
GENERALIZED TRAPEZOID TYPE INEQUALITIES FOR
COMPLEX FUNCTIONS DEFINED ON UNIT CIRCLE WITH
APPLICATIONS FOR UNITARY OPERATORS IN HILBERT

SPACES

S.S. DRAGOMIR1;2

Abstract. Some generalized trapezoid type inequalities for the Riemann-
Stieltjes integral of continuous complex valued integrands de�ned on the com-
plex unit circle C (0; 1) and various subclasses of integrators of bounded vari-
ation are given. Natural applications for functions of unitary operators in
Hilbert spaces are provided.

1. Introduction

In [13], in order to approximate the Riemann-Stieltjes integral
R b
a
f (t) du (t) by

the generalised trapezoid formula

(1.1) [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a) ; x 2 [a; b]

the authors considered the error functional

(1.2) T (f; u; a; b;x) :=

Z b

a

f (t) du (t)� [u (b)� u (x)] f (b)� [u (x)� u (a)] f (a)

and proved that

(1.3) jT (f; u; a; b;x)j � H
�
1

2
(b� a) +

����x� a+ b2
�����r b_

a

(f) ; x 2 [a; b] ;

provided that f : [a; b]! R is of bounded variation on [a; b] and u is of r�H-Hölder
type, that is, u : [a; b]! R satis�es the condition ju (t)� u (s)j � H jt� sjr for any
t; s 2 [a; b] ; where r 2 (0; 1] and H > 0 are given.
The dual case, namely, when f is of q � K�Hölder type and u is of bounded

variation has been considered by the authors in [7] in which they obtained the
bound:

jT (f; u; a; b;x)j(1.4)

� K
"
(x� a)q

x_
a

(u) + (b� x)q
b_
x

(u)

#
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�

8>>>>>>><>>>>>>>:

K [(x� a)q + (b� x)q]
h
1
2

Wb
a (u) +

1
2

���Wxa (u)�Wbx (u)���i ;
K [(x� a)q� + (b� x)q�]

1
�

�
[
Wx
a (u)]

� �
hWb

x (u)
i�� 1

�

if � > 1; 1
� +

1
� = 1;

K
�
1
2 (b� a) +

��x� a+b
2

���qWb
a (u) ;

for any x 2 [a; b].
The case where f is monotonic and u is of r � H�Hölder type, which pro-

vides a re�nement for (1.3), respectively the case where u is monotonic and f of
q � K�Hölder type were considered by Cheung and Dragomir in [10], while the
case where one function was of Hölder type and the other was Lipschitzian were
considered in [6]. For other recent results in estimating the error T (f; u; a; b; x) for
absolutely continuous integrands f and integrators u of bounded variation, see [8]
and [9].
For other inequalities for Riemann-Stieltjes integral, see [1]-[5], [6]-[10], [11]-[15]

and [17].
Motivated by the above facts, we consider in the present paper the problem

of approximating the Riemann-Stieltjes integral
R b
a
f
�
eis
�
du (s) by the generalised

trapezoidal rule

f
�
eib
�
[u (b)� u (t)] + f

�
eia
�
[u (t)� u (a)]

for continuous complex valued function f : C (0; 1) ! C de�ned on the complex
unit circle C (0; 1) and various subclasses of functions u : [a; b] � [0; 2�] ! C of
bounded variation.
We denote the error functional by

TC (f; u; a; b; t)(1.5)

:= f
�
eib
�
[u (b)� u (t)] + f

�
eia
�
[u (t)� u (a)]�

Z b

a

f
�
eis
�
du (s) ;

where t 2 [a; b] and will provide some bounds for its magnitude for f of r �
H�Hölder type and u belonging to di¤erent subclasses of functions of bounded
variation.
The Riemann-Stieltjes integral

R 2�
0
f
�
eis
�
du (s) is related with functions of uni-

tary operators U de�ned on complex Hilbert spaces as follows.
We recall here some basic facts on unitary operators and spectral families that

will be used in the sequel.
We say that the bounded linear operator U : H ! H on the Hilbert space H is

unitary i¤ U� = U�1:
It is well known that (see for instance [16, p. 275-p. 276]), if U is a unitary

operator, then there exists a family of projections fE�g�2[0;2�], called the spectral
family of U with the following properties:

a) E� � E� for 0 � � � � � 2�;
b) E0 = 0 and E2� = 1H (the identity operator on H);
c) E�+0 = E� for 0 � � < 2�;
d) U =

