INEQUALITIES OF JENSEN TYPE FOR φ-CONVEX FUNCTIONS

S. S. DRAGOMIR ${ }^{1,2}$

Abstract. Some inequalities of Jensen type for φ-convex functions defined on real intervals are given.

1. Introduction

We recall here some concepts of convexity that are well known in the literature. Let I be an interval in \mathbb{R}.

Definition 1 ([38]). We say that $f: I \rightarrow \mathbb{R}$ is a Godunova-Levin function or that f belongs to the class $Q(I)$ if f is non-negative and for all $x, y \in I$ and $t \in(0,1)$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{t} f(x)+\frac{1}{1-t} f(y) \tag{1.1}
\end{equation*}
$$

Some further properties of this class of functions can be found in [29], [30], [32], [44], [47] and [48]. Among others, its has been noted that non-negative monotone and non-negative convex functions belong to this class of functions.

Definition 2 ([32]). We say that a function $f: I \rightarrow \mathbb{R}$ belongs to the class $P(I)$ if it is nonnegative and for all $x, y \in I$ and $t \in[0,1]$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq f(x)+f(y) \tag{1.2}
\end{equation*}
$$

Obviously $Q(I)$ contains $P(I)$ and for applications it is important to note that also $P(I)$ contain all nonnegative monotone, convex and quasi convex functions, i. e. nonnegative functions satisfying

$$
\begin{equation*}
f(t x+(1-t) y) \leq \max \{f(x), f(y)\} \tag{1.3}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
For some results on P-functions see [32] and [45] while for quasi convex functions, the reader can consult [31].

Definition 3 ([7]). Let s be a real number, $s \in(0,1]$. A function $f:[0, \infty) \rightarrow[0, \infty)$ is said to be s-convex (in the second sense) or Breckner s-convex if

$$
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y)
$$

for all $x, y \in[0, \infty)$ and $t \in[0,1]$.

[^0]For some properties of this class of functions see [1], [2], [7], [8], [27], [28], [39], [41] and [50].

In order to unify the above concepts for functions of real variable, S. Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in $\mathbb{R},(0,1) \subseteq J$ and functions h and f are real non-negative functions defined in J and I, respectively.

Definition 4 ([53]). Let $h: J \rightarrow[0, \infty)$ with h not identical to 0 . We say that $f: I \rightarrow[0, \infty)$ is an h-convex function if for all $x, y \in I$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) \tag{1.4}
\end{equation*}
$$

for all $t \in(0,1)$.
For some results concerning this class of functions see [53], [6], [42], [51], [49] and [52].

We can introduce now another class of functions.
Definition 5. We say that the function $f: I \rightarrow[0, \infty)$ is of s-Godunova-Levin type, with $s \in[0,1]$, if

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{t^{s}} f(x)+\frac{1}{(1-t)^{s}} f(y) \tag{1.5}
\end{equation*}
$$

for all $t \in(0,1)$ and $x, y \in I$.
We observe that for $s=0$ we obtain the class of P-functions while for $s=1$ we obtain the class of Godunova-Levin. If we denote by $Q_{s}(I)$ the class of s-GodunovaLevin functions defined on I, then we obviously have

$$
P(I)=Q_{0}(I) \subseteq Q_{s_{1}}(I) \subseteq Q_{s_{2}}(I) \subseteq Q_{1}(I)=Q(I)
$$

for $0 \leq s_{1} \leq s_{2} \leq 1$.
The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
(b-a) f\left(\frac{a+b}{2}\right)<\int_{a}^{b} f(x) d x<(b-a) \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R} \tag{1.6}
\end{equation*}
$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [43]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.
E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In 1974, D. S. Mitrinović found Hermite's note in Mathesis [43]. Since (1.6) was known as Hadamard's inequality, the inequality is now commonly referred as the Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[26], [33]-[36] and [46].
The following inequality of Hermite-Hadamard type for h-convex function holds [49].

Theorem 1. Assume that the function $f: I \rightarrow[0, \infty)$ is an h-convex function with $h \in L[0,1]$. Let $y, x \in I$ with $y \neq x$ and assume that the mapping $[0,1] \ni t \mapsto$ $f[(1-t) x+t y]$ is Lebesgue integrable on $[0,1]$. Then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u) d u \leq[f(x)+f(y)] \int_{0}^{1} h(t) d t \tag{1.7}
\end{equation*}
$$

If we write (1.7) for $h(t)=t$, then we get the classical Hermite-Hadamard inequality for convex functions

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u) d u \leq \frac{f(x)+f(y)}{2} \tag{1.8}
\end{equation*}
$$

