
INEQUALITIES OF JENSEN TYPE FOR '-CONVEX
FUNCTIONS

S. S. DRAGOMIR1;2

Abstract. Some inequalities of Jensen type for '-convex functions de�ned
on real intervals are given.

1. Introduction

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

De�nition 1 ([38]). We say that f : I ! R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all x; y 2 I and t 2 (0; 1)
we have

(1.1) f (tx+ (1� t) y) � 1

t
f (x) +

1

1� tf (y) :

Some further properties of this class of functions can be found in [29], [30], [32],
[44], [47] and [48]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

De�nition 2 ([32]). We say that a function f : I ! R belongs to the class P (I)
if it is nonnegative and for all x; y 2 I and t 2 [0; 1] we have

(1.2) f (tx+ (1� t) y) � f (x) + f (y) :

Obviously Q (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convex functions, i.
e. nonnegative functions satisfying

(1.3) f (tx+ (1� t) y) � max ff (x) ; f (y)g

for all x; y 2 I and t 2 [0; 1] :
For some results on P -functions see [32] and [45] while for quasi convex functions,

the reader can consult [31].

De�nition 3 ([7]). Let s be a real number, s 2 (0; 1]: A function f : [0;1)! [0;1)
is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1� t) y) � tsf (x) + (1� t)s f (y)

for all x; y 2 [0;1) and t 2 [0; 1] :

1991 Mathematics Subject Classi�cation. 26D15; 25D10.
Key words and phrases. Convex functions, Integral inequalities, h-Convex functions.

1

sever
Typewriter
Received 25/11/13



2 S. S. DRAGOMIR1;2

For some properties of this class of functions see [1], [2], [7], [8], [27], [28], [39],
[41] and [50].
In order to unify the above concepts for functions of real variable, S. Varo�anec

introduced the concept of h-convex functions as follows.
Assume that I and J are intervals in R; (0; 1) � J and functions h and f are

real non-negative functions de�ned in J and I; respectively.

De�nition 4 ([53]). Let h : J ! [0;1) with h not identical to 0. We say that
f : I ! [0;1) is an h-convex function if for all x; y 2 I we have
(1.4) f (tx+ (1� t) y) � h (t) f (x) + h (1� t) f (y)
for all t 2 (0; 1) :

For some results concerning this class of functions see [53], [6], [42], [51], [49] and
[52].
We can introduce now another class of functions.

De�nition 5. We say that the function f : I ! [0;1) is of s-Godunova-Levin
type, with s 2 [0; 1] ; if

(1.5) f (tx+ (1� t) y) � 1

ts
f (x) +

1

(1� t)s f (y) ;

for all t 2 (0; 1) and x; y 2 I:

We observe that for s = 0 we obtain the class of P -functions while for s = 1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions de�ned on I, then we obviously have

P (I) = Q0 (I) � Qs1 (I) � Qs2 (I) � Q1 (I) = Q (I)
for 0 � s1 � s2 � 1:
The following inequality holds for any convex function f de�ned on R

(1.6) (b� a)f
�
a+ b

2

�
<

Z b

a

f(x)dx < (b� a)f(a) + f(b)
2

; a; b 2 R:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [43]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [43]. Since (1.6) was
known as Hadamard�s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.
For related results, see [10]-[19], [22]-[26], [33]-[36] and [46].
The following inequality of Hermite-Hadamard type for h-convex function holds

[49].

Theorem 1. Assume that the function f : I ! [0;1) is an h-convex function with
h 2 L [0; 1] : Let y; x 2 I with y 6= x and assume that the mapping [0; 1] 3 t 7!
f [(1� t)x+ ty] is Lebesgue integrable on [0; 1] : Then

(1.7)
1

2h
�
1
2

�f �x+ y
2

�
� 1

y � x

Z y

x

f (u) du � [f (x) + f (y)]
Z 1

0

h (t) dt:
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If we write (1.7) for h (t) = t; then we get the classical Hermite-Hadamard
inequality for convex functions

(1.8) f

�
x+ y

2

�
� 1

y � x

Z y

x

f (u) du � f (x) + f (y)

2
:

If we write (1.7) for the case of P -type functions f : I ! [0;1), i.e., h (t) =
1; t 2 [0; 1] ; then we get the inequality

