a, a+\eta(b, a)]$, $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is preinvex function on K for $q \geq 1$, then for all $t \in[0,1]$ and $\lambda, \mu \in[0,1]$, we have the inequality

$$
\begin{align*}
& |S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{[A(\lambda, t ; n)]^{1-1 / q}\right. \tag{2.6}\\
& \times\left[A(\lambda, t ; n)\left|f^{(n)}(a)\right|^{q}+A(\lambda, t ; n+1)\left(\left|f^{(n)}(b)\right|^{q}-\left|f^{(n)}(a)\right|^{q}\right)\right]^{1 / q} \\
& \quad+[A(1-\mu, 1-t ; n)]^{1-1 / q}\left[A(1-\mu, 1-t ; n)\left|f^{(n)}(b)\right|^{q}\right. \\
& \left.\left.\quad+A(1-\mu, 1-t ; n+1)\left(\left|f^{(n)}(a)\right|^{q}-\left|f^{(n)}(b)\right|^{q}\right)\right]^{1 / q}\right\}
\end{align*}
$$

where for $c \geq 0$ and $r>-1$

$$
\begin{aligned}
& A(\xi, c ; r+1)=\int_{0}^{c} u^{r}|n \xi-u| d u \\
& =\frac{1}{(r+1)(r+2)} \begin{cases}{[n \xi(r+2)-(r+1) c] c^{r+1},} & n \xi \geq c \\
(r+1) c^{r+2}-n \xi(r+2) c^{r+1}+2(n \xi)^{r+2}, & 0 \leq n \xi \leq c .\end{cases}
\end{aligned}
$$

Proof. By Lemma 1, the Hölder's inequality and the preinvexity of $\left|f^{(n)}\right|^{q}$ on K, $q \geq 1, n \in \mathbb{N}$, we have

$$
\begin{align*}
& \text { (2.7) } \begin{array}{l}
|S(t ; \lambda, \mu)| \leq \\
\begin{array}{l}
\quad \\
\left.\left.+\int_{t}^{1}(z-1)^{n-1} \mid 1-z-n\right)\right)^{n} \\
n!
\end{array} \int_{0}^{t} z^{n-1}|n \lambda-z|\left|f^{(n)}(a+z \eta(b, a))\right| d z \\
\quad \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left(\int_{0}^{t} z^{n-1}|n \lambda-z| d z\right)^{1-1 / q}\right. \\
\times\left[\int_{0}^{t} z^{n-1}|n \lambda-z|\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q} \\
\quad+\left(\int_{t}^{1}(z-1)^{n-1}|1-z-n(1-\mu)|\right)^{1-1 / q}
\end{array} \tag{2.7}\\
& \left.\times\left[\int_{t}^{1}(z-1)^{n-1}|1-z-n(1-\mu)|\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q}\right\} .
\end{align*}
$$

Using Lemma 2, we observe that

$$
\begin{gathered}
\int_{0}^{t} z^{n-1}|n \lambda-z| d z=A(\lambda, t ; n) \\
\int_{t}^{1}(z-1)^{n-1}|1-z-n(1-\mu)|=A(1-\mu, 1-t ; n) \\
\int_{0}^{t} z^{n-1}|n \lambda-z|\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z \\
=A(\lambda, t ; n)\left|f^{(n)}(a)\right|^{q}+A(\lambda, t ; n+1)\left(\left|f^{(n)}(b)\right|^{q}-\left|f^{(n)}(a)\right|^{q}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \int_{t}^{1}(z-1)^{n-1}|1-z-n(1-\mu)|\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z \\
& =A(1-\mu, 1-t ; n)\left|f^{(n)}(b)\right|^{q}+A(1-\mu, 1-t ; n+1)\left(\left|f^{(n)}(a)\right|^{q}-\left|f^{(n)}(b)\right|^{q}\right)
\end{aligned}
$$

Substituting the above inequalities into (2.7), gives us the desired inequality (2.6).