R 2�
0
ei�dE�; where the integral is of Riemann-Stieltjes type.
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Moreover, if fF�g�2[0;2�] is a family of projections satisfying the requirements
a)-d) above for the operator U; then F� = E� for all � 2 [0; 2�] :
Also, for every continuous complex valued function f : C (0; 1) ! C on the

complex unit circle C (0; 1), we have

(1.6) f (U) =

Z 2�

0

f
�
ei�
�
dE�

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(1.7) hf (U)x; yi =
Z 2�

0

f
�
ei�
�
d hE�x; yi

and

(1.8) kf (U)xk2 =
Z 2�

0

��f �ei����2 d kE�xk2 = Z 2�

0

��f �ei����2 d hE�x; xi ;
for any x; y 2 H:
From the above properties it follows that the function gx (�) := hE�x; xi is

monotonic nondecreasing and right continuous on [0; 2�] for any x 2 H.
Some examples of such functions of unitary operators are

exp (U) =

Z 2�

0

exp
�
ei�
�
dE�

and

Un =

Z 2�

0

ein�dE�

for n an integer.
We can also de�ne the trigonometric functions for a unitary operator U by

sin (U) =

Z 2�

0

sin
�
ei�
�
dE� and cos (U) =

Z 2�

0

cos
�
ei�
�
dE�

and the hyperbolic functions by

sinh (U) =

Z 2�

0

sinh
�
ei�
�
dE� and cosh (U) =

Z 2�

0

cosh
�
ei�
�
dE�

where

sinh (z) :=
1

2
[exp z � exp (�z)] and cosh (z) := 1

2
[exp z + exp (�z)] ; z 2 C.

2. Inequalities for the Riemann-Stieltjes Integral

We have the following result.

Theorem 1. Assume that f : C (0; 1) ! C satis�es the following Hölder�s type
condition

(2.1) jf (z)� f (w)j � H jz � wjr

for any w; z 2 C (0; 1) ; where H > 0 and r 2 (0; 1] are given.
If [a; b] � [0; 2�] and the function u : [a; b]! C is of bounded variation on [a; b] ;

then

(2.2) jTC (f; u; a; b; t)j � 2rHBr (u; a; b; t)
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for any t 2 [a; b] ; where the bound Br (u; a; b; t) is given by
Br (u; a; b; t)(2.3)

:= max
s2[a;t]

�
sinr

�
s� a
2

�� t_
a

(u) + max
s2[t;b]

�
sinr

�
b� s
2

�� b_
t

(u) :

Moreover, if we denote

Ar (t) := max
s2[a;t]

�
sinr

�
s� a
2

��
and Br (t) := max

s2[t;b]

�
sinr

�
b� s
2

��
;

then we have the inequalities:

Br (u; a; b; t)(2.4)

�

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

max fAr (t) ; Br (t)g
b_
a

(u)

[A�r (t) +B
�
r (t)]

1
�

24 t_
a

(u)

!�
+

 
b_
t

(u)

!�35
1
�

� > 1; 1� +
1
� = 1

[Ar (t) +Br (t)]max

(
t_
a

(u) ;

b_
t

(u)

)
for any t 2 [a; b] :

Proof. We have the equality

(2.5) TC (f; u; a; b; t) =
Z b

t

�
f
�
eib
�
� f

�
eis
��
du (s) +

Z t

a

�
f
�
eis
�
� f

�
eia
��
du (s)

for any t 2 [a; b] :
It is known that if p : [c; d]! C is a continuous function and v : [c; d]! C is of

bounded variation, then the Riemann-Stieltjes integral
R d
c
p (t) dv (t) exists and the

following inequality holds

(2.6)

�����
Z d

c

p (t) dv (t)

����� � max
t2[c;d]

jp (t)j
d_
c

(v) :

Taking the modulus in the equality (2.5) and utilising the property (2.6) we
deduce

jTC (f; u; a; b; t)j(2.7)

�
�����
Z b

t

�
f
�
eib
�
� f

�
eis
��
du (s)