(1.9)
1

2
f

�
x+ y

2

�
� 1

y � x

Z y

x

f (u) du � f (x) + f (y) ;

that has been obtained for functions of real variable in [32].
If f is Breckner s-convex on I; for s 2 (0; 1) ; then by taking h (t) = ts in (1.7)

we get

(1.10) 2s�1f

�
x+ y

2

�
� 1

y � x

Z y

x

f (u) du � f (x) + f (y)

s+ 1
;

that was obtained for functions of a real variable in [27].
If f : I ! [0;1) is of s-Godunova-Levin type, with s 2 [0; 1), then

(1.11)
1

2s+1
f

�
x+ y

2

�
� 1

y � x

Z y

x

f (u) du � f (x) + f (y)

1� s :

We notice that for s = 1 the �rst inequality in (1.11) still holds, i.e.

(1.12)
1

4
f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty] dt:

The case for functions of real variables was obtained for the �rst time in [32].

2. '-Convex Functions

We introduce the following class of h-convex functions.

De�nition 6. Let ' : (0; 1) ! (0;1) a measurable function. We say that the
function f : I ! [0;1) is a '-convex function on the interval I if for all x; y 2 I
we have

(2.1) f (tx+ (1� t) y) � t' (t) f (x) + (1� t)' (1� t) f (y)
for all t 2 (0; 1) :

If we denote ` (t) = t; the identity function, then it is obvious that f is h-convex
with h = `': Also, all the examples from the introduction can be seen as '-convex
functions with appropriate choices of ':
If we take ' (t) = 1

ts+1 with s 2 [0; 1] ; then we get the class of s-Godunova-Levin
functions. Also, if we put ' (t) = ts�1 with s 2 (0; 1) ; then we get the concept of
Breckner s-convexity. We notice that for all these examples we have

'+ (0) := lim
t!0+

' (t) =1:

The case of convex functions, i.e. when ' (t) = 1 is the only example from above
for which '+ (0) is �nite, namely '+ (0) = 1:
Consider the family of functions, for p > 1 and k > 0

(2.2) � (p; k) : [0; 1]! R+, � (p; k) (t) = k (1� t)p + 1:
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We observe that �+ (p; k) (0) = � (p; k) (0) = k + 1; � (p; k) is strictly decreasing on
[0; 1] and � (p; k) (t) � � (p; k) (1) = 1:

De�nition 7. We say that the function f : I ! [0;1) is a � (p; k)-convex function
on the interval I if for all x; y 2 I we have

(2.3) f (tx+ (1� t) y) � t [k (1� t)p + 1] f (x) + (1� t) (ktp + 1) f (y)

for all t 2 (0; 1) :

It is obvious that any nonnegative convex function is a �(p;k)-convex function for
any p > 1 and k > 0:
For m > 0 we consider the family of functions

� (m) : [0; 1]! R+; � (m) (t) := exp [m (1� t)] :

We observe that �+ (m) (0) = � (m) (0) = exp (m) ; � (m) is strictly decreasing on
[0; 1] and � (m) (t) � � (m) (1) = 1:

De�nition 8. We say that the function f : I ! [0;1) is a � (m)-convex function
on the interval I if for all x; y 2 I we have

(2.4) f (tx+ (1� t) y) � t exp [m (1� t)] f (x) + (1� t) exp (mt) f (y)

for all t 2 (0; 1) :

It is obvious that any nonnegative convex function is a � (m)-convex function for
any m > 0:
There are many other examples one can consider. In fact any continuos function

' : [0; 1]! [1;1) can generate a class of '-convex function that contains the class
of nonnegative convex functions.
Utilising Theorem 1 we can state the following result.

Theorem 2. Assume that the function f : I ! [0;1) is a '-convex function with
`' 2 L [0; 1] : Let y; x 2 I with y 6= x and assume that the mapping [0; 1] 3 t 7!
f [(1� t)x+ ty] is Lebesgue integrable on [0; 1] : Then

(2.5)
1

'
�
1
2

�f �x+ y
2

�
� 1

y � x

Z y

x

f (u) du � [f (x) + f (y)]
Z 1

0

t' (t) dt:

The proof follows from (1.7) by taking h (t) = t' (t) ; t 2 (0; 1) :

Remark 1. We notice that, since
R 1
0
t' (t) dt can be seen as the expectation of a

random variable X with the density function '; the inequality (2.5) provides a con-
nection to Probability Theory and motivates the introduction of '-convex function
as a natural concept, having available many examples of density functions ' that
arise in applications.

