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OSTROWSKI VIA A TWO FUNCTIONS POMPEIU’S
INEQUALITY

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, some generalizations of Pompeiu’s inequality for
two complex-valued absolutely continuous functions are provided. They are
applied to obtain some new Ostrowski type results. Reverses for the integral
Cauchy-Bunyakovsky-Schwarz inequality are provided as well.

1. INTRODUCTION

In 1946, Pompeiu [6] derived a variant of Lagrange’s mean value theorem, now
known as Pompeiu’s mean value theorem (see also [8, p. 83]).

Theorem 1 (Pompeiu, 1946 [6]). For every real valued function f differentiable
on an interval [a,b] not containing 0 and for all pairs x1 # x2 in [a,b], there exists
a point & between x1 and x4 such that

(1) nf @) =2l @) _ o) eprie).

X1 — To
The following inequality is useful to derive some Ostrowski type inequalities.

Corollary 1 (Pompeiu’s Inequality). With the assumptions of Theorem 1 and if
1f = €F o0 = SuPpeqap If () — tf ()] < o0 where €(t) =1, t € [a,b], then
(1.2) tf (@) —af O < [If = £f'l] o J2 — t]
for any t,x € [a,b].
The inequality (1.2) was stated by the author in [3].

In 1938, A. Ostrowski [4] proved the following result in the estimating the integral
mean:

Theorem 2 (Ostrowski, 1938 [4]). Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) with |f' (t)] < M < oo for all t € (a,b). Then for any

x € [a,b], we have the inequality
2
1 r — atb

The constant i is best possible in the sense that it cannot be replaced by a smaller
quantity.

b
(1.3) |f<x> S = AL

In order to provide another approximation of the integral mean, by making use
of the Pompeiu’s mean value theorem, the author proved the following result:
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2 S.S. DRAGOMIRY2

Theorem 3 (Dragomir, 2005 [3]). Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) with [a,b] not containing 0. Then for any x € [a,b], we have
the inequality

a+b f
(1.4) 5 _a/f t)dt
b—a |1 x — atb
<7 - 2 _ !
< 4+< b_a> 1f =€ oo »

where £ (t) =1, t € [a,b].
The constant i is sharp in the sense that it cannot be replaced by a smaller
quantity.

In [7], E. C. Popa using a mean value theorem obtained a generalization of (1.4)
as follows:

Theorem 4 (Popa, 2007 [7]). Let f : [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b). Assume that « ¢ [a,b]. Then for any x € [a,b], we have the
inequality

(L5) ‘(“;b—aw(wﬂ_
_ a+b 2
< i+<“b_2> (b=a) I = baf ll

where Lo (t) =t — o, t € [a,b].

t) dt

In [5], J. Pecari¢ and S. Ungar have proved a general estimate with the p-norm,
1 < p < oo which for p = 0o gives Dragomir’s result.

Theorem 5 (Pecari¢ & Ungar, 2006 [5]). Let f : [a,b] — R be continuous on [a,b]
and differentiable on (a,b) with 0 < a < b. Then for 1 < p,q < oo with }% + % =1
we have the inequality

at+b f(z)
L

(1.6) T

< PU (z,p) If = ££'ll,,

for x € [a,b], where

14 a?—9 — p2—4 220 _ gltag1-2q\ 1/4
e = [<<1—2q><2— o <1—2q><1+q>>

< p2—4q _ p2—a x2 q _ pltapl— 2q) 1/4q

+ .
0202 -q  (-20(+0q

In the cases (p,q) = (1,00), (00,1) and (2,2)

as the limit as p — 1,00 and 2, respectively.

the quantity PU (x,p) has to be taken

For other inequalities in terms of the p-norm of the quantity f — £, f’, where
by (t)=t—a,t € la,b] and a ¢ [a,b] see [1] and [2].
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In this paper, some new Pompeiu’s type inequalities for two complex-valued
absolutely continuous functions are provided. They are applied to obtain some Os-
trowski type inequalities. Reverses for the integral Cauchy-Bunyakovsky-Schwarz
inequality are provided as well.