If we write (1.7) for the case of P-type functions $f: I \rightarrow[0, \infty)$, i.e., $h(t)=$ $1, t \in[0,1]$, then we get the inequality

$$
\begin{equation*}
\frac{1}{2} f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u) d u \leq f(x)+f(y) \tag{1.9}
\end{equation*}
$$

that has been obtained for functions of real variable in [32].
If f is Breckner s-convex on I, for $s \in(0,1)$, then by taking $h(t)=t^{s}$ in (1.7) we get

$$
\begin{equation*}
2^{s-1} f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u) d u \leq \frac{f(x)+f(y)}{s+1} \tag{1.10}
\end{equation*}
$$

that was obtained for functions of a real variable in [27].
If $f: I \rightarrow[0, \infty)$ is of s-Godunova-Levin type, with $s \in[0,1)$, then

$$
\begin{equation*}
\frac{1}{2^{s+1}} f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u) d u \leq \frac{f(x)+f(y)}{1-s} \tag{1.11}
\end{equation*}
$$

We notice that for $s=1$ the first inequality in (1.11) still holds, i.e.

$$
\begin{equation*}
\frac{1}{4} f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \tag{1.12}
\end{equation*}
$$

The case for functions of real variables was obtained for the first time in [32].

2. φ-Convex Functions

We introduce the following class of h-convex functions.
Definition 6. Let $\varphi:(0,1) \rightarrow(0, \infty)$ a measurable function. We say that the function $f: I \rightarrow[0, \infty)$ is a φ-convex function on the interval I if for all $x, y \in I$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq t \varphi(t) f(x)+(1-t) \varphi(1-t) f(y) \tag{2.1}
\end{equation*}
$$

for all $t \in(0,1)$.
If we denote $\ell(t)=t$, the identity function, then it is obvious that f is h-convex with $h=\ell \varphi$. Also, all the examples from the introduction can be seen as φ-convex functions with appropriate choices of φ.

If we take $\varphi(t)=\frac{1}{t^{s+1}}$ with $s \in[0,1]$, then we get the class of s-Godunova-Levin functions. Also, if we put $\varphi(t)=t^{s-1}$ with $s \in(0,1)$, then we get the concept of Breckner s-convexity. We notice that for all these examples we have

$$
\varphi_{+}(0):=\lim _{t \rightarrow 0+} \varphi(t)=\infty
$$

The case of convex functions, i.e. when $\varphi(t)=1$ is the only example from above for which $\varphi_{+}(0)$ is finite, namely $\varphi_{+}(0)=1$.

Consider the family of functions, for $p>1$ and $k>0$

$$
\begin{equation*}
\delta(p, k):[0,1] \rightarrow \mathbb{R}_{+}, \delta(p, k)(t)=k(1-t)^{p}+1 \tag{2.2}
\end{equation*}
$$

We observe that $\delta_{+}(p, k)(0)=\delta(p, k)(0)=k+1, \delta(p, k)$ is strictly decreasing on $[0,1]$ and $\delta(p, k)(t) \geq \delta(p, k)(1)=1$.

Definition 7. We say that the function $f: I \rightarrow[0, \infty)$ is a $\delta(p, k)$-convex function on the interval I if for all $x, y \in I$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq t\left[k(1-t)^{p}+1\right] f(x)+(1-t)\left(k t^{p}+1\right) f(y) \tag{2.3}
\end{equation*}
$$

for all $t \in(0,1)$.
It is obvious that any nonnegative convex function is a $\delta^{(p, k)}$-convex function for any $p>1$ and $k>0$.

For $m>0$ we consider the family of functions

$$
\eta(m):[0,1] \rightarrow \mathbb{R}_{+}, \eta(m)(t):=\exp [m(1-t)]
$$

We observe that $\eta_{+}(m)(0)=\eta(m)(0)=\exp (m), \eta(m)$ is strictly decreasing on $[0,1]$ and $\eta(m)(t) \geq \eta(m)(1)=1$.
Definition 8. We say that the function $f: I \rightarrow[0, \infty)$ is a $\eta(m)$-convex function on the interval I if for all $x, y \in I$ we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq t \exp [m(1-t)] f(x)+(1-t) \exp (m t) f(y) \tag{2.4}
\end{equation*}
$$

for all $t \in(0,1)$.
It is obvious that any nonnegative convex function is a $\eta(m)$-convex function for any $m>0$.

There are many other examples one can consider. In fact any continuos function $\varphi:[0,1] \rightarrow[1, \infty)$ can generate a class of φ-convex function that contains the class of nonnegative convex functions.

Utilising Theorem 1 we can state the following result.
Theorem 2. Assume that the function $f: I \rightarrow[0, \infty)$ is a φ-convex function with $\ell \varphi \in L[0,1]$. Let $y, x \in I$ with $y \neq x$ and assume that the mapping $[0,1] \ni t \mapsto$ $f[(1-t) x+t y]$ is Lebesgue integrable on $[0,1]$. Then

$$
\begin{equation*}
\frac{1}{\varphi\left(\frac{1}{2}\right)} f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u) d u \leq[f(x)+f(y)] \int_{0}^{1} t \varphi(t) d t \tag{2.5}
\end{equation*}
$$

The proof follows from (1.7) by taking $h(t)=t \varphi(t), t \in(0,1)$.
Remark 1. We notice that, since $\int_{0}^{1} t \varphi(t) d t$ can be seen as the expectation of a random variable X with the density function φ, the inequality (2.5) provides a connection to Probability Theory and motivates the introduction of φ-convex function as a natural concept, having available many examples of density functions φ that arise in applications.