For di¤erent inequalities related to these classes of functions, see [1]-[4], [6], [9]-
[37], [40]-[42] and [45]-[52].
A function h : J ! R is said to be supermultiplicative if

(2.6) h (ts) � h (t)h (s) for any t; s 2 J:

If the inequality (2.6) is reversed, then h is said to be submultiplicative. If the
equality holds in (2.6) then h is said to be a multiplicative function on J .
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In [53] it has been noted that if h : [0;1)! [0;1) with h (t) = (x+ c)p�1 ; then
for c = 0 the function h is multiplicative. If c � 1; then for p 2 (0; 1) the function
h is supermultiplicative and for p > 1 the function is submultiplicative.
We observe that, if h; g are nonnegative and supermultiplicative, the same is

their product. In particular, if h is supermultiplicative then its product with a
power function `r (t) = tr is also supermultiplicative.
The case of h-convex function with h supermultiplicative is of interest due to

several Jensen type inequalities one can derive.
The following results were obtained in [53] for functions of a real variable.

Theorem 3. Let h : J ! [0;1) be a supermultiplicative function on J: If the
function f : I ! [0;1) is h-convex on the interval I, then for any wi � 0; xi 2 I;
i 2 f1; :::; ng ; n � 2 with Wn :=

Pn
i=1 wi > 0 we have

(2.7) f

 
1

Wn

nX
i=1

wixi

!
�

nX
i=1

h

�
wi
Wn

�
f (xi) :

In particular, we have the unweighted inequality

(2.8) f

 
1

n

nX
i=1

xi

!
� h

�
1

n

� nX
i=1

f (xi) :

Let h (z) =
P1

n=0 anz
n be a power series with complex coe¢ cients and conver-

gent on the open disk D (0; R) � C, R > 0: We have the following examples

h (z) =
1X
n=1

1

n
zn = ln

1

1� z ; z 2 D (0; 1) ;(2.9)

h (z) =
1X
n=0

1

(2n)!
z2n = cosh z; z 2 C;

h (z) =
1X
n=0

1

(2n+ 1)!
z2n+1 = sinh z; z 2 C;

h (z) =

1X
n=0

zn =
1

1� z ; z 2 D (0; 1) :

Other important examples of functions as power series representations with non-
negative coe¢ cients are:

h (z) =
1X
n=0

1

n!
zn = exp (z) z 2 C,(2.10)

h (z) =

1X
n=1

1

2n� 1z
2n�1 =

1

2
ln

�
1 + z

1� z

�
; z 2 D (0; 1) ;

h (z) =
1X
n=0

�
�
n+ 1

2

�
p
� (2n+ 1)n!

z2n+1 = sin�1 (z) ; z 2 D (0; 1) ;
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and

h (z) =
1X
n=1

1

2n� 1z
2n�1 = tanh�1 (z) ; z 2 D (0; 1)(2.11)

h (z) =2 F1 (�; �; 
; z) =
1X
n=0

� (n+ �) � (n+ �) � (
)

n!� (�) � (�) � (n+ 
)
zn; �; �; 
 > 0;

z 2 D (0; 1) ;

where � is Gamma function.
The following result may provide many examples of supemultiplicative functions.

Lemma 1. Let h (z) =
P1

n=0 anz
n be a power series with complex coe¢ cients and

convergent on the open disk D (0; R) � C, R > 0: Assume that 0 < r < R and
de�ne hr : [0; 1]! [0;1); hr (t) := h(rt)

h(r) : Then hr is supemultiplicative on [0; 1] :

Proof. We use the µCeby�ev inequality for synchronous (the same monotonicity)
sequences (ci)i2N ; (bi)i2N and nonnegative weights (pi)i2N :

