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INEQUALITIES OF JENSEN TYPE FOR ¢o-CONVEX
FUNCTIONS

S. S. DRAGOMIR!:2

ABSTRACT. Some inequalities of Jensen type for ¢-convex functions defined
on real intervals are given.

1. INTRODUCTION

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 1 ([38]). We say that f: I — R is a Godunova-Levin function or that
f belongs to the class Q (I) if [ is non-negative and for all z,y € T and t € (0,1)

we have
(11) Fltmt (1= 0y) < 17 @) + 7 )

Some further properties of this class of functions can be found in [29], [30], [32],
[44], [47] and [48]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

Definition 2 ([32]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all x,y € I and t € [0,1] we have

(1.2) flz+ 1=ty < f(z)+f(y)-

Obviously @ (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convez functions, i.
e. nonnegative functions satisfying

(1.3) [tz + (1 —t)y) <max{f(z),f(y)}

for all z,y € I and t € [0,1].
For some results on P-functions see [32] and [45] while for quasi convex functions,
the reader can consult [31].

Definition 3 ([7]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00)

is said to be s-convex (in the second sense) or Breckner s-convex if
flrz+(1-t)y) <t°f(z)+ (1 1) f(y)

for all x,y € [0,00) and t € [0,1].
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For some properties of this class of functions see [1], [2], [7], [8], [27], [28], [39],
[41] and [50].

In order to unify the above concepts for functions of real variable, S. Varosanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and f are
real non-negative functions defined in J and I, respectively.

Definition 4 ([53]). Let h : J — [0,00) with h not identical to 0. We say that
f:I—10,00) is an h-convex function if for all z,y € I we have

(1.4) fle+ A =t)y) <h(@)f(@)+h(1-1t)f(y)
for allt € (0,1).

For some results concerning this class of functions see [53], [6], [42], [51], [49] and
[52].

We can introduce now another class of functions.

Definition 5. We say that the function f : I — [0,00) is of s-Godunova-Levin
type, with s € [0,1], if

(15) Flm+(-0)9) < 2 f (@) +

for allt € (0,1) and z,y € 1.

g W),

We observe that for s = 0 we obtain the class of P-functions while for s =1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions defined on I, then we obviously have

P(I)=Qo(I) S Qs (I) CQs, (I) S (1) =Q ()
for 0 < s1 <39 < 1.
The following inequality holds for any convex function f defined on R

(16)  (b—a)f <“+b> /f )z < ( )f()‘;f(), a,b e R.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [43]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [43]. Since (1.6) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[26], [33]-[36] and [46].

The following inequality of Hermite-Hadamard type for h-convex function holds
[49].

Theorem 1. Assume that the function f : I — [0,00) is an h-convex function with
h € L[0,1]. Let y,x € I with y # = and assume that the mapping [0,1] > ¢t —
FI(1—t)xz +ty] is Lebesgue integmble on [0,1]. Then

00 gy () <5t [rwas @ o) [ o
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If we write (1.7) for h(t) = ¢, then we get the classical Hermite-Hadamard
inequality for convex functions
[ ras L1210

(18) f<x+y>_

If we write (1.7) for the case of P-type functions f : I — [0,00), i.e., h(t) =
1,t € [0,1], then we get the inequality

(L9) f<x+y>

that has been obtained for functions of real variable in [32].
If f is Breckner s-convex on I, for s € (0,1), then by taking h (t) = ¢* in (1.7)

we get
(1.10) 93~ 1f($+y>_ /f < (21{(),

that was obtained for functions of a real variable in [27].
If f:1—]0,00) is of s-Godunova-Levin type, with s € [0,1), then

),
(1.11) QSlﬂf(Hy) ﬂ/f PPFICEII0)

We notice that for s = 1 the first inequality in (1.11) still holds, i.e.

(1.12) if(””y) /f (1—t)z + ty] dt.

The case for functions of real variables was obtained for the first time in [32].

— T

u)du < f(x) + f (),

— T

2. ¢-CONVEX FUNCTIONS
We introduce the following class of h-convex functions.