For different inequalities related to these classes of functions, see [1]-[4], [6], [9][37], [40]-[42] and [45]-[52].

A function $h: J \rightarrow \mathbb{R}$ is said to be supermultiplicative if

$$
\begin{equation*}
h(t s) \geq h(t) h(s) \text { for any } t, s \in J \tag{2.6}
\end{equation*}
$$

If the inequality (2.6) is reversed, then h is said to be submultiplicative. If the equality holds in (2.6) then h is said to be a multiplicative function on J.

In [53] it has been noted that if $h:[0, \infty) \rightarrow[0, \infty)$ with $h(t)=(x+c)^{p-1}$, then for $c=0$ the function h is multiplicative. If $c \geq 1$, then for $p \in(0,1)$ the function h is supermultiplicative and for $p>1$ the function is submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, the same is their product. In particular, if h is supermultiplicative then its product with a power function $\ell_{r}(t)=t^{r}$ is also supermultiplicative.

The case of h-convex function with h supermultiplicative is of interest due to several Jensen type inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.
Theorem 3. Let $h: J \rightarrow[0, \infty)$ be a supermultiplicative function on J. If the function $f: I \rightarrow[0, \infty)$ is h-convex on the interval I, then for any $w_{i} \geq 0, x_{i} \in I$, $i \in\{1, \ldots, n\}, n \geq 2$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$ we have

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} h\left(\frac{w_{i}}{W_{n}}\right) f\left(x_{i}\right) . \tag{2.7}
\end{equation*}
$$

In particular, we have the unweighted inequality

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq h\left(\frac{1}{n}\right) \sum_{i=1}^{n} f\left(x_{i}\right) \tag{2.8}
\end{equation*}
$$

Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}, R>0$. We have the following examples

$$
\begin{align*}
& h(z)=\sum_{n=1}^{\infty} \frac{1}{n} z^{n}=\ln \frac{1}{1-z}, z \in D(0,1) \tag{2.9}\\
& h(z)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} z^{2 n}=\cosh z, z \in \mathbb{C} \\
& h(z)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} z^{2 n+1}=\sinh z, z \in \mathbb{C} \\
& h(z)=\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}, z \in D(0,1)
\end{align*}
$$

Other important examples of functions as power series representations with nonnegative coefficients are:

$$
\begin{align*}
& h(z)=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}=\exp (z) \quad z \in \mathbb{C} \tag{2.10}\\
& h(z)=\sum_{n=1}^{\infty} \frac{1}{2 n-1} z^{2 n-1}=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right), \quad z \in D(0,1) \\
& h(z)=\sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi}(2 n+1) n!} z^{2 n+1}=\sin ^{-1}(z), \quad z \in D(0,1)
\end{align*}
$$

and

$$
\begin{align*}
h(z) & =\sum_{n=1}^{\infty} \frac{1}{2 n-1} z^{2 n-1}=\tanh ^{-1}(z), \quad z \in D(0,1) \tag{2.11}\\
h(z) & ={ }_{2} F_{1}(\alpha, \beta, \gamma, z)=\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha) \Gamma(n+\beta) \Gamma(\gamma)}{n!\Gamma(\alpha) \Gamma(\beta) \Gamma(n+\gamma)} z^{n}, \alpha, \beta, \gamma>0 \\
z & \in D(0,1)
\end{align*}
$$

where Γ is Gamma function.
The following result may provide many examples of supemultiplicative functions.
Lemma 1. Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}, R>0$. Assume that $0<r<R$ and define $h_{r}:[0,1] \rightarrow[0, \infty), h_{r}(t):=\frac{h(r t)}{h(r)}$. Then h_{r} is supemultiplicative on $[0,1]$.

Proof. We use the Čebyšev inequality for synchronous (the same monotonicity) sequences $\left(c_{i}\right)_{i \in \mathbb{N}},\left(b_{i}\right)_{i \in \mathbb{N}}$ and nonnegative weights $\left(p_{i}\right)_{i \in \mathbb{N}}$:

$$
\begin{equation*}
\sum_{i=0}^{n} p_{i} \sum_{i=0}^{n} p_{i} c_{i} b_{i} \geq \sum_{i=0}^{n} p_{i} c_{i} \sum_{i=0}^{n} p_{i} b_{i} \tag{2.12}
\end{equation*}
$$

for any $n \in \mathbb{N}$.
Let $t, s \in(0,1)$ and define the sequences $c_{i}:=t^{i}, b_{i}:=s^{i}$. These sequences are decreasing and if we apply Čebyšev's inequality for these sequences and the weights $p_{i}:=a_{i} r^{i} \geq 0$ we get

