
OSTROWSKI VIA A TWO FUNCTIONS POMPEIU�S
INEQUALITY

S. S. DRAGOMIR1;2

Abstract. In this paper, some generalizations of Pompeiu�s inequality for
two complex-valued absolutely continuous functions are provided. They are
applied to obtain some new Ostrowski type results. Reverses for the integral
Cauchy-Bunyakovsky-Schwarz inequality are provided as well.

1. Introduction

In 1946, Pompeiu [6] derived a variant of Lagrange�s mean value theorem, now
known as Pompeiu�s mean value theorem (see also [8, p. 83]).

Theorem 1 (Pompeiu, 1946 [6]). For every real valued function f di¤erentiable
on an interval [a; b] not containing 0 and for all pairs x1 6= x2 in [a; b] ; there exists
a point � between x1 and x2 such that

(1.1)
x1f (x2)� x2f (x1)

x1 � x2
= f (�)� �f 0 (�) :

The following inequality is useful to derive some Ostrowski type inequalities.

Corollary 1 (Pompeiu�s Inequality). With the assumptions of Theorem 1 and if
kf � `f 0k1 = supt2(a;b) jf (t)� tf 0 (t)j <1 where ` (t) = t; t 2 [a; b] ; then
(1.2) jtf (x)� xf (t)j � kf � `f 0k1 jx� tj
for any t; x 2 [a; b] :
The inequality (1.2) was stated by the author in [3].
In 1938, A. Ostrowski [4] proved the following result in the estimating the integral

mean:

Theorem 2 (Ostrowski, 1938 [4]). Let f : [a; b] ! R be continuous on [a; b] and
di¤erentiable on (a; b) with jf 0 (t)j � M < 1 for all t 2 (a; b) : Then for any
x 2 [a; b] ; we have the inequality

(1.3)

�����f (x)� 1

b� a

Z b

a

f (t) dt

����� �
241
4
+

 
x� a+b

2

b� a

!235M (b� a) :

The constant 14 is best possible in the sense that it cannot be replaced by a smaller
quantity.

In order to provide another approximation of the integral mean, by making use
of the Pompeiu�s mean value theorem, the author proved the following result:
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2 S. S. DRAGOMIR1;2

Theorem 3 (Dragomir, 2005 [3]). Let f : [a; b] ! R be continuous on [a; b] and
di¤erentiable on (a; b) with [a; b] not containing 0: Then for any x 2 [a; b] ; we have
the inequality �����a+ b2 � f (x)

x
� 1

b� a

Z b

a

f (t) dt

�����(1.4)

� b� a
jxj

241
4
+

 
x� a+b

2

b� a

!235 kf � `f 0k1 ;
where ` (t) = t; t 2 [a; b] :
The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller
quantity.

In [7], E. C. Popa using a mean value theorem obtained a generalization of (1.4)
as follows:

Theorem 4 (Popa, 2007 [7]). Let f : [a; b] ! R be continuous on [a; b] and dif-
ferentiable on (a; b) : Assume that � =2 [a; b] : Then for any x 2 [a; b] ; we have the
inequality �����

�
a+ b

2
� �

�
f (x) +

�� x
b� a

Z b

a

f (t) dt

�����(1.5)

�

241
4
+

 
x� a+b

2

b� a

!235 (b� a) kf � `�f 0k1 ;
where `� (t) = t� �; t 2 [a; b] :

In [5], J. Peµcaríc and S. Ungar have proved a general estimate with the p-norm,
1 � p � 1 which for p =1 gives Dragomir�s result.

Theorem 5 (Peµcaríc & Ungar, 2006 [5]). Let f : [a; b]! R be continuous on [a; b]
and di¤erentiable on (a; b) with 0 < a < b: Then for 1 � p; q � 1 with 1

p +
1
q = 1

we have the inequality

(1.6)

�����a+ b2 � f (x)
x

� 1

b� a

Z b

a

f (t) dt

����� � PU (x; p) kf � `f 0kp ;
for x 2 [a; b] ; where

PU (x; p) : = (b� a)
1
p�1

"�
a2�q � x2�q
(1� 2q) (2� q) +

x2�q � a1+qx1�2q
(1� 2q) (1 + q)

�1=q
+

�
b2�q � x2�q
(1� 2q) (2� q) +

x2�q � b1+qx1�2q
(1� 2q) (1 + q)

�1=q#
:

In the cases (p; q) = (1;1) ; (1; 1) and (2; 2) the quantity PU (x; p) has to be taken
as the limit as p! 1;1 and 2; respectively.