Remark 2. If we take $n=1, t=\frac{1}{2}$ and $0 \leq \lambda \leq \frac{1}{2} \leq \mu \leq 1$ in Theorem 2, we get the following inequality:

$$
\begin{align*}
& \left\lvert\, \lambda f(a)+(1-\mu) f(a+\eta(b, a))+(\mu-\lambda) f\left(a+\frac{1}{2} \eta(b, a)\right)\right. \tag{2.8}\\
& \left.-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \right\rvert\, \\
& \leq \frac{\eta(b, a)}{24}\left[\left(8-9 \lambda+24 \lambda^{2}-8 \lambda^{3}-21 \mu+24 \mu^{2}-8 \mu^{3}\right)\left|f^{(n)}(a)\right|\right. \\
& \left.\quad+\left(10-3 \lambda+8 \lambda^{3}-15 \mu+8 \mu^{3}\right)\left|f^{(n)}(b)\right|\right]
\end{align*}
$$

Theorem 3. Let $n \in \mathbb{N}$ and $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $f: K \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}(x)$ is absolutely continuous on $[a, a+\eta(b, a)]$, $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is preinvex function on K for $q>1$ and $q(n-1) \geq r \geq 0$, then for all $t \in[0,1]$ and λ, $\mu \in[0,1]$, we have the inequality

$$
\begin{align*}
&|S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left[A\left(\lambda, t ; \frac{n q-r-1}{q-1}\right)\right]^{1-1 / q}\right. \tag{2.9}\\
& \times {\left[A(\lambda, t ; r+1)\left|f^{(n)}(a)\right|^{q}+A(\lambda, t ; r+2)\left(\left|f^{(n)}(b)\right|^{q}-\left|f^{(n)}(a)\right|^{q}\right)\right]^{1 / q} } \\
&+ {\left[A\left(1-\mu, 1-t ; \frac{n q-r-1}{q-1}\right)\right]^{1-1 / q}\left[A(1-\mu, 1-t ; r+1)\left|f^{(n)}(b)\right|^{q}\right.} \\
&\left.\left.\quad+A(1-\mu, 1-t ; r+2)\left(\left|f^{(n)}(a)\right|^{q}-\left|f^{(n)}(b)\right|^{q}\right)\right]^{1 / q}\right\}
\end{align*}
$$

where $A(\xi, c ; r+1)$ is defined as in Theorem 2, $c \geq 0, r>1$.

Proof. From Lemma 1, Hölder's inequality and the preinvexity of $\left|f^{(n)}\right|^{q}$ on K, $q>1$ and $q(n-1) \geq r \geq 0, n \in \mathbb{N}$, we have

$$
\begin{align*}
& |S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left(\int_{0}^{t} z^{[(n-1) q-r] /(q-1)}|n \lambda-z| d z\right)^{1-1 / q}\right. \tag{2.10}\\
& \times\left[\int_{0}^{t} z^{r}|n \lambda-z|\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q} \\
& +\left(\int_{t}^{1}(z-1)^{[(n-1) q-r] /(q-1)}|1-z-n(1-\mu)|\right)^{1-1 / q} \\
& \left.\times\left[\int_{t}^{1}(z-1)^{r}|1-z-n(1-\mu)|\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q}\right\} \text {. }
\end{align*}
$$

The rest of the proof is similar to that of the proof of Theorem 2

Corollary 1. Under the assumptions of Theorem 3
(1) If $r=0$, we have

$$
\begin{align*}
& |S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left[A\left(\lambda, t ; \frac{n q-1}{q-1}\right)\right]^{1-1 / q}\right. \tag{2.11}\\
& \times\left[A(\lambda, t ; 1)\left|f^{(n)}(a)\right|^{q}+A(\lambda, t ; 2)\left(\left|f^{(n)}(b)\right|^{q}-\left|f^{(n)}(a)\right|^{q}\right)\right]^{1 / q} \\
& +\left[A\left(1-\mu, 1-t ; \frac{n q-1}{q-1}\right)\right]^{1-1 / q}\left[A(1-\mu, 1-t ; 1)\left|f^{(n)}(b)\right|^{q}\right. \\
& \left.\left.\quad+A(1-\mu, 1-t ; 2)\left(\left|f^{(n)}(a)\right|^{q}-\left|f^{(n)}(b)\right|^{q}\right)\right]^{1 / q}\right\} .
\end{align*}
$$

(2) If $r=(n-1) q$, we get

$$
\begin{align*}
& |S(t ; \lambda, \mu)| \tag{2.12}\\
& \begin{array}{l}
\leq \frac{(\eta(b, a))^{n}}{n!}\left\{[A (\lambda , t ; 1)] ^ { 1 - 1 / q } \left[A(\lambda, t ;(n-1) q+1)\left|f^{(n)}(a)\right|^{q}\right.\right. \\
\left.\quad+A(\lambda, t ;(n-1) q+2)\left(\left|f^{(n)}(b)\right|^{q}-\left|f^{(n)}(a)\right|^{q}\right)^{1 / q}\right] \\
+[A(1-\mu, 1-t ; 1)]^{1-1 / q}\left[A(1-\mu, 1-t ;(n-1) q+1)\left|f^{(n)}(b)\right|^{q}\right. \\
\left.\left.\quad+A(1-\mu, 1-t ;(n-1) q+2)\left(\left|f^{(n)}(a)\right|^{q}-\left|f^{(n)}(b)\right|^{q}\right)\right]^{1 / q}\right\} .
\end{array}
\end{align*}
$$