�����+
����Z t

a

�
f
�
eis
�
� f

�
eia
��
du (s)

����
� max

s2[t;b]

��f �eib�� f �eis��� b_
t

(u) + max
s2[a;t]

��f �eis�� f �eia��� t_
a

(u)

� H
"
max
s2[t;b]

��eib � eis��r b_
t

(u) + max
s2[a;t]

��eis � eia��r t_
a

(u)

#
for any t 2 [a; b] :
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Since ��eis � eit��2 = ��eis��2 � 2Re�ei(s�t)�+ ��eit��2
= 2� 2 cos (s� t) = 4 sin2

�
s� t
2

�
for any t; s 2 R, then

(2.8)
��eis � eit��r = 2r ����sin�s� t2

�����r
for any t; s 2 R.
For [a; b] � [0; 2�] we have��eib � eis��r = 2r sinr �b� s

2

�
and ��eis � eia��r = 2r sinr �s� a

2

�
for any s 2 [a; b] :
Utilising the inequality (2.7) we deduce the desired result (2.2).
By making use of the Hölder inequality

mp+ nq �

8<:
max fm;ng (p+ q)�
m1=� + n1=�

�� �
p1=� + q1=�

�
; � > 1; 1� +

1
� = 1

that holds for m; p; n; q � 0; we deduce the inequality (2.4). �

De�ne the functional

MC (f; u; a; b) := TC

�
f; u; a; b;

a+ b

2

�
(2.9)

= f
�
eib
� �
u (b)� u

�
a+ b

2

��
+ f

�
eia
� �
u

�
a+ b

2

�
� u (a)

�
�
Z b

a

f
�
eis
�
du (s) :

For t = a+b
2 we have

Ar

�
a+ b

2

�
:= max

s2[a; a+b2 ]

�
sinr

�
s� a
2

��
= sinr

�
b� a
4

�
;

and

Br

�
a+ b

2

�
:= max

s2[ a+b2 ;b]

�
sinr

�
b� s
2

��
= sinr

�
b� a
4

�
:

We can then state the following particular case of interest for applications as shown
below.

Corollary 1. With the assumptions of Theorem 1 we have

(2.10) jMC (f; u; a; b)j � 2rH sinr
�
b� a
4

� b_
a

(u) � 1

2r
H (b� a)r

b_
a

(u) :
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In particular, if f is Lipschitzian with the constant K > 0; then

(2.11) jMC (f; u; a; b)j � 2K sin
�
b� a
4

� b_
a

(u) � 1

2
K (b� a)

b_
a

(u) :

The constant 2 in the �rst inequality (2.11) is best possible in the sense that it
cannot be replaced by a smaller quantity.

Proof. We must only prove the sharpness of the constant 2 in the �rst inequality
(2.11).
Assume that there is an E > 0 such that����f �eib� �u (b)� u�a+ b2

��
+ f

�
eia
� �
u

�
a+ b

2

�
� u (a)

�
(2.12)

�
Z b

a

f
�
eis
�
du (s)

�����
� EK sin

�
b� a
4

� b_
a

(u)

for an interval [a; b] � [0; 2�] ; a K-Lipschitzian function f : C (0; 1) ! C and a
function of bounded variation u : [a; b]! C.
If we take [a; b] = [0; 2�] ; f (z) = z thenK = 1 and the inequality (2.12) becomes

(2.13)

����u (2�)� u (0)� Z 2�

0

eisdu (s)

���� � E 2�_
0

(u)

for any function of bounded variation u : [0; 2�]! C.
Integrating by parts in the Riemann-Stieltjes integral, we haveZ 2�

0

eisdu (s) = eisu (s)
��2�
0
� i
Z 2�

0

eisu (s) ds = u (2�)� u (0)� i
Z 2�

0

eisu (s) ds

and the inequality (2.13) becomes

(2.14)

����Z 2�

0

eisu (s) ds

���� � E 2�_
0

(u)

for any function of bounded variation u : [0; 2�]! C.
Now, if we take the function

u (s) :=

8<: �1 if s 2 [0; �]