For other inequalities in terms of the p-norm of the quantity f � `�f 0; where
`� (t) = t� �; t 2 [a; b] and � =2 [a; b] see [1] and [2].
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In this paper, some new Pompeiu�s type inequalities for two complex-valued
absolutely continuous functions are provided. They are applied to obtain some Os-
trowski type inequalities. Reverses for the integral Cauchy-Bunyakovsky-Schwarz
inequality are provided as well.

2. A General Pompeiu�s Inequality

We start with the following generalization of (1.2).

Theorem 6. Let f; g : [a; b]! C be absolutely continuous functions on the interval
[a; b] with g (t) 6= 0 for all t 2 [a; b] : Then for any t; x 2 [a; b] we have

(2.1)

����f (x)g (x)
� f (t)
g (t)

����

�

8>>>>>>>>>><>>>>>>>>>>:

kf 0g � fg0k1
���R xt 1

jg(s)j2 ds
��� if f 0g � fg0 2 L1 [a; b] ;

kf 0g � fg0kp
���R xt 1

jg(s)j2q ds
���1=q if f 0g � fg0 2 Lp [a; b]

p > 1;
1
p +

1
q = 1;

kf 0g � fg0k1 sups2[t;x]([x;t])
n

1
jg(s)j2

o
or, equivalently

(2.2) jg (t) f (x)� f (t) g (x)j

�

8>>>>>>>>>><>>>>>>>>>>:

kf 0g � fg0k1 jg (t) g (x)j
���R xt 1

jg(s)j2 ds
��� if f 0g � fg0 2 L1 [a; b] ;

kf 0g � fg0kp jg (t) g (x)j
���R xt 1

jg(s)j2q ds
���1=q if f 0g � fg0 2 Lp [a; b]

p > 1;
1
p +

1
q = 1;

kf 0g � fg0k1 jg (t) g (x)j sups2[t;x]([x;t])
n

1
jg(s)j2

o
:

Proof. If f and g are absolutely continuous and g (t) 6= 0 for all t 2 [a; b], then f=g
is absolutely continuous on the interval [a; b] andZ x

t

�
f (s)

g (s)

�0
ds =

f (x)

g (x)
� f (t)
g (t)

for any t; x 2 [a; b] with x 6= t:
Since Z x

t

�
f (s)

g (s)

�0
ds =

Z x

t

f 0 (s) g (s)� f (s) g0 (s)
g2 (s)

ds;

then we get the following identity

(2.3)
f (x)

g (x)
� f (t)
g (t)

=

Z x

t

f 0 (s) g (s)� f (s) g0 (s)
g2 (s)

ds

for any t; x 2 [a; b] :
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Taking the modulus in (2.3) we have

����f (x)g (x)
� f (t)
g (t)

���� = ����Z x

t

f 0 (s) g (s)� f (s) g0 (s)
g2 (s)

ds

����(2.4)

�
�����
Z x

t

jf 0 (s) g (s)� f (s) g0 (s)j
jg (s)j2

ds

����� := I
and utilizing Hölder�s integral inequality we deduce

I �

8>>>>>>>><>>>>>>>>:

sups2[t;x]([x;t]) jf 0 (s) g (s)� f (s) g0 (s)j
���R xt 1

jg(s)j2 ds
��� ;

��R x
t
jf 0 (s) g (s)� f (s) g0 (s)jp ds

��1=p ���R xt 1
jg(s)j2q ds

���1=q p > 1;
1
p +

1
q = 1;��R x

t
jf 0 (s) g (s)� f (s) g0 (s)j ds

�� sups2[t;x]([x;t]) n 1
jg(s)j2

o
;

=

8>>>>>>>><>>>>>>>>:

kf 0g � fg0k1
���R xt 1

jg(s)j2 ds
��� ;

kf 0g � fg0kp
���R xt 1

jg(s)j2q ds
���1=q p > 1;

1
p +

1
q = 1;

kf 0g � fg0k1 sups2[t;x]([x;t])
n

1
jg(s)j2

o
and the inequality (2.1) is proved. �

The following particular case extends Pompeiu�s inequality to other p-norms
than p =1 obtained in (1.2).