$$
\begin{equation*}
\sum_{i=0}^{n} a_{i} r^{i} \sum_{i=0}^{n} a_{i}(r t s)^{i} \geq \sum_{i=0}^{n} a_{i}(r t)^{i} \sum_{i=0}^{n} a_{i}(r s)^{i} \tag{2.13}
\end{equation*}
$$

for any $n \in \mathbb{N}$.
Since the series

$$
\sum_{i=0}^{\infty} a_{i} r^{i}, \quad \sum_{i=0}^{\infty} a_{i}(r t s)^{i}, \quad \sum_{i=0}^{\infty} a_{i}(r t)^{i} \text { and } \sum_{i=0}^{\infty} a_{i}(r s)^{i}
$$

are convergent, then by letting $n \rightarrow \infty$ in (2.13) we get

$$
h(r) h(r t s) \geq h(r t) h(r s)
$$

i.e.

$$
h_{r}(t s) \geq h_{r}(t) h_{r}(s)
$$

This inequality is also obviously satisfied at the end points of the interval $[0,1]$ and the proof is completed.

Remark 2. Utilising the above theorem, we then conclude that the functions

$$
h_{r}:[0,1] \rightarrow[0, \infty), h_{r}(t):=\frac{1-r}{1-r t}, r \in(0,1)
$$

and

$$
h_{r}:[0,1] \rightarrow[0, \infty), h_{r}(t):=\exp [-r(1-t)], r>0
$$

are supermultiplicative.

We say that the function $f: I \rightarrow[0, \infty)$ is r-resolvent convex with r fixed in $(0,1)$, if f is h-convex with $h(t)=\frac{1-r}{1-r t}$, i.e.

$$
\begin{equation*}
f(t x+(1-t) y) \leq(1-r)\left[\frac{1}{1-r t} f(x)+\frac{1}{1-r+r t} f(y)\right] \tag{2.14}
\end{equation*}
$$

for any $x, y \in I$ and $t \in[0,1]$.
In particular, for $r=\frac{1}{2}$ we have $\frac{1}{2}$-resolvent convex functions defined by the condition

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{2-t} f(x)+\frac{1}{1+t} f(y) \tag{2.15}
\end{equation*}
$$

for any $t \in[0,1]$ and $x, y \in I$.
Since

$$
t<\frac{1}{2-t}<\frac{1}{t} \text { and } 1-t<\frac{1}{1+t}<\frac{1}{1-t} \text { for } t \in(0,1)
$$

it follows that any nonnegative convex function is $\frac{1}{2}$-resolvent convex which, in its turn, is of Godunova-Levin type.

We say that the function $f: I \rightarrow[0, \infty)$ is r-exponential convex with r fixed in $(0, \infty)$, if f is h-convex with $h(t)=\exp [-r(1-t)]$, i.e.

$$
\begin{equation*}
f(t x+(1-t) y) \leq \exp [-r(1-t)] f(x)+\exp (-r t) f(y) \tag{2.16}
\end{equation*}
$$

for any $t \in[0,1]$ and $x, y \in C$.
Since

$$
t \leq \exp [-r(1-t)] \text { and } 1-t \leq \exp (-r t) \text { for } t \in[0,1]
$$

it follows that any nonnegative convex function is r-exponential convex with $r \in$ $(0, \infty)$.

Corollary 1. Let $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with complex coefficients and convergent on the open disk $D(0, R) \subset \mathbb{C}, R>0$. Assume that $0<r<R$ and define $h_{r}:[0,1] \rightarrow[0, \infty), h_{r}(t):=\frac{h(r t)}{h(r)}$. If the function $f: I \rightarrow[0, \infty)$ is h_{r}-convex on the on the interval I, namely

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{1}{h(r)}[h(r t) f(x)+h(r(1-t)) f(y)] \tag{2.17}
\end{equation*}
$$

for any $t \in[0,1]$ and $x, y \in I$, then for any $x_{i} \in I, w_{i} \geq 0, i \in\{1, \ldots, n\}, n \geq 2$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$ we have

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \frac{1}{h(r)} \sum_{i=1}^{n} h\left(r \frac{w_{i}}{W_{n}}\right) f\left(x_{i}\right) \tag{2.18}
\end{equation*}
$$

Remark 3. If the function $f: I \rightarrow[0, \infty)$ is $\frac{1}{2}$-resolvent convex on I, then for any $x_{i} \in I, w_{i} \geq 0, i \in\{1, \ldots, n\}, n \geq 2$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$ we have

$$
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq W_{n} \sum_{i=1}^{n} \frac{1}{2 W_{n}-w_{i}} f\left(x_{i}\right)
$$