1 if s 2 [�; 2�] ;

then u is of bounded variation,
2�_
0

(u) = 2 and

Z 2�

0

eisu (s) ds = �
Z �

0

eisds+

Z 2�

�

eisds

= �1
i
ei� +

1

i
e0 +

1

i
e2� � 1

i
ei� =

4

i

and the inequality (2.14) becomes 4 � 2E showing that E � 2: �
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Remark 1. If the lenght of the interval [a; b] is less than �; i.e. 0 < b � a � �;
then

Ar (t) := sin
r

�
t� a
2

�
and Br (t) := sinr

�
b� t
2

�
and by (2.2) and by (2.4) we have

jTC (f; u; a; b; t)j(2.15)

� 2rH
"
sinr

�
t� a
2

� t_
a

(u) + sinr
�
b� t
2

� b_
t

(u)

#

�

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

max
�
sinr

�
t�a
2

�
; sinr

�
b�t
2

�	 b_
a

(u)

�
sin�r

�
t�a
2

�
+ sin�r

�
b�t
2

�� 1
�

�

24 t_
a

(u)

!�
+

 
b_
t

(u)

!�35
1
� � > 1;

1
� +

1
� = 1

�
sinr

�
t�a
2

�
+ sinr

�
b�t
2

��
max

(
t_
a

(u) ;
b_
t

(u)

)
for any t 2 [a; b] :

Remark 2. If a = 0 and b = 2�; then

TC (f; u; 0; 2�;�) = f (1) [u (2�)� u (0)]�
Z 2�

0

f
�
eis
�
du (s) ;

and
Ar (�) := max

s2[0;�]

n
sinr

�s
2

�o
= 1

while

Br (�) := max
s2[�;2�]

�
sinr

�
2� � s
2

��
= 1:

Therefore from (2.2) we have

(2.16)

����f (1) [u (2�)� u (0)]� Z 2�

0

f
�
eis
�
du (s)

���� � 2rH b_
a

(u) :

Theorem 2. Assume that f : C (0; 1) ! C satis�es the Hölder�s type condition
(2.1). If [a; b] � [0; 2�] and the function u : [a; b] ! C is Lipschitzian with the
constant L > 0 on [a; b] ; then

(2.17) jTC (f; u; a; b; t)j � 2rLHCr (a; b; t)
for any t 2 [a; b] ; where

Cr (a; b; t) : =

Z b

t

sinr
�
b� s
2

�
ds+

Z t

a

sinr
�
s� a
2

�
ds(2.18)

� (b� t)r+1 + (t� a)r+1

(r + 1) 2r
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for any t 2 [a; b] :
In particular, if f : C (0; 1) ! C is Lipschitzian with the constant K > 0; then

we have

(2.19) jTC (f; u; a; b; t)j � 8LK
�
sin2

�
b� t
4

�
+ sin2

�
t� a
4

��
for any t 2 [a; b] :

Proof. It is well known that if p : [a; b] ! C is a Riemann integrable function and
v : [a; b]! C is Lipschitzian with the constant M > 0, then the Riemann-Stieltjes
integral

R b
a
p (t) dv (t) exists and the following inequality holds

(2.20)

�����
Z b

a

p (t) dv (t)

����� �M
Z b

a

jp (t)j dt:

Utilising this property and the equality (2.5) we have

jTC (f; u; a; b; t)j(2.21)

�
�����
Z b

t

�
f
�
eib
�
� f

�
eis
��
du (s)

�����+
����Z t

a

�
f
�
eis
�
� f

�
eia
��
du (s)

����
� L

"Z b

t

��f �eib�� f �eis��� ds+ Z t

a

��f �eis�� f �eia��� ds#

� LH
"Z b

t

��eib � eis��r ds+ Z t

a

��eis � eia��r ds#

= 2rLH

"Z b

t

sinr
�
b� s
2

�
ds+

Z t

a

sinr
�
s� a
2

�
ds

#
for any t 2 [a; b] :
On making use of the elementary inequality sinx � x; x 2 [0; �] we haveZ b

t

sinr
�
b� s
2

�
ds+

Z t

a

sinr
�
s� a
2

�
ds

�
Z b

t

�
b� s
2

�r
ds+

Z t

a

�
s� a
2

�r
ds

=
(b� t)r+1 + (t� a)r+1

(r + 1) 2r

for any t 2 [a; b] : This proves the inequality (2.18).
For r = 1

C1 (a; b; t) :=

Z b

t

sin

�
b� s
2

�
ds+

Z t

a

sin

�
s� a
2

�
ds

= 2� 2 cos
�
b� t
2

�
+ 2� cos

�
t� a
2

�
= 4

�
sin2

�
b� t
4

�
+ sin2

�
t� a
4

��
for any t 2 [a; b] :
Using (2.17) for r = 1 we deduce (2.19). �
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Remark 3. For a = 0 and b = 2� we have