(2.12)
nX
i=0

pi

nX
i=0

picibi �
nX
i=0

pici

nX
i=0

pibi;

for any n 2 N.
Let t; s 2 (0; 1) and de�ne the sequences ci := ti; bi := si: These sequences are

decreasing and if we apply µCeby�ev�s inequality for these sequences and the weights
pi := air

i � 0 we get

(2.13)
nX
i=0

air
i
nX
i=0

ai (rts)
i �

nX
i=0

ai (rt)
i
nX
i=0

ai (rs)
i

for any n 2 N.
Since the series

1X
i=0

air
i;

1X
i=0

ai (rts)
i
;

1X
i=0

ai (rt)
i and

1X
i=0

ai (rs)
i

are convergent, then by letting n!1 in (2.13) we get

h (r)h (rts) � h (rt)h (rs)

i.e.
hr (ts) � hr (t)hr (s) :

This inequality is also obviously satis�ed at the end points of the interval [0; 1] and
the proof is completed. �

Remark 2. Utilising the above theorem, we then conclude that the functions

hr : [0; 1]! [0;1); hr (t) :=
1� r
1� rt ; r 2 (0; 1)

and
hr : [0; 1]! [0;1); hr (t) := exp [�r (1� t)] ; r > 0

are supermultiplicative.
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We say that the function f : I ! [0;1) is r-resolvent convex with r �xed in
(0; 1) ; if f is h-convex with h (t) = 1�r

1�rt ; i.e.

(2.14) f (tx+ (1� t) y) � (1� r)
�

1

1� rtf (x) +
1

1� r + rtf (y)
�

for any x; y 2 I and t 2 [0; 1] :
In particular, for r = 1

2 we have
1
2 -resolvent convex functions de�ned by the

condition

(2.15) f (tx+ (1� t) y) � 1

2� tf (x) +
1

1 + t
f (y)

for any t 2 [0; 1] and x; y 2 I:
Since

t <
1

2� t <
1

t
and 1� t < 1

1 + t
<

1

1� t for t 2 (0; 1)

it follows that any nonnegative convex function is 1
2 -resolvent convex which, in its

turn, is of Godunova-Levin type.
We say that the function f : I ! [0;1) is r-exponential convex with r �xed in

(0;1) ; if f is h-convex with h (t) = exp [�r (1� t)] ; i.e.
(2.16) f (tx+ (1� t) y) � exp [�r (1� t)] f (x) + exp (�rt) f (y)
for any t 2 [0; 1] and x; y 2 C:
Since

t � exp [�r (1� t)] and 1� t � exp (�rt) for t 2 [0; 1]
it follows that any nonnegative convex function is r-exponential convex with r 2
(0;1) :

Corollary 1. Let h (z) =
P1

n=0 anz
n be a power series with complex coe¢ cients

and convergent on the open disk D (0; R) � C, R > 0: Assume that 0 < r < R

and de�ne hr : [0; 1] ! [0;1); hr (t) := h(rt)
h(r) : If the function f : I ! [0;1) is

hr-convex on the on the interval I, namely

(2.17) f (tx+ (1� t) y) � 1

h (r)
[h (rt) f (x) + h (r (1� t)) f (y)]

for any t 2 [0; 1] and x; y 2 I; then for any xi 2 I; wi � 0; i 2 f1; :::; ng ; n � 2
with Wn :=

Pn
i=1 wi > 0 we have

(2.18) f

 
1

Wn

nX
i=1

wixi

!
� 1

h (r)

nX
i=1

h

�
r
wi
Wn

�
f (xi) :

Remark 3. If the function f : I ! [0;1) is 1
2 -resolvent convex on I; then for any

xi 2 I; wi � 0; i 2 f1; :::; ng ; n � 2 with Wn :=
Pn

i=1 wi > 0 we have

f

 
1

Wn

nX
i=1

wixi

!
�Wn

nX
i=1

1

2Wn � wi
f (xi) :

If the function f : I ! [0;1) is r-exponential convex with r �xed in (0;1) ; then
for any xi 2 I; wi � 0; i 2 f1; :::; ng ; n � 2 with Wn :=

Pn
i=1 wi > 0 we have

f

 
1

Wn

nX
i=1

wixi

!
�

nX
i=1

exp

�
�r
�
1� wi

Wn

��
f (xi) :
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We have the following Jensen type inequality for '-convex functions.