2. A GENERAL POMPEIU’S INEQUALITY
We start with the following generalization of (1.2).

Theorem 6. Let f,g: [a,b] — C be absolutely continuous functions on the interval
[a,b] with g (t) # 0 for allt € [a,b]. Then for any t,x € [a,b] we have

f (@) f(t)'
g(t
19 = £9'loo | [ Ty ds if 19— f9' € Lo la,0],
- 1/q fo/g_fg/eLp[avb}
<S 19— 190, |1 ks p>1,
1 + 1_1
p q
179 = fa'lly SUPset @) () {ﬁ}
or, equivalently
(2.2) g(@)f(z)—f () g(2)l
1£'g = £9'lc DN|J7 mds] if f'9— f9' € Loo [a,1],
1/q if f'9—fg' € Lyla, b]
<3 159 = £9'll, 19 () g @)1 | [} ks >l
pte =1
/ ! . 1
19 = 19/ 19 (8) 9 () | 59P, e ai oy { oy |-

Proof. If f and g are absolutely continuous and g (¢t) # 0 for all ¢ € [a, b], then f/g
is absolutely continuous on the interval [a, b] and

[Go)a-t6- 56

for any t,x € [a,b] with = # .

Since /x( ) /‘ﬂ gzgwmwﬁd
\ g*

then we get the followmg 1dent1ty

(2.3) g / I S)

for any ¢, x € [a,b] .
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Taking the modulus in (2.3) we have

<

t

o) ‘ @)

f(t)
g(@) gt

S

/”” f'(5)g(s) = F(5)g'(s) ,

¢ 9% (s)

/”” [/ (s)g(s) = f(s)g' (5l ,
t lg (s)I”

s|:=1

and utilizing Holder’s integral inequality we deduce

SUDselt,z]([z,t]) If (s)g(s)— f(s)g ()] ftx ‘g(i)|2d8

)

1/q p>1,

18 71790 9() = ()9 () ds|" |7 1w T2

[ () g (s) = f(s) g (s)|ds|supseis (o) {m} ,

r / r_ 1
19— fd'ls|f; FOAE
) 1/q > 1
B I g r_ 1 b 7
- 179 = 19/l |Ji e pta=Lb

19— f9'll SUPsert, o) (w,e)) {ﬁ}

and the inequality (2.1) is proved. a

The following particular case extends Pompeiu’s inequality to other p-norms
than p = oo obtained in (1.2).

Corollary 2. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] with b > a > 0. Then for any t,x € [a,b] we have

2.5 V(x)‘f(t)’
T t
If=2f o | =2 if f—Lf' € Lo [a,b)],
y if f—Lf € Ly,la,b]
q
<3 s I = 'l [ = 7| Ok
pta=h
1f = £y gz
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or, equivalently

(2.6) [tf () —af ()]

1f = £ lloo 2 — 2] if f=Lf" € Lo [a,t],

1 24 +4 l/q fo_gf/ ELp [a,b}
<4 o W lEs —m=l s Ty

If — ef|), maxita)

min{t,x} "’

where £ (t) = t,¢ € [a,b].

The proof follows by (2.1) for g (t) =£(t) =t, t € [a,b].
The general case for power functions is as follows.

Corollary 3. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] with b >a > 0. Ifr € R, r # 0, then for any t,x € [a,b] we have

t
on 1@ 5 )’
x” tr
W F =l |3 = ] if £ —rf € Luolasb],
Ire=rfl, /
1
|1—q(r}|-1)|1/q |m1*<11(7"+1) - tlfq%’"“) | q’ forr # 7%

< X

lnz — lnt|1/q, forr = f%

if f't —rf e Lyla,bl,

1f"¢=rflly mv

or, equivalently

(2.8) [t"f (z) —a"f ()]

LSl |t —a"|if 10— 7f € Loo[ab],

1€ —=rfll,

t"z” 1 1 1/q 1
—q(r+1)[*/4 |z1—q(r+1) T =D | , forr 7é 7

IN
X

tra” lnz — Int|'/?
if f'f —rf e Lyla,b],

,forrz—%

T
||f’£*7"f||1 Wwv

1,1 _
wherep>1,5—|—6—1.
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The proof follows by (2.1) for g (t) = t", t € [a,b]. The details for calculations
are omitted.
We have the following result for exponential.