Theorem 4. Let $n \in \mathbb{N}$ and $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $f: K \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}(x)$ is absolutely continuous on $[a, a+\eta(b, a)], a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is preinvex function on K for $q>1$, then for all $t \in[0,1]$ and $\lambda, \mu \in[0,1]$, we have the
inequality

$$
\begin{align*}
& \text { 13) } \begin{aligned}
&|S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left[B\left(\lambda, 0,1, t ; \frac{2 q-1}{q-1}\right)\right]^{1-1 / q}\right. \\
& \times\left[A(0, t ;(n-1) q+1)\left|f^{(n)}(b)\right|^{q}+B(0,-1,1 ;(n-1) q+1)\left|f^{(n)}(a)\right|^{q}\right]^{1 / q} \\
& \quad+\left[B\left(1-\mu, 0,1,1-t ; \frac{2 q-1}{q-1}\right)\right]^{1-1 / q} \\
& \times {\left[B(0,-1,1,1-t ;(n-1) q+1)\left|f^{(n)}(b)\right|^{q}\right.} \\
&\left.\left.+A(0,1-t ;(n-1) q+1)\left|f^{(n)}(a)\right|^{q}\right]^{1 / q}\right\}
\end{aligned} \tag{2.13}
\end{align*}
$$

where $A(\xi, c ; r+1)$ is defined as in Theorem 2 and

$$
\begin{aligned}
& B(\xi, \alpha, \beta, c ; r+1)=\frac{1}{(r+1)(r+2)} \\
& \quad \times\left\{\begin{array}{l}
{[n \xi \beta+\alpha n \xi](n \xi)^{r+1}} \\
-[\alpha c(r+1)+\beta(r+2)+\alpha n \xi](n \xi-c)^{r+1}, \quad n \xi \geq c \\
{[(r+2) \beta+\alpha n \xi](n \xi)^{r+1}} \\
+[\beta(r+2)+\alpha(c+c r+n \xi)](c-n \xi)^{r+1}, \quad 0 \leq n \xi \leq c,
\end{array}\right.
\end{aligned}
$$

$c \geq 0, r>1, \alpha, \beta \in \mathbb{R}$.
Proof. Applying Lemma 1, Hölder's inequality and preinvexity of $\left|f^{(n)}\right|^{q}$ on K, $q>1$, we have

$$
\begin{align*}
|S(t ; \lambda, \mu)| \leq & \frac{(\eta(b, a))^{n}}{n!}\left\{\left(\int_{0}^{t}|n \lambda-z|^{q /(q-1)} d z\right)^{1-1 / q}\right. \tag{2.14}\\
\times & {\left[\int_{0}^{t} z^{(n-1) q}\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q} } \\
& \quad+\left(\int_{t}^{1}|1-z-n(1-\mu)|^{q /(q-1)}\right)^{1-1 / q} \\
& \left.\times\left[\int_{t}^{1}(z-1)^{(n-1) q}\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q}\right\}
\end{align*}
$$

Using the similar arguments as that of the proof of Theorem 2, we get the inequality (2.13).

Theorem 5. Let $n \in \mathbb{N}$ and $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $f: K \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}(x)$ is absolutely continuous on $[a, a+\eta(b, a)]$, $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is preinvex function on K for $q>1$, then for all $t \in[0,1]$ and $\lambda, \mu \in[0,1]$, we have the
inequality
$|S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left[B\left(\lambda, 0,1, t ; \frac{2 q-1}{q-1}\right)\right]^{1-1 / q}\right.$
$\times\left[A(0, t ;(n-2) q+2)\left|f^{(n)}(b)\right|^{q}+B(0,-1,1, t ;(n-2) q+2)\left|f^{(n)}(a)\right|^{q}\right]^{1 / q}$
$+\left[B\left(1-\mu, 1,0,1-t ; \frac{2 q-1}{q-1}\right)\right]^{1-1 / q}$
$\left.\times\left[B(0,-1,1,1-t ;(n-2) q+2)\left|f^{(n)}(b)\right|^{q}+A(0,1-t ;(n-2) q+2)\left|f^{(n)}(a)\right|^{q}\right]^{1 / q}\right\}$,
where $A(\xi, c ; r+1)$ and $B(\xi, \alpha, \beta, c ; r+1)$ are defined as in Theorem 2 and Theorem 4 respectively, $c \geq 0, r>1, \alpha, \beta \in \mathbb{R}$.