Corollary 2. Let ' : J ! [0;1) be a supermultiplicative function on J: If the
function f : I ! [0;1) is '-convex on the interval I, then for any wi � 0; xi 2 I;
i 2 f1; :::; ng ; n � 2 with Wn :=

Pn
i=1 wi > 0 we have

(2.19) f

 
1

Wn

nX
i=1

wixi

!
� 1

Wn

nX
i=1

wi'

�
wi
Wn

�
f (xi) :

In particular, we have the unweighted inequality

(2.20) f

 
1

n

nX
i=1

xi

!
� '

�
1

n

�
1

n

nX
i=1

f (xi) :

The proof follows by Theorem 3 for the supermultiplicative function h (t) =
t' (t) ; t 2 J:
The inequality (2.19) will be used further to obtain an integral Jensen type

inequality.

3. Some Results for Differentiable Functions

If we assume that the function f : I ! [0;1) is di¤erentiable on the interior of
I; denoted by �I; then we have the following "gradient inequality" that will play an
essential role in the following.

Lemma 2. Let ' : (0; 1)! (0;1) be a measurable function and such that the right
limit '+ (0) exists and is �nite, the left limit '� (1) = 1 and the left derivative in
1 denoted '0� (1) exists and is �nite. If the function f : I ! [0;1) is di¤erentiable
on �I and '-convex, then

(3.1) '+ (0) f (x)�
�
'0� (1) + 1

�
f (y) � f 0 (y) (x� y)

for any x; y 2 �I with x 6= y:

Proof. Since f is '-convex on I; then

t' (t) f (x) + (1� t)' (1� t) f (y) � f (tx+ (1� t) y)

for any t 2 (0; 1) and for any x; y 2 �I; which is equivalent to
t' (t) f (x) + [(1� t)' (1� t)� 1] f (y) � f (tx+ (1� t) y)� f (y)

and by dividing by t > 0 we get

(3.2) ' (t) f (x) +

�
(1� t)' (1� t)� 1

t

�
f (y) � f (tx+ (1� t) y)� f (y)

t

for any t 2 (0; 1) :
Now, since f is di¤erentiable on y 2 �I; then we have

lim
t!0+

f (tx+ (1� t) y)� f (y)
t

= lim
t!0+

f (y + t (x� y))� f (y)
t

(3.3)

= (x� y) lim
t!0+

f (y + t (x� y))� f (y)
t (x� y)

= (x� y) f 0 (y)

for any x 2 �I with x 6= y:
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Also since '� (1) = 1 and '
0
� (1) exists and is �nite, we have

lim
t!0+

(1� t)' (1� t)� 1
t

= lim
s!1�

s' (s)� 1
1� s = � lim

s!1�

s' (s)� 1
s� 1(3.4)

= � lim
s!1�

s (' (s)� ' (1)) + s� 1
s� 1

= �'0� (1)� 1:
Taking the limit over t! 0+ in (3.2) and utilizing (3.3) and (3.4) we get the desired
result (3.1). �
Remark 4. If we assume that

(3.5) '+ (0) � '0� (1) + 1;
then the inequality (3.1) also holds for x = y:
There are numerous examples of such functions, for instance, if, as above we

take ' (t) = k (1� t)p + 1; t 2 [0; 1] (p > 1; k > 0) then '+ (0) = k + 1, '� (1) = 1
and '0� (1) = 0, which satisfy the condition (3.5).
If we take ' (t) = exp [m (1� t)] (m > 0) ; then '+ (0) = expm; '� (1) = 1 and

'0� (1) = �m: We have
'+ (0)� '� (1)� '0� (1) = em � 1 +m > 0

for m > 0:

The following result holds:

Theorem 4. Let ' : (0; 1)! (0;1) a measurable function and such that the right
limit '+ (0) exists and is �nite, the left limit '� (1) = 1 and the left derivative in 1
denoted '0� (1) exists and is �nite. Assume also that '

0
� (1) > �1: If the function

f : I ! [0;1) is di¤erentiable on �I and '-convex, then

(3.6)
'+ (0)

'0� (1) + 1
� f (x) + f (y)

2
� 1

y � x

Z y

x

f (u) du �
'0� (1) + 1

'+ (0)
f

�
x+ y

2

�
for any x; y 2 I:

Remark 5. It has been shown in [25] that the inequalities (2.5) and (3.6) are not
comparable, meaning that some time one is better then the other, depending on the
'-convex function involved.