Definition 6. Let ¢ : (0,1) — (0,00) a measurable function. We say that the
function f : T — [0,00) is a p-convex function on the interval I if for all z,y € T
we have

(2.1) flz+ (1 —-t)y) <te()f(x)+ 1 -t)e(d-1)f(y)
for allt € (0,1).

If we denote £ (t) = t, the identity function, then it is obvious that f is h-convex
with h = lp. Also, all the examples from the introduction can be seen as p-convex
functions with appropriate choices of .

If we take ¢ (t) = = with s € [0,1], then we get the class of s-Godunova-Levin
functions. Also, if we put ¢ (t) = t*~1 with s € (0,1), then we get the concept of
Breckner s-convexity. We notice that for all these examples we have

4 (0) = lim o (t) = co.

The case of convex functions, i.e. when ¢ () = 1 is the only example from above
for which ¢, (0) is finite, namely ¢, (0) = 1.
Consider the family of functions, for p > 1 and k& > 0

(2.2) 5 (p k) [0,1] = Ry, 0 (p. k) (£) = k(1= 1) + 1.
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We observe that §4 (p, k) (0) =0 (p, k) (0) =k + 1, § (p, k) is strictly decreasing on
[0,1] and & (p, k) (t) = 6 (p, k) (1) = 1.

Definition 7. We say that the function f : I — [0,00) is a § (p, k)-convex function
on the interval I if for all x,y € I we have

(2.3) fle+ A =ty) <tk(1-t)" +1]f (@) + (1 —1) (k" +1) f (y)
for allt € (0,1).

It is obvious that any nonnegative convex function is a ¢ (Pk)_convex function for
any p > 1 and k£ > 0.
For m > 0 we consider the family of functions

n(m):[0,1] = Ry, n (m) (t) := exp [m (1 - 1)].
We observe that n, (m) (0) = 7 (m) (0) = exp (m), n(m) is strictly decreasing on
[0,1] and 7 (m) (t) = n (m) (1) = 1.

Definition 8. We say that the function f: I — [0,00) is a n(m)-convex function
on the interval I if for oll x,y € I we have

(24) flte+(1-t)y) <texp[m (1l -1)]f(x)+ (1—t)exp(mt) [ (y)
for allt € (0,1).

It is obvious that any nonnegative convex function is a 1 (m)-convex function for
any m > 0.

There are many other examples one can consider. In fact any continuos function
¢ :[0,1] — [1,00) can generate a class of p-convex function that contains the class
of nonnegative convex functions.

Utilising Theorem 1 we can state the following result.

Theorem 2. Assume that the function f : I — [0,00) is a @-convex function with
bp € L[0,1]. Let y,x € I with y # = and assume that the mapping [0,1] > t —
FI(1—t)x 4+ ty] is Lebesgue integrable on [0,1]. Then

(2.5) g0(11)1*(””“’) 7x/f Vdu < | ()+f(y)]/01tw(t)dt-

2

The proof follows from (1.7) by taking h (t) = te (t), t € (0,1).

Remark 1. We notice that, since fo te (t)dt can be seen as the expectation of a
random variable X with the density functzon o, the inequality (2.5) provides a con-
nection to Probability Theory and motivates the introduction of @-convex function
as a natural concept, having available many examples of density functions ¢ that
arise in applications.

For different inequalities related to these classes of functions, see [1]-[4], [6], [9]-
[37], [40]-[42] and [45]-[52].
A function h : J — R is said to be supermultiplicative if

(2.6) h(ts) > h(t)h(s) for any t,s € J.

If the inequality (2.6) is reversed, then h is said to be submultiplicative. If the
equality holds in (2.6) then h is said to be a multiplicative function on J.
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In [53] it has been noted that if & : [0, 00) — [0, 00) with A (£) = (z + ¢)’ ", then
for ¢ = 0 the function h is multiplicative. If ¢ > 1, then for p € (0,1) the function
h is supermultiplicative and for p > 1 the function is submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, the same is
their product. In particular, if A is supermultiplicative then its product with a
power function £, (t) =t" is also supermultiplicative.