If the function $f: I \rightarrow[0, \infty)$ is r-exponential convex with r fixed in $(0, \infty)$, then for any $x_{i} \in I, w_{i} \geq 0, i \in\{1, \ldots, n\}, n \geq 2$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$ we have

$$
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} \exp \left[-r\left(1-\frac{w_{i}}{W_{n}}\right)\right] f\left(x_{i}\right)
$$

We have the following Jensen type inequality for φ-convex functions.
Corollary 2. Let $\varphi: J \rightarrow[0, \infty)$ be a supermultiplicative function on J. If the function $f: I \rightarrow[0, \infty)$ is φ-convex on the interval I, then for any $w_{i} \geq 0, x_{i} \in I$, $i \in\{1, \ldots, n\}, n \geq 2$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$ we have

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} \varphi\left(\frac{w_{i}}{W_{n}}\right) f\left(x_{i}\right) \tag{2.19}
\end{equation*}
$$

In particular, we have the unweighted inequality

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq \varphi\left(\frac{1}{n}\right) \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) . \tag{2.20}
\end{equation*}
$$

The proof follows by Theorem 3 for the supermultiplicative function $h(t)=$ $t \varphi(t), t \in J$.

The inequality (2.19) will be used further to obtain an integral Jensen type inequality.

3. Some Results for Differentiable Functions

If we assume that the function $f: I \rightarrow[0, \infty)$ is differentiable on the interior of I, denoted by $\stackrel{\circ}{I}$, then we have the following "gradient inequality" that will play an essential role in the following.

Lemma 2. Let $\varphi:(0,1) \rightarrow(0, \infty)$ be a measurable function and such that the right limit $\varphi_{+}(0)$ exists and is finite, the left limit $\varphi_{-}(1)=1$ and the left derivative in 1 denoted $\varphi_{-}^{\prime}(1)$ exists and is finite. If the function $f: I \rightarrow[0, \infty)$ is differentiable on \check{I} and φ-convex, then

$$
\begin{equation*}
\varphi_{+}(0) f(x)-\left[\varphi_{-}^{\prime}(1)+1\right] f(y) \geq f^{\prime}(y)(x-y) \tag{3.1}
\end{equation*}
$$

for any $x, y \in \stackrel{\circ}{I}$ with $x \neq y$.
Proof. Since f is φ-convex on I, then

$$
t \varphi(t) f(x)+(1-t) \varphi(1-t) f(y) \geq f(t x+(1-t) y)
$$

for any $t \in(0,1)$ and for any $x, y \in \stackrel{\circ}{I}$, which is equivalent to

$$
t \varphi(t) f(x)+[(1-t) \varphi(1-t)-1] f(y) \geq f(t x+(1-t) y)-f(y)
$$

and by dividing by $t>0$ we get

$$
\begin{equation*}
\varphi(t) f(x)+\left[\frac{(1-t) \varphi(1-t)-1}{t}\right] f(y) \geq \frac{f(t x+(1-t) y)-f(y)}{t} \tag{3.2}
\end{equation*}
$$

for any $t \in(0,1)$.
Now, since f is differentiable on $y \in \stackrel{\circ}{I}$, then we have

$$
\begin{align*}
\lim _{t \rightarrow 0+} \frac{f(t x+(1-t) y)-f(y)}{t} & =\lim _{t \rightarrow 0+} \frac{f(y+t(x-y))-f(y)}{t} \tag{3.3}\\
& =(x-y) \lim _{t \rightarrow 0+} \frac{f(y+t(x-y))-f(y)}{t(x-y)} \\
& =(x-y) f^{\prime}(y)
\end{align*}
$$

for any $x \in \stackrel{\circ}{I}$ with $x \neq y$.

Also since $\varphi_{-}(1)=1$ and $\varphi_{-}^{\prime}(1)$ exists and is finite, we have

$$
\begin{align*}
\lim _{t \rightarrow 0+} \frac{(1-t) \varphi(1-t)-1}{t} & =\lim _{s \rightarrow 1-} \frac{s \varphi(s)-1}{1-s}=-\lim _{s \rightarrow 1-} \frac{s \varphi(s)-1}{s-1} \tag{3.4}\\
& =-\lim _{s \rightarrow 1-} \frac{s(\varphi(s)-\varphi(1))+s-1}{s-1} \\
& =-\varphi_{-}^{\prime}(1)-1 .
\end{align*}
$$

Taking the limit over $t \rightarrow 0+$ in (3.2) and utilizing (3.3) and (3.4) we get the desired result (3.1).

Remark 4. If we assume that

$$
\begin{equation*}
\varphi_{+}(0) \geq \varphi_{-}^{\prime}(1)+1 \tag{3.5}
\end{equation*}
$$

then the inequality (3.1) also holds for $x=y$.
There are numerous examples of such functions, for instance, if, as above we take $\varphi(t)=k(1-t)^{p}+1, t \in[0,1](p>1, k>0)$ then $\varphi_{+}(0)=k+1, \varphi_{-}(1)=1$ and $\varphi_{-}^{\prime}(1)=0$, which satisfy the condition (3.5).