Proof. Applying Lemma 1, using Hölder's inequality and preinvexity of $\left|f^{(n)}\right|^{q}$ on $K, q>1$, results in

$$
\begin{align*}
& |S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left(\int_{0}^{t} z|n \lambda-z|^{q /(q-1)} d z\right)^{1-1 / q}\right. \tag{2.16}\\
& \times \\
& \quad\left[\int_{0}^{t} z^{(n-2) q+1}\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q} \\
& \quad+\left(\int_{t}^{1}(1-z)|1-z-n(1-\mu)|^{q /(q-1)}\right)^{1-1 / q} \\
& \left.\quad \times\left[\int_{t}^{1}(z-1)^{(n-2) q+1}\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q}\right\}
\end{align*}
$$

The rest of the proof is similar to that of the proof of Theorem 2.

Theorem 6. Let $n \in \mathbb{N}$ and $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \rightarrow \mathbb{R}$ and $f: K \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}(x)$ is absolutely continuous on $[a, a+\eta(b, a)]$, $a, b \in K$ with $\eta(b, a)>0$. If $\left|f^{(n)}\right|^{q}$ is preinvex function on K for $q>1$, then for all $t \in[0,1]$ and $\lambda, \mu \in[0,1]$, we have the inequality

$$
\begin{align*}
& \quad|S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left(\frac{q-1}{n q-1}\right)^{1-1 / q} \tag{2.17}\\
& \times\left\{t^{(n q-1) / q}\left[B(\lambda, 1,0, t ; q+1)\left|f^{(n)}(b)\right|^{q}+B(\lambda,-1,1, t ; q+1)\left|f^{(n)}(a)\right|^{q}\right]^{1 / q}\right. \\
& +(1-t)^{(n q-1) / q}\left[B(1-\mu,-1,1,1-t ; q+1)\left|f^{(n)}(b)\right|^{q}\right. \\
& \left.\left.\quad+B(1-\mu, 1,0,1-t ; q+1)\left|f^{(n)}(a)\right|^{q}\right]^{1 / q}\right\}
\end{align*}
$$

where $B(\xi, \alpha, \beta, c ; r+1)$ is defined as in Theorem 4, $c \geq 0, r>1, \alpha, \beta \in \mathbb{R}$.

Proof. Utilizing Lemma 1, using Hölder's inequality and preinvexity of $\left|f^{(n)}\right|^{q}$ on $K, q>1$, results in

$$
\begin{align*}
& |S(t ; \lambda, \mu)| \leq \frac{(\eta(b, a))^{n}}{n!}\left\{\left(\int_{0}^{t} z^{(n-1) q /(q-1)} d z\right)^{1-1 / q}\right. \tag{2.18}\\
& \quad \times\left[\int_{0}^{t}|n \lambda-z|^{q}\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q} \\
& \quad \quad+\left(\int_{t}^{1}(1-z)^{(n-1) q /(q-1)}\right)^{1-1 / q} \\
& \left.\times\left[\int_{t}^{1}|1-z-n(1-\mu)|^{q}\left((1-z)\left|f^{(n)}(a)\right|^{q}+z\left|f^{(n)}(b)\right|^{q}\right) d z\right]^{1 / q}\right\}
\end{align*}
$$

The rest of the proof is similar to that of the Theorem 2 .