The case of h-convex function with A supermultiplicative is of interest due to
several Jensen type inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.

Theorem 3. Let h : J — [0,00) be a supermultiplicative function on J. If the
function f: I — [0,00) is h-convex on the interval I, then for any w; > 0, x; € I,
i€{l,...,n}, n>2with W, :=> " w; >0 we have

1 & - w
(27) f ( wia:Z') S h ( !
W, 2 2w,

n

) f (@)
In particular, we have the unweighted inequality
(28) FEa) <n (D) s

. n 2 z; | < n) 2 Zi) .

Let h(z) = X7 ganz" be a power series with complex coefficients and conver-
gent on the open disk D (0, R) C C, R > 0. We have the following examples

(2.9) hiz)=Y_

1
— , 2€ D(0,1);
n 1—2z “ (0,1)

— 1
h(z)= Z 2?" = coshz, z € C;

h(z) = Zomz2 *l =sinhz, 2 € C;
n=

= 1
h(z):Zz"::, ze D(0,1).
n=0

Other important examples of functions as power series representations with non-
negative coefficients are:

=1
(2.10) h(z)= E gz" =exp(2) z € C,
n=0
=1 1 1+ 2
hiz) =) el = 2 D(0,1);
(2) Zaon 1 2“(1z>’ 2€D(0,1);

h(z) = i Mz%+1 =sin! (2), 2€ D(0,1);
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and

=1
(211) k()= ST 1z2"_1 =tanh™' (2), zeD(0,1)
n=1

h(z) =2 Fi (o, B,7,2) = Z

n=0

F('n?a F(n+5)F(7)2n’a’ﬂ77>07

)
a)I'(B)T (n+7)
z2€ D(0,1);

where I' is Gamma function.
The following result may provide many examples of supemultiplicative functions.

Lemma 1. Let h(z) =Y ,° janz™ be a power series with complex coefficients and
convergent on the open disk D (0,R) C C, R > 0. Assume that 0 < r < R and

define hy. : [0,1] — [0,00), h, (t) := ];L((Zt)). Then h, is supemultiplicative on [0, 1].

Proof. We use the Cebysev inequality for synchronous (the same monotonicity)

sequences (¢;);cy > (bi);cn and nonnegative weights (p;);cy :

(2.12) Zpi Zpicibi > Zpici sz‘bzv
i=0 =0 i=0 =0

for any n € N.

Let t,s € (0,1) and define the sequences ¢; := t*, b; := s'. These sequences are
decreasing and if we apply Cebysev’s inequality for these sequences and the weights
p; = a;r* >0 we get

n n . n . n .
(2.13) Z a;r’ Z a; (rts)’ > Z a; (rt)" Z a; (rs)"
i=0 i=0 =0 i=0
for any n € N.
Since the series

o0

[e%} e >
SR SRURID SR S
i=0 i=0 =0 =0

are convergent, then by letting n — oo in (2.13) we get
h(r)h(rts) > h(rt) h(rs)
i.e.
hy (t8) = hy (t) by () .
This inequality is also obviously satisfied at the end points of the interval [0, 1] and
the proof is completed. O
Remark 2. Utilising the above theorem, we then conclude that the functions
1
By [0,1] — [0,00), he () = —— 7€ (0,1)
1—1rt
and
hy :[0,1] = [0,00), hy () :=exp[-r(1—1t)], >0

are supermultiplicative.
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We say that the function f : I — [0,00) is r-resolvent conver with r fixed in
(0,1), if f is h-convex with h(t) = +=1, i.e.

1—rt?

—_

1
1—r+rt

(2.14) flz+ 1=ty <(1-r) f )+ f(y)

1—1rt

for any z,y € I and t € [0,1].
In particular, for r = % we have %—resolvent convex functions defined by the

condition
1 1
2.15 t 1-t)y) < — —
(215) U+ 1=09) < 5 f @)+ 15/ )
for any t € [0,1] and x,y € I.
Since ) ) ) )
t< —<-andl —t< — < —— te (0,1
<5 <pa <1+t<1—tf0r € (0,1)
it follows that any nonnegative convex function is %—resolvent convez which, in its
turn, is of Godunova-Levin type.
We say that the function f : I — [0,00) is r-exponential convex with r fized in

(0,00), if f is h-convex with h(t) = exp[—r (1 —1)], i.e.