sin2
�
b� t
4

�
+ sin2

�
t� a
4

�
= sin2

�
�

2
� t

4

�
+ sin2

�
t

4

�
= cos2

�
t

4

�
+ sin2

�
t

4

�
= 1

and by (2.19) we deduce that

(2.22)

����f (1) [u (2�)� u (0)]� Z 2�

0

f
�
eis
�
du (s)

���� � 8LK
for any t 2 [a; b] :

The case of midpoint rule t = a+b
2 is as follows:

Corollary 2. Assume that f : C (0; 1)! C is Lipschitzian with the constant K > 0
and u : [a; b]! C is Lipschitzian with the constant L > 0 on [a; b] : Then we have

(2.23) jMC (f; u; a; b)j � 16LK sin2
�
b� a
8

�
:

The case of monotonic nondecreasing integrators that is important for applica-
tions for unitary operators is as follows.

Theorem 3. Assume that f : C (0; 1) ! C satis�es the Hölder�s type condition
(2.1). If [a; b] � [0; 2�] and the function u : [a; b]! R is monotonic nondecreasing
on [a; b] ; then

(2.24) jTC (f; u; a; b; t)j � 2rHDr (u; a; b; t)

for any t 2 [a; b] ; where

Dr (u; a; b; t) :=

Z b

t

sinr
�
b� s
2

�
du (s) +

Z t

a

sinr
�
s� a
2

�
du (s)(2.25)

� 1

2r

"Z b

t

(b� s)r du (s) +
Z t

a

(s� a)r du (s)
#

for any t 2 [a; b] :

Proof. It is well known that if p : [a; b] ! C is a continuous function and v :
[a; b]! R is monotonic nondecreasing on [a; b] ; then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and the following inequality holds

(2.26)

�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :
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Utilising the property (2.26), we have from (2.5) that

jTC (f; u; a; b; t)j(2.27)

�
�����
Z b

t

�
f
�
eib
�
� f

�
eis
��
du (s)

�����+
����Z t

a

�
f
�
eis
�
� f

�
eia
��
du (s)

����
�
"Z b

t

��f �eib�� f �eis��� du (s) + Z t

a

��f �eis�� f �eia��� du (s)#

� H
"Z b

t

��eib � eis��r du (s) + Z t

a

��eis � eia��r du (s)#

= 2rH

"Z b

t

sinr
�
b� s
2

�
du (s) +

Z t

a

sinr
�
s� a
2

�
du (s)

#
for any t 2 [a; b] ; which proves (2.24).
Moreover, by the elementary inequality sinx � x; x 2 [0; �] and the monotonicity

of u we also haveZ b

t

sinr
�
b� s
2

�
du (s) +

Z t

a

sinr
�
s� a
2

�
du (s)

�
Z b

t

�
b� s
2

�r
du (s) +

Z t

a

�
s� a
2

�r
du (s)

which proves (2.25). �

Corollary 3. Assume that f is as in Theorem 3. If the function u : [0; 2�]! R is
monotonic nondecreasing on [0; 2�] ; then����f (1) [u (2�)� u (0)]� Z 2�

0

f
�
eis
�
du (s)

����(2.28)

� 2rH
Z 2�

0

sinr
�s
2

�
du (s) = 2r=2H

Z 2�

0

(1� cos s)r=2 du (s) :

Proof. We have

Dr (f; u; 0; 2�; t) :=

Z 2�

t

sinr
�
2� � s
2

�
du (s) +

Z t

0

sinr
�s
2

�
du (s)

=

Z 2�

t

sinr
�
� � s

2

�
du (s) +

Z t

0

sinr
�s
2

�
du (s)

=

Z 2�

t

sinr
�s
2

�
du (s) +

Z t

0

sinr
�s
2

�
du (s)

=

Z 2�

0

sinr
�s
2

�
du (s)

for any t 2 [0; 2�] :
Since for s 2 [0; 2�] we have

sin
�s
2

�
=

�
1� cos s

2

�1=2
then the last part of (2.28) is obtained. �



GENERALIZED TRAPEZOID TYPE INEQUALITIES 11

3. Applications for Functions of Unitary Operators

We have the following vector inequality for functions of unitary operators.