References

[1] T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473-1484.
[2] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequsiinvex functions, RGMIA Research Report Collection, 14(2011), Article 48, 7 pp.
[3] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, RGMIA Research Report Collection, 14(2011), Article 64, 11 pp .
[4] A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Ser. B, 28(1986), No. 1, 1-9.
[5] S. S. Dragomir, and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.
[6] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 42-56.
[7] Wei-Dong Jiang, Da-Wei Niu, Yun Hua, and Feng Qi, Generalizations of HermiteHadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis (Munich) 32 (2012), 1001-1012; Available online at http://dx.doi.org/10.1524/anly.2012.1161.
[8] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[9] Shu-Hong Wang, Bo-Yan Xi and Feng Qi, Some new inequalities of Hermite-Hadamard type for n-times differentiable functions which are m-convex, Analysis (Munich) 32 (2012), no. 3, 247-262; Available online at http://dx.doi.org/10.1524/anly.2012.1167.
[10] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann, J. Math Pures Appl., 58 (1893), 171-215.
[11] Dah-Yang Hwang, Some Inequalities for n-time Differentiable Mappings and Applications, Kyugpook Math. J. 43(2003), 335-343
[12] D. -Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Appl. Math. Comp., $217(23)(2011), 9598-9605$.
[13] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
[14] U. S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., $147(1)(2004), 137-146$.
[15] U. S. Kırmacı and M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 153(2)(2004), 361-368.
[16] K. C. Lee and K. L. Tseng, On a weighted generalization of Hadamard's inequality for Gconvex functions, Tamsui-Oxford J. Math. Sci., 16(1)(2000), 91-104.
[17] A. Lupas, A generalization of Hadamard's inequality for convex functions, Univ. Beograd. Publ. Elek. Fak. Ser. Mat. Fiz., 544-576(1976), 115-121.
[18] M. A. Latif, On Hermite-Hadamard type integral inequalities for n-times differentiable preinvex functions with applications, Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 3, 325-343.
[19] M. A. Latif, Some inequalities for differenitable prequasiinvex functions with applications, Konuralp Journal of Mathematics Volume 1, No. 2 pp. 17-29 (2013).
[20] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
[21] M. Matloka, On some Hadamard-type inequalities for $\left(h_{1}, h_{2}\right)$-preinvex functions on the coordinates. (Submitted)
[22] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2(2007), 126-131.
[23] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.
[24] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.
[25] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl.,11(2006),165171
[26] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007), No. 3, 1-14.
[27] R. Pini, Invexity and generalized convexity, Optimization 22 (1991) 513-525.
[28] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., $13(2)(2000), 51-55$.
[29] F. Qi, Z. -L.Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard's inequality, Rocky Mountain J. Math., 35(2005), 235-251.
[30] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
[31] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, arXiv:1203.4759v1.
[32] M. Z. Sarıkaya and N. Aktan, On the generalization some integral inequalities and their applications Mathematical and Computer Modelling, 54(9-10)(2011), 2175-2182.
[33] M. Z. Sarikaya, M. Avci and H. Kavurmaci, On some inequalities of Hermite-Hadamard type for convex functions, ICMS International Conference on Mathematical Science, AIP Conference Proceedings 1309, 852(2010).
[34] M. Z. Sarikaya, On new Hermite-Hadamard Fejér type integral inequalities, Stud. Univ. Babeş-Bolyai Math. 57(2012), No. 3, 377-386.
[35] A. Saglam, M. Z. Sarikaya and H. Yıldırım, Some new inequalities of Hermite-Hadamard's type, Kyungpook Mathematical Journal, 50(2010), 399-410.
[36] M. Z. Sarikaya, N. Alp and H. Bozkurt, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, Contemporary Analysis and Applied Mathematics, Vol.1, No.2, 237-252, 2013.
[37] C. -L. Wang and X. -H. Wang, On an extension of Hadamard inequality for convex functions, Chin. Ann. Math., 3(1982), 567-570.
[38] S. -H. Wu , On the weighted generalization of the Hermite-Hadamard inequality and its applications, The Rocky Mountain J. of Math., 39(2009), no. 5, 1741-1749.
[39] T. Weir, and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
[40] Shu-Hong Wang and Feng Qi, Inequalities of Hermite-Hadamard type for convex functions which are n-times differentiable. (to appear)
[41] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001), 229-241.
[42] X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory. Appl., 117(2003), 607-625.
[43] Y. Wang, Bo-Yan Xi and Feng Qi, Hermite-Hadamard type integral inequalities when the power of the absolute value of the first derivative of the integrand is preinvex. (to appear)
${ }^{1}$ School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa

E-mail address: m_amer_latif@hotmail.com
${ }^{2}$ School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001,

Australia,
, ${ }^{3}$ School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa

E-mail address: sever.dragomir@vu.edu.au

[^0]: Date: Today.
 2000 Mathematics Subject Classification. Primary 26D15; Secondary 26A51, 26B12, 41A55.
 Key words and phrases. Hermite-Hadamard's inequality, invex set, preinvex function, Hölder's integral inequality.

 This paper is in final form and no version of it will be submitted for publication elsewhere.