(2.16) flz+ (1 =t)y) <exp[-r(1—1)]f(z)+exp(—rt) f(y)
for any t € [0,1] and z,y € C.
Since

t<exp[-r(1—1t)] and 1 —t <exp(—rt) fortec[0,1]
it follows that any nonnegative convex function is r-exponential convex with r €
(0,00) .

Corollary 1. Let h(z) = ZZOZO anz™ be a power series with complex coefficients
and convergent on the open disk D (0,R) C C, R > 0. Assume that 0 < r < R
and define h, : [0,1] — [0,00), h, (t) := };F(:,t)). If the function f : I — [0,00) is
h,-convex on the on the interval I, namely

1
(2.17) flz+(1-t)y) < G [h(rt) f(x) +h(r(1=1)) f(y)]
for any t € [0,1] and z,y € I, then for any z; € I, w; > 0,47 € {1,...,n}, n > 2
with Wy, := Z;":l w; > 0 we have

(2.18) f (I/Ilfn Zumm) < hér) h <7‘

K2

) 7.

Remark 3. If the function f : I — [0,00) is %—resolvent convex on I, then for any

z; €1, w; >0,i€{l,....,n}, n>2 with W, :=>"_, w; >0 we have

1 <& 2 1
f(W"; ) L

If the function f : I — [0, 00) is r-exponential convex with r fized in (0,00), then
for any z; € I, w; > 0,45 € {1,....,n}, n>2 with W,, := > ", w; >0 we have

(3 S) < Sow [ (1 )] e

n
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We have the following Jensen type inequality for ¢-convex functions.

Corollary 2. Let ¢ : J — [0,00) be a supermultiplicative function on J. If the
function f: I — [0,00) is @-convex on the interval I, then for any w; > 0, x; € I,
i€{l,...,n}, n>2with W, :=> " w; >0 we have

1 n 1 n W;
(2.19) / ( wz$z> S o QWi (l) f ().
S ) < S (3

In particular, we have the unweighted inequality
(2:20) PEsn) <o (2) i s
. ni:la:l <el. P ;) -

The proof follows by Theorem 3 for the supermultiplicative function h(t) =
to(t), te

The inequality (2.19) will be used further to obtain an integral Jensen type
inequality.

3. SOME RESULTS FOR DIFFERENTIABLE FUNCTIONS

If we assume that the function f : I — [0, 00) is differentiable on the interior of
I, denoted by I, then we have the following "gradient inequality” that will play an
essential role in the following.

Lemma 2. Let p: (0,1) — (0,00) be a measurable function and such that the right
limit o (0) exists and is finite, the left limit p_ (1) = 1 and the left derivative in
1 denoted ¢’ (1) exists and is finite. If the function f : I — [0,00) is differentiable
on I and p-convezx, then
(3.1) ¢ (0) f(z) = [¢_ () +1] f(y) = f' (y) (z —y)
for any x,y € I with #.
Proof. Since f is p-convex on I, then
to(t) f(z)+(L—-t)e(l—1)f(y) = fltz+(1-1)y)
for any ¢t € (0,1) and for any z,y € I, which is equivalent to
to(t) fz)+[1-t)e(l—t) =1 f(y) > f(te+ (1 —1)y) — f (y)

and by dividing by ¢ > 0 we get

1—t 1—-¢t)—1
32) e+ |20

for any t € (0,1).
Now, since f is differentiable on y € I, then we have

i LA A=y —fl) _  ftte—y) - f)

flz+(1-t)y) = f(y)
t

fy) >

(3-3) t—0+ t t—0+ t
. flyt+t—y) - f)
- (x—y)tl_lgl_‘_ t(x—vy)
=(z—y) f (v)

for any = € I with z #y.
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Also since p_ (1) =1 and ¢’ (1) exists and is finite, we have

1-1¢ 1—-¢t)—-1 -1 -1
(3.4) i A== =1  sel) =1 g el
t—0+ t Tso1— 1-—35 s—1-  s—1
iy S @) s -1
s—1— s—1

=—¢ (1)—1

Taking the limit over ¢ — 0+ in (3.2) and utilizing (3.3) and (3.4) we get the desired

result (3.1). O

Remark 4. If we assume that

(3.5) ey (0) >l (1) +1,
then the inequality (3.1) also holds for x = y.