The following discrete Jensen type inequality holds:

Theorem 5. Let ' : (0; 1) ! (0;1) be a measurable function and such that the
right limit '+ (0) exists and is �nite, the left limit '� (1) = 1 and the left derivative
in 1 denoted '0� (1) exists and is �nite. Assume also that

(3.7) '+ (0) � '0� (1) + 1 > 0:

If the function f : I ! [0;1) is di¤erentiable on �I and '-convex, then for any
wi � 0; xi 2 �I; i 2 f1; :::; ng ; n � 2 with Wn :=

Pn
i=1 wi > 0 we have

(3.8)
'+ (0)

'0� (1) + 1
� 1
Wn

nX
i=1

wif (xj) � f
 
1

Wn

nX
i=1

wixi

!
:

If 1
Wn

Pn
i=1 wixi 6= xj for any j 2 f1; :::; ng ; then the �rst condition in 3.7 can

be dropped.
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Proof. From (3.1) we have

'+ (0) f (xj)�
�
'0� (1) + 1

�
f

 
1

Wn

nX
i=1

wixi

!
(3.9)

� f 0
 
1

Wn

nX
i=1

wixi

! 
xj �

1

Wn

nX
i=1

wixi

!
for any j 2 f1; :::; ng :
If we multiply (3.9) by wi � 0 and sum over j from 1 to n we get

'+ (0)
nX
j=1

wjf (xj)�
�
'0� (1) + 1

� nX
j=1

wjf

 
1

Wn

nX
i=1

wixi

!

� f 0
 
1

Wn

nX
i=1

wixi

!
nX
j=1

wj

 
xj �

1

Wn

nX
i=1

wixi

!
= 0;

which proves the desired result (3.8). �

4. Integral Inequalities

We have the following Jensen inequality for the Riemann integral:

Theorem 6. Let u : [a; b] ! [m;M ] be a Riemann integrable function. Suppose
that ' : J ! [0;1) is a supermultiplicative function on J and the function f :
[m;M ] ! [0;1) is '-convex and continuous on the interval [m;M ] : If the right
limit '+ (0) exists and is �nite, then

(4.1) f

 
1

b� a

Z b

a

u (t) dt

!
� '+ (0)

1

b� a

Z b

a

f (u (t)) dt:

Proof. Consider the sequence of divisions

dn : x
(n)
i = a+

i

n
(b� a) ; i 2 f0; :::; ng

and the intermediate points

�
(n)
i = a+

i

n
(b� a) ; i 2 f0; :::; ng :

We observe that the norm of the division �n := maxi2f0;:::;n�1g
�
x
(n)
i+1 � x

(n)
i

�
=

b�a
n ! 0 as n!1 and since u is Riemann integrable on [a; b] ; thenZ b

a

u (t) dt = lim
n!1

n�1X
i=0

u
�
�
(n)
i

� h
x
(n)
i+1 � x

(n)
i

i
= lim

n!1

b� a
n

n�1X
i=0

u

�
a+

i

n
(b� a)

�
.

Also, since f : [m;M ] ! [0;1) is Riemann integrable, then f � u is Riemann
integrable andZ b

a

f (u (t)) dt == lim
n!1

b� a
n

n�1X
i=0

f

�
u

�
a+

i

n
(b� a)

��
.
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Utilising the inequality (2.19) for wi := b�a
n and xi := u

�
a+ i

n (b� a)
�
we have

f

 
1

b� a
b� a
n

n�1X
i=0

u

�
a+

i

n
(b� a)

�!
(4.2)

� 1

b� a
b� a
n

n�1X
i=0

'

�
1

n

�
f

�
u

�
a+

i

n
(b� a)

��

=
1

b� a'
�
1

n

�
b� a
n

n�1X
i=0

f

�
u

�
a+

i

n
(b� a)

��
for any n � 1:
Since f is continuous, then

lim
n!1

f

 
1

b� a
b� a
n

n�1X
i=0

u

�
a+

i

n
(b� a)

�!