Theorem 4. Assume that f : C (0; 1) ! C satis�es the Hölder�s type condition
(2.1). If the operator U : H ! H on the Hilbert space H is unitary and fE�g�2[0;2�]
is its spectral family, then

(3.1) jf (1) hx; yi � hf (U)x; yij � 2rH
2�_
0

�

E(�)x; y

��
� 2rH kxk kyk

for any x; y 2 H:

Proof. For given x; y 2 H; de�ne the function u (�) := hE�x; yi ; � 2 [0; 2�] : We
will show that u is of bounded variation and

(3.2)
2�_
0

(u) =:

2�_
0

�

E(�)x; y

��
� kxk kyk :

It is well known that, if P is a nonnegative selfadjoint operator on H; i.e., hPx; xi �
0 for any x 2 H; then the following inequality is a generalization of the Schwarz
inequality in H

(3.3) jhPx; yij2 � hPx; xi hPy; yi ;

for any x; y 2 H:
Now, if d : 0 = t0 < t1 < ::: < tn�1 < tn = 2� is an arbitrary partition of

the interval [0; 2�] ; then we have by Schwarz�s inequality for nonnegative operators
(3.3) that

2�_
0

�

E(�)x; y

��
(3.4)

= sup
d

(
n�1X
i=0

��
�Eti+1 � Eti�x; y���
)

� sup
d

(
n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i)

:= I:

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

I � sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;(3.5)

� sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

=

"
2�_
0

�

E(�)x; x

��#1=2 "2�_
0

�

E(�)y; y

��#1=2
= kxk kyk

for any x; y 2 H:
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Utilising the inequality (2.16) we can write that

(3.6)

����f (1) hE2�x; yi � Z 2�

0

f
�
eis
�
d hEsx; yi

���� � 2rH 2�_
0

�

E(�)x; y

��
for any x; y 2 H:
On making use of the representation theorem (1.7) and the inequality (3.2) we

deduce the desired result (3.1). �

Theorem 5. With the assumptions of Theorem 4 we have

(3.7)
���f (1) kxk2 � hf (U)x; xi��� � 2r=2H D[1H � Re (U)]r=2 x; xE ;

for any x 2 H; where

Re (U) :=
U + U�

2
:

Proof. Utilising the inequality (2.28), we have����f (1) [hE2�x; xi � hE0x; xi]� Z 2�

0

f
�
eis
�
d hEsx; xi

����(3.8)

� 2r=2H
Z 2�

0

(1� cos s)r=2 d hEsx; xi

for any x 2 H:
Since Z 2�

0

(1� cos s)r=2 d hEsx; xi =
Z 2�

0

�
1� Re

�
eis
��r=2

d hEsx; xi

=
D
(1H � Re (U))r=2 x; x

E
for any x 2 H; then by (3.8) we get the desired result (3.7). �

Example 1. In order to provide some simple examples for the inequalities above
we choose two complex functions as follows.

a) Consider the power function f : Cn f0g ! C, f (z) = zm where m is a
nonzero integer. Then, obviously, for any z; w belonging to the unit circle
C (0; 1) we have the inequality

jf (z)� f (w)j � jmj jz � wj

which shows that f is Lipschitzian with the constant L = jmj on the circle
C (0; 1) :
Then from (3.7), we get for any unitary operator U that