There are numerous examples of such functions, for instance, if, as above we
take p(t) =k (1 —t)’ +1,t€(0,1] (p> 1,k >0) then o, (0)=k+1, ¢_(1)=1
and ¢’ (1) = 0, which satisfy the condition (3.5).

If we take ¢ (t) = exp[m (1 —t)] (m > 0), then ¢, (0) =expm, ¢_ (1) =1 and
¢" (1) = —m. We have

P (0)—p_ (1) —¢_(1)=e"~1+m>0
for m > 0.
The following result holds:

Theorem 4. Let ¢ : (0,1) — (0,00) a measurable function and such that the right
limit ¢, (0) exists and is finite, the left limit ¢ _ (1) = 1 and the left derivative in 1

denoted ¢’ (1) exists and is finite. Assume also that ¢’ (1) > —1. If the function
f:1—10,00) is differentiable on I and @-convex, then
e (0)  f@)+fly / e () +1, (oty
3.6 . )d >
B8 1 2 2=z ), Fdu= = i

for any x,y € I.

Remark 5. It has been shown in [25] that the inequalities (2.5) and (5.6) are not
comparable, meaning that some time one is better then the other, depending on the
p-convex function involved.

The following discrete Jensen type inequality holds:

Theorem 5. Let ¢ : (0,1) — (0,00) be a measurable function and such that the
right limit @ (0) exists and is finite, the left limit ¢ _ (1) = 1 and the left derivative
in 1 denoted ¢’ (1) exists and is finite. Assume also that

(3.7) 0. (0)>¢ (1)+1>0.

If the function f : I — [0,00) is differentiable on I and p-convex, then for any
w; > 0, xiEI,ie{l n} n > 2 with W, := Y1 w; > 0 we have

1 n

If =0 wim; # x; for any j € {1, ..,n}, then the first condition in 3.7 can
be dropped.
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Proof. From (3.1) we have

(3.9) 0, (0) f(zj) = [¢_ (1) +1] f (W sz$z>

1 n 1 n
> f! < ZW%) (xj T wﬂi)
W i=1 W i=1

for any j € {1,...,n}.
If we multiply (3.9) by w; > 0 and sum over j from 1 to n we get

e (0> wif (z) = [ () +1] > w;f (V[lf ZW%)
=1 j=1 =1
1 n n 1 n
> =) waw; wi |z — — Y wz; | =0,
(o) 5o (5 -2

which proves the desired result (3.8). O

4. INTEGRAL INEQUALITIES
We have the following Jensen inequality for the Riemann integral:

Theorem 6. Let u : [a,b] — [m, M] be a Riemann integrable function. Suppose
that ¢ : J — [0,00) is a supermultiplicative function on J and the function f :
[m, M] — [0,00) is p-convex and continuous on the interval [m, M]. If the right
limit o (0) exists and is finite, then

b b
(4.1) f(bf / u(t)dt) <o 05 [ fu)

Proof. Consider the sequence of divisions
1
dy : QTE") =a+—(b—a), i €{0,..,n}
n
and the intermediate points

€ a4+ L(b—a), i€ {0,..,n}.
n

We observe that the norm of the division A, := max;c(o,....n—1} ( xgi)l - xg”)) =

b—a

—% — 0 as n — oo and since u is Riemann integrable on [a, b], then

/abu(t)dt = lim 216(55@) [xm_ xz(n)}

1=

b—a '~ i
lim 2—% Lt-a)).
Jim — Zu <a+ - (b a))

=0

Also, since f : [m,M] — [0,00) is Riemann integrable, then f o u is Riemann
integrable and

/abf(u(t))dtzznlingob;agf[u(aﬁ—;(b—a))}.
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Utilising the inequality (2.19) for w; := =% and @; :=u (a + £ (b — a)) we have

(4.2) f<biab;a’1:u<a+fl(ba))>

for any n > 1.
Since f is continuous, then

Also
1
lim SO(n) = ¢, (0) < oo.