If we take $\varphi(t)=\exp [m(1-t)](m>0)$, then $\varphi_{+}(0)=\exp m, \varphi_{-}(1)=1$ and $\varphi_{-}^{\prime}(1)=-m$. We have

$$
\varphi_{+}(0)-\varphi_{-}(1)-\varphi_{-}^{\prime}(1)=e^{m}-1+m>0
$$

for $m>0$.
The following result holds:
Theorem 4. Let $\varphi:(0,1) \rightarrow(0, \infty)$ a measurable function and such that the right limit $\varphi_{+}(0)$ exists and is finite, the left limit $\varphi_{-}(1)=1$ and the left derivative in 1 denoted $\varphi_{-}^{\prime}(1)$ exists and is finite. Assume also that $\varphi_{-}^{\prime}(1)>-1$. If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and φ-convex, then

$$
\begin{equation*}
\frac{\varphi_{+}(0)}{\varphi_{-}^{\prime}(1)+1} \cdot \frac{f(x)+f(y)}{2} \geq \frac{1}{y-x} \int_{x}^{y} f(u) d u \geq \frac{\varphi_{-}^{\prime}(1)+1}{\varphi_{+}(0)} f\left(\frac{x+y}{2}\right) \tag{3.6}
\end{equation*}
$$

for any $x, y \in I$.
Remark 5. It has been shown in [25] that the inequalities (2.5) and (3.6) are not comparable, meaning that some time one is better then the other, depending on the φ-convex function involved.

The following discrete Jensen type inequality holds:
Theorem 5. Let $\varphi:(0,1) \rightarrow(0, \infty)$ be a measurable function and such that the right limit $\varphi_{+}(0)$ exists and is finite, the left limit $\varphi_{-}(1)=1$ and the left derivative in 1 denoted φ_{-}^{\prime} (1) exists and is finite. Assume also that

$$
\begin{equation*}
\varphi_{+}(0) \geq \varphi_{-}^{\prime}(1)+1>0 \tag{3.7}
\end{equation*}
$$

If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and φ-convex, then for any $w_{i} \geq 0, x_{i} \in \stackrel{\circ}{I}, i \in\{1, \ldots, n\}, n \geq 2$ with $W_{n}:=\sum_{i=1}^{n} w_{i}>0$ we have

$$
\begin{equation*}
\frac{\varphi_{+}(0)}{\varphi_{-}^{\prime}(1)+1} \cdot \frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} f\left(x_{j}\right) \geq f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \tag{3.8}
\end{equation*}
$$

If $\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i} \neq x_{j}$ for any $j \in\{1, \ldots, n\}$, then the first condition in 3.7 can be dropped.

Proof. From (3.1) we have

$$
\begin{align*}
& \varphi_{+}(0) f\left(x_{j}\right)-\left[\varphi_{-}^{\prime}(1)+1\right] f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \tag{3.9}\\
& \geq f^{\prime}\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right)\left(x_{j}-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right)
\end{align*}
$$

for any $j \in\{1, \ldots, n\}$.
If we multiply (3.9) by $w_{i} \geq 0$ and sum over j from 1 to n we get

$$
\begin{aligned}
& \varphi_{+}(0) \sum_{j=1}^{n} w_{j} f\left(x_{j}\right)-\left[\varphi_{-}^{\prime}(1)+1\right] \sum_{j=1}^{n} w_{j} f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \\
& \geq f^{\prime}\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \sum_{j=1}^{n} w_{j}\left(x_{j}-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right)=0
\end{aligned}
$$

which proves the desired result (3.8).

4. Integral Inequalities

We have the following Jensen inequality for the Riemann integral:
Theorem 6. Let $u:[a, b] \rightarrow[m, M]$ be a Riemann integrable function. Suppose that $\varphi: J \rightarrow[0, \infty)$ is a supermultiplicative function on J and the function f : $[m, M] \rightarrow[0, \infty)$ is φ-convex and continuous on the interval $[m, M]$. If the right limit $\varphi_{+}(0)$ exists and is finite, then

$$
\begin{equation*}
f\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t\right) \leq \varphi_{+}(0) \frac{1}{b-a} \int_{a}^{b} f(u(t)) d t \tag{4.1}
\end{equation*}
$$

Proof. Consider the sequence of divisions

$$
d_{n}: x_{i}^{(n)}=a+\frac{i}{n}(b-a), i \in\{0, \ldots, n\}
$$

and the intermediate points

$$
\xi_{i}^{(n)}=a+\frac{i}{n}(b-a), i \in\{0, \ldots, n\}
$$

We observe that the norm of the division $\Delta_{n}:=\max _{i \in\{0, \ldots, n-1\}}\left(x_{i+1}^{(n)}-x_{i}^{(n)}\right)=$ $\frac{b-a}{n} \rightarrow 0$ as $n \rightarrow \infty$ and since u is Riemann integrable on $[a, b]$, then

$$
\begin{aligned}
\int_{a}^{b} u(t) d t & =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} u\left(\xi_{i}^{(n)}\right)\left[x_{i+1}^{(n)}-x_{i}^{(n)}\right] \\
& =\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=0}^{n-1} u\left(a+\frac{i}{n}(b-a)\right) .
\end{aligned}
$$