(3.9)
���kxk2 � hUmx; xi��� � 21=2 jmjD(1H � Re (U))1=2 x; xE ;

for any x 2 H:
For m = 1 we also get from (3.1) that

(3.10) jhx; yi � hUx; yij � 2
2�_
0

�

E(�)x; y

��
� 2 kxk kyk

for any x; y 2 H:
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b) For a 6= �1; 0 consider the function f : C (0; 1)! C, fa (z) = 1
1�az : Observe

that

(3.11) jfa (z)� fa (w)j =
jaj jz � wj

j1� azj j1� awj

for any z; w 2 C (0; 1) :
If z = eit with t 2 [0; 2�] ; then we have

j1� azj2 = 1� 2aRe (�z) + a2 jzj2 = 1� 2a cos t+ a2

� 1� 2 jaj+ a2 = (1� jaj)2

therefore

(3.12)
1

j1� azj �
1

j1� jajj and
1

j1� awj �
1

j1� jajj

for any z; w 2 C (0; 1) :
Utilising (3.11) and (3.12) we deduce

(3.13) jfa (z)� fa (w)j �
jaj

(1� jaj)2
jz � wj

for any z; w 2 C (0; 1) ; showing that the function fa is Lipschitzian with
the constant La =

jaj
(1�jaj)2 on the circle C (0; 1) :

Now, if we employ the inequality (3.1), then we can state the inequality

���(1� a)�1 hx; yi � D(1H � aU)�1 x; yE��� � 2 jaj
(1� jaj)2

2�_
0

�

E(�)x; y

��
(3.14)

� 2 jaj
(1� jaj)2

kxk kyk

for any unitary operator U and for any x; y 2 H:
On making use of the inequality (3.7) we also have���(1� a)�1 kxk2 � D(1H � aU)�1 x; xE���(3.15)

� 21=2 jaj
(1� jaj)2

D
[1H � Re (U)]1=2 x; x

E
;

for any x 2 H:

4. A Quadrature Rule

We consider the following partition of the interval [a; b]

�n : a = x0 < x1 < ::: < xn�1 < xn = b

and the intermediate points �k 2 [xk; xk+1] where 0 � k � n � 1: De�ne hk :=
xk+1 � xk, 0 � k � n � 1 and � (�n) = max fhk : 0 � k � n� 1g the norm of the
partition �n:
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For the continuous function f : C (0; 1)! C and the function u : [a; b] � [0; 2�]!
C of bounded variation on [a; b] ; de�ne the generalised trapezoid quadrature rule

Tn (f; u;�n; �)(4.1)

:=
n�1X
k=0

�
f
�
eixk+1

�
[u (xk+1)� u (�k)] + f

�
eixk

�
[u (�k)� u (xk)]

	

and the remainder Rn (f; u;�n; �) in approximating the Riemann-Stieltjes integralR b
a
f
�
eit
�
du (t) by Tn (f; u;�n; �) : Then we have

(4.2)
Z b

a

f
�
eit
�
du (t) = Tn (f; u;�n; �) +Rn (f; u;�n; �) :

The following result provides a priory bounds for Rn (f; u;�n; �) in several in-
stances of f and u as above.

Proposition 1. Assume that f : C (0; 1) ! C satis�es the following Hölder�s type
condition

jf (z)� f (w)j � H jz � wjr

for any w; z 2 C (0; 1) ; where H > 0 and r 2 (0; 1] are given.
If [a; b] � [0; 2�] and the function u : [a; b]! C is of bounded variation on [a; b] ;

then for any partition �n : a = x0 < x1 < ::: < xn�1 < xn = b with the norm
� (�n) � � we have the error bound

jRn (f; u;�n; �)j(4.3)

� 2rH
n�1X
k=0

sinr
�
1

2

�
xk+1 � xk

2
+

�����k � xk+1 + xk2

������ xk+1_
xk

(u)

� 2rH
n�1X
k=0

sinr
�
xk+1 � xk

2

� xk+1_
xk

(u) � 2r
n�1X
k=0

sinr
�
xk+1 � xk

2

� xk+1_
xk

(u)

� 2rH sinr
�
� (�n)

2

� b_
a

(u) � �r (�n)H
b_
a

(u)

for any intermediate points �k 2 [xk; xk+1] where 0 � k � n� 1:
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Proof. Since � (�n) � �; then on writing inequality (2.15) on each interval [xk; xk+1]
and for any intermediate points �k 2 [xk; xk+1] where 0 � k � n� 1; we have����Z xk+1

xk

f
�
eit
�
du (t)(4.4)