Therefore, taking the limit over n — oo in the inequality (4.2) we deduce the desired
result (4.1). O

We have the following Hermite-Hadamard type inequality:

Corollary 3. Suppose that ¢ : J — [0,00) is a supermultiplicative function on J
and the function f : I — [0,00) is @-conver and continuous on the interval I. If
the right limit ¢ (0) exists and is finite with ¢, (0) > 0, then for any x,y € I with
x # y we have

(4.3 —o/ (%) <75 [ rwwa

Remark 6. If the function f : [m, M] — [0,00) is a § (p, k)-conver and continuous
function on the interval [m, M| (p > 1 and k > 0, see Definition 7) then for any
u: [a,b] — [m, M] a Riemann integrable function on [a,b] we have

b b
(4.4) %Hf (bia/ w () dt) < ﬁ/ Flu(®)dt.

If the function f : [m,M] — [0,00) is a n(s)-conver and continuous function
on the interval [m, M| (s > 0, see Definition 8) then for any u : [a,b] — [m,M] a
Riemann integrable function on [a,b] we have

b b
(4.5) éf (bia/ u(t)dt) < bia/ F(u()) dt.

Let (2, A, 1) be a measurable space consisting of a set {2, a o — algebra A of parts
of Q and a countably additive and positive measure p on A with values in RU{oco} .
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For a p—measurable function w : @ — R, with w (z) > 0 for u — a.e.(almost every)
x € 2, consider the Lebesgue space

Ly, (Qu):={f:Q—R, fis p-measurable and / w(x) |f (z)|dp (x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdyp instead of
Jow () dp(z).

Theorem 7. Let ¢ : (0,1) — (0,00) be a measurable function and such that the
right limit ¢ (0) exists and is finite, the left limit ¢ _ (1) = 1 and the left derivative
in 1 denoted ¢’ (1) exists and is finite. Assume also that

(4.6) 0, (0)>¢" (1) +1>0.

If the function f : I — [0,00) is differentiable on I and p-convex, then for any
u:Q — [m,M] C I sothat fou, u € Ly (2, 1), where w > 0 p-a.e. (almost
everywhere) on Q with fQ wdp =1 we have

(17) S [wrendnz g ([ wada).

If fQ wudp # u(x) for p-a.e. x € Q, then we can drop the first condition in
(4.6)-
Proof. From (3.1) and since [, wudp € [m, M] C I we have

(48) o (0)F (u(@) — [¢- (1) +1] ( / wudﬂ)

> f (/ wudu) (u (z) — / wud,u)
Q Q
for any z € Q.

If we multiply (4.8) by w > 0 p-a.e. on £ and integrate over the positive measure
n we get

pr ) [ wie) @) @)~ ¢! (1)+1] S ( / wudu) [ w@ i

> 1 ([ wean) [ w) (@~ [ wod) du) o

which produces the desired result (4.7). O

Remark 7. If the function f : [m, M] — [0,00) is a d (p, k)-conver and continuous
function on the interval [m, M|, then for any u : Q — [m, M] C I so that f ou,
U € Ly (Q, 1) , where w > 0 p-a.e. on Q with [, wdp =1 we have

(49) [wtrowdn= 51 ( / wudu) .

If the function f : [m, M] — [0,00) is a 1 (s)-convex and continuous function on
the interval [m, M| then for any w: Q — [m, M] C I so that fou, u € Ly (Q, p),
where w > 0 p-a.e. on 0 with fQ wdp =1 we have

(4.10) /Qw(fou)d,uzelsf</ﬂwudu).

These results generalize the inequalities (4.4) and (4.5).
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