= f

 
1

b� a

Z b

a

u (t) dt

!
:

Also

lim
n!1

'

�
1

n

�
= '+ (0) <1:

Therefore, taking the limit over n!1 in the inequality (4.2) we deduce the desired
result (4.1). �

We have the following Hermite-Hadamard type inequality:

Corollary 3. Suppose that ' : J ! [0;1) is a supermultiplicative function on J
and the function f : I ! [0;1) is '-convex and continuous on the interval I: If
the right limit '+ (0) exists and is �nite with '+ (0) > 0, then for any x; y 2 I with
x 6= y we have

(4.3)
1

'+ (0)
f

�
x+ y

2

�
� 1

y � x

Z y

x

f (u (t)) dt:

Remark 6. If the function f : [m;M ]! [0;1) is a � (p; k)-convex and continuous
function on the interval [m;M ] (p > 1 and k > 0, see De�nition 7) then for any
u : [a; b]! [m;M ] a Riemann integrable function on [a; b] we have

(4.4)
1

k + 1
f

 
1

b� a

Z b

a

u (t) dt

!
� 1

b� a

Z b

a

f (u (t)) dt:

If the function f : [m;M ] ! [0;1) is a � (s)-convex and continuous function
on the interval [m;M ] (s > 0, see De�nition 8) then for any u : [a; b] ! [m;M ] a
Riemann integrable function on [a; b] we have

(4.5)
1

es
f

 
1

b� a

Z b

a

u (t) dt

!
� 1

b� a

Z b

a

f (u (t)) dt:

Let (
;A; �) be a measurable space consisting of a set 
; a � �algebra A of parts
of 
 and a countably additive and positive measure � on A with values in R[f1g :
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For a ��measurable function w : 
! R, with w (x) � 0 for � �a.e.(almost every)
x 2 
; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



w (x) jf (x)j d� (x) <1g:

For simplicity of notation we write everywhere in the sequel
R


wd� instead ofR



w (x) d� (x) :

Theorem 7. Let ' : (0; 1) ! (0;1) be a measurable function and such that the
right limit '+ (0) exists and is �nite, the left limit '� (1) = 1 and the left derivative
in 1 denoted '0� (1) exists and is �nite. Assume also that

(4.6) '+ (0) � '0� (1) + 1 > 0:

If the function f : I ! [0;1) is di¤erentiable on �I and '-convex, then for any
u : 
 ! [m;M ] � �I so that f � u; u 2 Lw (
; �) ; where w � 0 �-a.e. (almost
everywhere) on 
 with

R


wd� = 1 we have

(4.7)
'+ (0)

'0� (1) + 1
�
Z



w (f � u) d� � f
�Z




wud�

�
:

If
R


wud� 6= u (x) for �-a.e. x 2 
; then we can drop the �rst condition in

(4.6).

Proof. From (3.1) and since
R


wud� 2 [m;M ] � �I we have

'+ (0) f (u (x))�
�
'0� (1) + 1

�
f

�Z



wud�

�
(4.8)

� f 0
�Z




wud�

��
u (x)�

Z



wud�

�
for any x 2 
:
If we multiply (4.8) by w � 0 �-a.e. on 
 and integrate over the positive measure

� we get

'+ (0)

Z



w (x) f (u (x)) d� (x)�
�
'0� (1) + 1

�
f

�Z



wud�

�Z



w (x) d� (x)

� f 0
�Z




wud�

�Z



w (x)

�
u (x)�

Z



wud�

�
d� (x) = 0;

which produces the desired result (4.7). �
Remark 7. If the function f : [m;M ]! [0;1) is a � (p; k)-convex and continuous
function on the interval [m;M ], then for any u : 
 ! [m;M ] � �I so that f � u;
u 2 Lw (
; �) ; where w � 0 �-a.e. on 
 with

R


wd� = 1 we have

(4.9)
Z



w (f � u) d� � 1

k + 1
f

�Z



wud�

�
:

If the function f : [m;M ]! [0;1) is a � (s)-convex and continuous function on
the interval [m;M ] then for any u : 
 ! [m;M ] � �I so that f � u; u 2 Lw (
; �) ;
where w � 0 �-a.e. on 
 with

R


wd� = 1 we have

(4.10)
Z



w (f � u) d� � 1

es
f

�Z



wud�

�
:

These results generalize the inequalities (4.4) and (4.5).
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