�f
�
eixk+1

�
[u (xk+1)� u (�k)]� f

�
eixk

�
[u (�k)� u (xk)]

��
� 2rH

24sinr ��k � xk
2

� �k_
xk

(u) + sinr
�
xk+1 � �k

2

� xk+1_
�k

(u)

35
� 2rHmax

�
sinr

�
�k � xk
2

�
; sinr

�
xk+1 � �k

2

�� xk+1_
xk

(u)

= 2rH sinr
�
max

��
�k � xk
2

�
;

�
xk+1 � �k

2

��� xk+1_
xk

(u)

� 2rH sinr
�
1

2

�
xk+1 � xk

2
+

�����k � xk+1 + xk2

������ xk+1_
xk

(u)

� 2rH sinr
�
xk+1 � xk

2

� xk+1_
xk

(u) � 2rH sinr
�
xk+1 � xk

2

� xk+1_
xk

(u)

� 2rH sinr
�
� (�n)

2

� xk+1_
xk

(u) � �r (�n)H
xk+1_
xk

(u)

Summing over k from 0 to n � 1 in (4.4) and utilizing the generalized triangle
inequality, we deduce (4.3). �

For the continuous function f : C (0; 1)! C and the function u : [a; b] � [0; 2�]!
C of bounded variation on [a; b] ; de�ne the trapezoid midpoint quadrature rule

Mn (f; u;�n) :=

n�1X
k=0

f
�
eixk+1

� �
u (xk+1)� u

�
xk + xk+1

2

��
(4.5)

+
n�1X
k=0

f
�
eixk

� �
u

�
xk + xk+1

2

�
� u (xk)

�
and the remainder Tn (f; u;�n) in approximating the Riemann-Stieltjes integralR b
a
f
�
eit
�
du (t) by Mn (f; u;�n) : Then we have

(4.6)
Z b

a

f
�
eit
�
du (t) =Mn (f; u;�n) + Tn (f; u;�n) :

Proposition 2. Assume that f and �n are as in Proposition 1, then we have the
error bound

jTn (f; u;�n)j � 2rH
n�1X
k=0

sinr
�
xk+1 � xk

4

� xk+1_
xk

(u)(4.7)

� 2rH sinr
�
� (�n)

4

� b_
a

(u) � 1

2r
�r (�n)H

b_
a

(u) :
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We consider the following partition of the interval [0; 2�]

�n : 0 = �0 < �1 < ::: < �n�1 < �n = 2�

and the intermediate points �k 2 [�k; �k+1] where 0 � k � n � 1: De�ne hk :=
�k+1 � �k, 0 � k � n � 1 and � (�n) = max fhk : 0 � k � n� 1g the norm of the
partition �n:
If U is a unitary operator on the Hilbert space H and fE�g�2[0;2�], the spectral

family of U; then we can introduce the following sums

Tn (f;�n; �;x; y)(4.8)

:=
n�1X
k=0

�
f
�
ei�k+1

� 
�
E�k+1 � E�k

�
x; y
�
+ f

�
ei�k

� 
�
E�k � E�k

�
x; y
�	

for x; y 2 H:
For a function f : C (0; 1) ! C that satis�es the Hölder�s type condition (2.1),

we can approximate the function f of unitary operator U as follows

(4.9) hf (U)x; yi = Tn (f;�n; �;x; y) +Rn (f;�n; �;x; y)
for x; y 2 H; where the reminder satis�es the bounds

jRn (f;�n; �;x; y)j(4.10)

� 2rH
n�1X
k=0

sinr
�
1

2

�
�k+1 � �k

2
+

�����k � �k+1 + �k2

������ �k+1_
�k

�

E(�)x; y

��
� 2rH

n�1X
k=0

sinr
�
�k+1 � �k

2

� �k+1_
�k

�

E(�)x; y

��
� 2r

n�1X
k=0

sinr
�
�k+1 � �k

2

� �k+1_
�k

�

E(�)x; y

��
� 2rH sinr

�
� (�n)

2

� 2�_
0

�

E(�)x; y

��
� �r (�n)H

2�_
0

�

E(�)x; y

��
for any x; y 2 H:
The interested reader may apply the above results for various Lipschitzian func-

tions f : C (0; 1)! C. However, the details are not presented here.
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