Also, since $f:[m, M] \rightarrow[0, \infty)$ is Riemann integrable, then $f \circ u$ is Riemann integrable and

$$
\int_{a}^{b} f(u(t)) d t==\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=0}^{n-1} f\left[u\left(a+\frac{i}{n}(b-a)\right)\right] .
$$

Utilising the inequality (2.19) for $w_{i}:=\frac{b-a}{n}$ and $x_{i}:=u\left(a+\frac{i}{n}(b-a)\right)$ we have

$$
\begin{align*}
& f\left(\frac{1}{b-a} \frac{b-a}{n} \sum_{i=0}^{n-1} u\left(a+\frac{i}{n}(b-a)\right)\right) \tag{4.2}\\
& \leq \frac{1}{b-a} \frac{b-a}{n} \sum_{i=0}^{n-1} \varphi\left(\frac{1}{n}\right) f\left(u\left(a+\frac{i}{n}(b-a)\right)\right) \\
& =\frac{1}{b-a} \varphi\left(\frac{1}{n}\right) \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(u\left(a+\frac{i}{n}(b-a)\right)\right)
\end{align*}
$$

for any $n \geq 1$.
Since f is continuous, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f\left(\frac{1}{b-a} \frac{b-a}{n} \sum_{i=0}^{n-1} u\left(a+\frac{i}{n}(b-a)\right)\right) \\
& =f\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t\right)
\end{aligned}
$$

Also

$$
\lim _{n \rightarrow \infty} \varphi\left(\frac{1}{n}\right)=\varphi_{+}(0)<\infty
$$

Therefore, taking the limit over $n \rightarrow \infty$ in the inequality (4.2) we deduce the desired result (4.1).

We have the following Hermite-Hadamard type inequality:
Corollary 3. Suppose that $\varphi: J \rightarrow[0, \infty)$ is a supermultiplicative function on J and the function $f: I \rightarrow[0, \infty)$ is φ-convex and continuous on the interval I. If the right limit $\varphi_{+}(0)$ exists and is finite with $\varphi_{+}(0)>0$, then for any $x, y \in I$ with $x \neq y$ we have

$$
\begin{equation*}
\frac{1}{\varphi_{+}(0)} f\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y} f(u(t)) d t \tag{4.3}
\end{equation*}
$$

Remark 6. If the function $f:[m, M] \rightarrow[0, \infty)$ is a $\delta(p, k)$-convex and continuous function on the interval $[m, M]$ ($p>1$ and $k>0$, see Definition 7) then for any $u:[a, b] \rightarrow[m, M]$ a Riemann integrable function on $[a, b]$ we have

$$
\begin{equation*}
\frac{1}{k+1} f\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t\right) \leq \frac{1}{b-a} \int_{a}^{b} f(u(t)) d t \tag{4.4}
\end{equation*}
$$

If the function $f:[m, M] \rightarrow[0, \infty)$ is a $\eta(s)$-convex and continuous function on the interval $[m, M](s>0$, see Definition 8) then for any $u:[a, b] \rightarrow[m, M] a$ Riemann integrable function on $[a, b]$ we have

$$
\begin{equation*}
\frac{1}{e^{s}} f\left(\frac{1}{b-a} \int_{a}^{b} u(t) d t\right) \leq \frac{1}{b-a} \int_{a}^{b} f(u(t)) d t \tag{4.5}
\end{equation*}
$$

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a $\sigma-$ algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$.

For a μ-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for μ - a.e.(almost every) $x \in \Omega$, consider the Lebesgue space

$$
L_{w}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, f \text { is } \mu \text {-measurable and } \int_{\Omega} w(x)|f(x)| d \mu(x)<\infty\right\}
$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d \mu$ instead of $\int_{\Omega} w(x) d \mu(x)$.
Theorem 7. Let $\varphi:(0,1) \rightarrow(0, \infty)$ be a measurable function and such that the right limit $\varphi_{+}(0)$ exists and is finite, the left limit $\varphi_{-}(1)=1$ and the left derivative in 1 denoted φ_{-}^{\prime} (1) exists and is finite. Assume also that

$$
\begin{equation*}
\varphi_{+}(0) \geq \varphi_{-}^{\prime}(1)+1>0 \tag{4.6}
\end{equation*}
$$

If the function $f: I \rightarrow[0, \infty)$ is differentiable on $\stackrel{\circ}{I}$ and φ-convex, then for any $u: \Omega \rightarrow[m, M] \subset I$ so that $f \circ u, u \in L_{w}(\Omega, \mu)$, where $w \geq 0 \mu$-a.e. (almost everywhere) on Ω with $\int_{\Omega} w d \mu=1$ we have

$$
\begin{equation*}
\frac{\varphi_{+}(0)}{\varphi_{-}^{\prime}(1)+1} \cdot \int_{\Omega} w(f \circ u) d \mu \geq f\left(\int_{\Omega} w u d \mu\right) \tag{4.7}
\end{equation*}
$$

If $\int_{\Omega} w u d \mu \neq u(x)$ for μ-a.e. $x \in \Omega$, then we can drop the first condition in (4.6).