Corollary 4. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] and o € R, a # 0. Then for any t,x € [a,b] we have
f(z) f ()

(29) exp (iax)  exp (iot)

1" = iefll o [ — 8

if ' —iaf € Lo [a,b],

if f' —iaf € Lya,b]
I = iaf]], o — ¢/ p>1
SHi=1,

IN

1" —iaflly

or, equivalently

(2.10) |exp (iat) f () — f (t) exp (i)

I —iafllle =t if f —iof € Lo [a, 0],

if f' —iaf € Lya, b
I —iafll, |z — ¢ p>1,
S+ =1

IA

|f" —iaf|,-
3. AN INEQUALITY GENERALIZING OSTROWSKI’S
The following result holds:

Theorem 7. Let f, g : [a,b] — C be absolutely continuous functions on the interval
[a,b]. If 0 <m < |g(t)| < M < oo for any t € [a,b], then

51) 'm) /f Hdt—g /f ot

2
179 o oo 0= o [+ ()| #7914’ € L lort],

2 - ! /
q — €L,la,b
< <> , o) (a1 f1'g {g pla;b]
m Hfg*fg Hp 1+1/q p>1
1+1-1,

1f'g=Fg'ly (b—a)
for any x € [a,b].
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Proof. Utilizing (2.2) we have

(3.2) 'f(x) / g(t)dt - g () / £ (t)dt
b
g/ () f () — £ (8) g ()] dt

179 = 19l o @)1 f7 (lg @I |J; bmds]) at,
¢ 1/q
<{ 19191, 1o |f( O [J7 ) .
179 = 79/l 19 @) [ (19 @) supacp oy { e ) dt

for any x € [a, b], which is of interest in itself.
Since 0 <m < g (t)] < M < oo for any ¢ € [a,b], then

:c>|/: (wn‘/jus)lgds ) i < (]\n{)?/:b:—ﬂdt
(0 [+ ()]

b x l/q
g<z>|/ ('g(t)'|/t |(1)| )dt

M\? b \/q MN\? (b—a)" "9 4 (2 —a)'FYa
< (= z—t|Y = [ —
m a m 1+1/q

and
1 M\? [ M\?
s@1 [ <|g {})dts() [a=(5) -0
cteallie | |9 (5)° m/ Ja m
for any x € [a,b] and by (3.2) we get the desired result (3.1). O

Remark 1. If we take g (t) = 1,t € [a,b] in the first inequality (3.1) we recapture
Ostrowski’s inequality.
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Corollary 5. With the assumptions in Theorem 7 we have the midpoint inequalities

b\ [° b\ [°
a3 |f(5) [awa-a(5) [0
To-a)lf'g— fo'llw if f'9— fg' € Loo [a,b],
M 2
<(%)
" 1 e if f'g— fg' € Lyla,b]
FraTig (0~ @) 19— rd'll, ;iél’l.

The following result also holds:

Theorem 8. Let f, g : [a,b] — C be absolutely continuous functions on the interval
[a,b],g(z) #0 for x € [a,b] and g=% € Lo [a,b]. Then

fx) [° [
sy L2 / g (t)dt / £ () dt
1f'g = fo'lloo [1 lg (Dl |z — tldt, if f'g— fg' € Loola,b],
, ) if f'9—fg' € Lyla,b]
<ol x{ 179 =Fgll, [y lg Ol Je = dt— p>1,

1 1 _
5+E_1’

b
1£'g = fg'lly J, g (£)] dt
for any x € [a,b].
Proof. Utilizing (2.2) we have

W/abg(t)dt—/abf(t)dt

(3.5) (@)

179 = 19/ 12 (19 OIS ris]) .

IN

170 = 11, 12 (lo O |7 bmas|"") at
pJa t ]g(s)[* ’

179 = 191 J2 (19 ) 0Pepayoay { oy )

/t$|g(i)|2d8

for any z € [a, b].
Since

S MEss
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[l
t 1g(s)]

1/q
< N7l e -

and

- {1} <o
selt,z)(z.t) | 19 ()]

for any x,t € [a,b], then on making use of (3.5) we get the desired result (3.4). O

We have the midpoint inequalities:

Corollary 6. With the assumptions of Theorem 8 we have

() [ o
(3.6) g(a;rb)/ag(t)dt /af(t)dt
1F'g = f9'llo [21g (]| %£2 —t|dt, if f'g— fg' € Lo [a,b],
< [lg72|| . *

if f'9—fg' € Lyla,b]
p>1,
1

1 _
Lyl

b a 1
IUb—fJMLJg@H??—ﬂ/%“

We have the following exponential version of Ostrowski’s inequality as well:

Theorem 9. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] and a € R, a # 0. Then for any x € [a,b] we have

exp (ia (b — x)) —exp (—ia(x—a

b
(3.7) Dt (@) - [ rwa

a+b

2
17~ iaflle @0 £+ (52) ] i1~ daf € Luclat],

if ' —iaf
< ;. (b—z) 1T/ 94 (p—q)1T1/4 S Lp [a, b]
Hf - Zaf”p 1+1/q ’ p>1,
1 1 _
»te= 1,