Proof. From (3.1) and since $\int_{\Omega} w u d \mu \in[m, M] \subset \AA$ we have

$$
\begin{align*}
& \varphi_{+}(0) f(u(x))-\left[\varphi_{-}^{\prime}(1)+1\right] f\left(\int_{\Omega} w u d \mu\right) \tag{4.8}\\
& \geq f^{\prime}\left(\int_{\Omega} w u d \mu\right)\left(u(x)-\int_{\Omega} w u d \mu\right)
\end{align*}
$$

for any $x \in \Omega$.
If we multiply (4.8) by $w \geq 0 \mu$-a.e. on Ω and integrate over the positive measure μ we get

$$
\begin{aligned}
& \varphi_{+}(0) \int_{\Omega} w(x) f(u(x)) d \mu(x)-\left[\varphi_{-}^{\prime}(1)+1\right] f\left(\int_{\Omega} w u d \mu\right) \int_{\Omega} w(x) d \mu(x) \\
& \geq f^{\prime}\left(\int_{\Omega} w u d \mu\right) \int_{\Omega} w(x)\left(u(x)-\int_{\Omega} w u d \mu\right) d \mu(x)=0
\end{aligned}
$$

which produces the desired result (4.7).
Remark 7. If the function $f:[m, M] \rightarrow[0, \infty)$ is a $\delta(p, k)$-convex and continuous function on the interval $[m, M]$, then for any $u: \Omega \rightarrow[m, M] \subset \stackrel{\circ}{I}$ so that $f \circ u$, $u \in L_{w}(\Omega, \mu)$, where $w \geq 0 \mu$-a.e. on Ω with $\int_{\Omega} w d \mu=1$ we have

$$
\begin{equation*}
\int_{\Omega} w(f \circ u) d \mu \geq \frac{1}{k+1} f\left(\int_{\Omega} w u d \mu\right) \tag{4.9}
\end{equation*}
$$

If the function $f:[m, M] \rightarrow[0, \infty)$ is a $\eta(s)$-convex and continuous function on the interval $[m, M]$ then for any $u: \Omega \rightarrow[m, M] \subset \AA$ so that $f \circ u, u \in L_{w}(\Omega, \mu)$, where $w \geq 0 \mu$-a.e. on Ω with $\int_{\Omega} w d \mu=1$ we have

$$
\begin{equation*}
\int_{\Omega} w(f \circ u) d \mu \geq \frac{1}{e^{s}} f\left(\int_{\Omega} w u d \mu\right) \tag{4.10}
\end{equation*}
$$

These results generalize the inequalities (4.4) and (4.5).

References

[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175-189.
[4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[5] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[6] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869-1877.
[7] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[8] W. W. Breckner and G. Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea "Babeş-Bolyai", Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
[9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135-200.
[10] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the RiemannStieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
[11] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697712.
[12] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
[13] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
[14] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[15] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
[16] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. © Appl., 4(1) (2001), 33-40.
[17] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, $\mathbf{5}(1)$ (2001), 35-45.
[18] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure \& Appl. Math., 3(5) (2002), Art. 68.
[19] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[20] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
[21] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
[22] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373-382.
[23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[24] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 72 [Online http://rgmia.org/papers/v16/v16a72.pdf].
[25] S. S. Dragomir, Inequalities of Hermite-Hadamard type for φ-convex functions, Prerpint RGMIA Res. Rep. Coll. 16 (2013), Art.
[26] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[27] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[28] S.S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49.
[29] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin. Indian J. Math. 39 (1997), no. 1, 1-9.
[30] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93-100.
[31] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
[32] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[33] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
[34] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in $L_{1}-$ norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[35] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[36] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{p}-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40 (3) (1998), 245-304.
[37] A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq. 4 (2010), No. 3, 365-369.
[38] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[39] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[40] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press)
[41] U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35.
[42] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1473-1482.
[43] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[44] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33-36.
[45] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[46] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1989.
[47] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.
[48] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 12 (2009), no. 4, 853-862.
[49] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for hconvex functions. J. Math. Inequal. 2 (2008), no. 3, 335-341.
[50] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82.
[51] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265-272.
[52] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013:326.
[53] S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 25D10.
 Key words and phrases. Convex functions, Integral inequalities, h-Convex functions.