If" = iaflly -
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Proof. If we write the inequality (3.2) for g (t) = exp (iat) , t € [a,b], then we get

b b
|f (:L')/ exp (iat) dt — exp (iax)/ f@)dt

If" = iafll f |z —tldt, if /' —iaf € Lo [a,1]
if f'—iaf
L, [a,b]
< r b ~_ 41/q € Ly |a,
- ||f Zaf”p |g (.T)l fa ‘x t‘ dt’ p > 17
1,01
» + i 1
£ —iafll,
which, after simple calculation, is equivalent with (3.7).
The details are omitted. |

Corollary 7. With the assumptions of Theorem 9 we have the midpoint inequalities
b

e |oelels)) —ow (i (5), (a;b) —/abf(t) dt

o

LI —iaf]ly, (b—a)®, if f' —iaf € Lo [a,b],

IN

if f' —iaf € Lyla,b]

1 141/ .
m(b—a) q”fl_zapra p>1’%+%:1,

or, equivalently

2sin (aa("g“))f (a;rb) _/abf(t) dt

(3.9)

LI —iafll (b—a)®, if f —iaf € Lo [a,b],

IN

1 141/ . if f' —iaf € LyJa,b]
2174(1+1/q) (b—a) RV ZOépr, p>1, % + % -1

4. AN APPLICATION FOR CBS-INEQUALITY

The following inequality is well known in the literature as the Cauchy-Bunyakovsky-
Schwarz inequality, or the CBS-inequality, for short:

2 b b
(4.1) SL/ u<wﬁdg/ g (0)2 dt,

b
[ rwgwa
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provided that f,g € Ls [a,b].
We have the following result concerning some reverses of the CBS-inequality:

Theorem 10. Let f,g: [a,b] — C be absolutely continuous functions on the inter-
val [a,b] with g (t) # 0 for allt € [a,b]. Then

b b
(42) 0< / 9 (1) dt / ()P dt -

I— b1 2 ['7-f9 € L [a,b],
/g — (f lg (t)] dt) <fa \g(t)|2dt) » f ﬁ € La,b]

) 'g—19 € Ly[a,0],
1 B - 2/¢  —- € La,b]
=5%9y If'g- 7| (f lg (t \ dt) (fa lezth) . if ldl o1,

b=

17— 171 (S 10 ()P dt)” esssuppera { e b+ f i € Lo a.8].

Proof. Utilising the inequality (2.2) we have

(43) [9@f (@) -7 9 (@)

155 = f7 o lg (t) g (@)] | f; ﬁds‘ lef élz Ez,fb?
if f'g - g
SN g = 170, lg () g (@) [ To( s)|2qu‘ . © Lpp [;L’f,]
S+ =1,
175~ 71l 19.(5) 9 ()| sb,eqearoany { e -

for any ¢,z € [a,b].
Taking the square in (4.3) and integrating over (¢,z) € [a,b]” we have

(4.4) —F () M’Q dtda

I—= —11|2 b rb 2 z#d 2dd
179 =191 Jo [ 1g @ g @7\ [y prgmds| dtde,

IN

1Fg— £33 00 2 g () g @) | [ |g(s>|24d5) didz,

175 = 715 17 17 10 1) 9 ) Suscpmo { oy } el
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Observe that

b b ,
[ [ s @) - s @5 daa
_/ab/ab (|g(t)|2\f(x)|2_2Re [Mf(z)f(t)m +|g($)|2|f(t)|2) dtde

b b
=/ \g(t)\th/ |f (@) d — 2Re

+/: Ig(x)zdw/ablf(t)z)dt

b b
—o /|g<t>|2dt/ )P d -

b b
/ HOTIOL. / f(@)g() dx]

2

b
/ f (g (t)dt

[ [ [swser /g(l)'d
S([Lb|g<t>|2dt>2(/abm(t)ﬁdt>2,
[ [ swswr|[ o e
< (/b |g<t>|2dt>2 (/b Wdt>2/q

dtdx

and
b b , 1
[ [ s0s@r s b s
a Ja selt,2) () | |9 (8)]
b 2 1
< / lg(t)]*dt | ess sup — 0>
a tefa] | |9 ()]
then by (4.4) we get the desired result (4.2). O
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