Corollary 2. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] with b > a > 0: Then for any t; x 2 [a; b] we have

(2.5)

����f (x)x � f (t)
t

����

�

8>>>>>>>><>>>>>>>>:

kf � `f 0k1
�� 1
t �

1
x

�� if f � `f 0 2 L1 [a; b] ;

1
(2q�1)1=q kf � `f

0kp
�� 1
t2q�1 �

1
x2q�1

��1=q if f � `f 0 2 Lp [a; b]
p > 1;

1
p +

1
q = 1;

kf � `f 0k1 1
minft2;x2g
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or, equivalently

(2.6) jtf (x)� xf (t)j

�

8>>>>>><>>>>>>:

kf � `f 0k1 jx� tj if f � `f 0 2 L1 [a; b] ;

1
(2q�1)1=q kf � `f

0kp
�� xq
tq�1 �

tq

xq�1

��1=q if f � `f 0 2 Lp [a; b]
p > 1; 1p +

1
q = 1;

kf � `f 0k1
maxft;xg
minft;xg ;

where ` (t) = t; t 2 [a; b] :

The proof follows by (2.1) for g (t) = ` (t) = t; t 2 [a; b] :
The general case for power functions is as follows.

Corollary 3. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] with b > a > 0: If r 2 R, r 6= 0; then for any t; x 2 [a; b] we have

(2.7)

����f (x)xr
� f (t)

tr

����

�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1
jrj kf

0`� rfk1
�� 1
xr �

1
tr

�� ; if f 0`� rf 2 L1 [a; b] ;
kf 0`� rfkp

�

8><>:
1

j1�q(r+1)j1=q
�� 1
x1�q(r+1)

� 1
t1�q(r+1)

��1=q ; for r 6= � 1
p

jlnx� ln tj1=q ; for r = � 1
p

if f 0`� rf 2 Lp [a; b] ;

kf 0`� rfk1 1
minfxr+1;tr+1g ;

or, equivalently

(2.8) jtrf (x)� xrf (t)j

�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1
jrj kf

0`� rfk1 jtr � xrj ; if f 0`� rf 2 L1 [a; b] ;

kf 0`� rfkp

�

8><>:
trxr

j1�q(r+1)j1=q
�� 1
x1�q(r+1)

� 1
t1�q(r+1)

��1=q ; for r 6= � 1
p

trxr jlnx� ln tj1=q ; for r = � 1
p

if f 0`� rf 2 Lp [a; b] ;

kf 0`� rfk1 trxr

minfxr+1;tr+1g ;

where p > 1; 1p +
1
q = 1:
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The proof follows by (2.1) for g (t) = tr; t 2 [a; b] : The details for calculations
are omitted.
We have the following result for exponential.

Corollary 4. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] and � 2 R, � 6= 0: Then for any t; x 2 [a; b] we have

(2.9)

���� f (x)

exp (i�x)
� f (t)

exp (i�t)

����

�

8>>>>>>>><>>>>>>>>:

kf 0 � i�fk1 jx� tj if f 0 � i�f 2 L1 [a; b] ;

kf 0 � i�fkp jx� tj
1=q

if f 0 � i�f 2 Lp [a; b]
p > 1;

1
p +

1
q = 1;

kf 0 � i�fk1
or, equivalently

(2.10) jexp (i�t) f (x)� f (t) exp (i�x)j

�

8>>>>>>>><>>>>>>>>:

kf 0 � i�fk1 jx� tj if f 0 � i�f 2 L1 [a; b] ;

kf 0 � i�fkp jx� tj
1=q

if f 0 � i�f 2 Lp [a; b]
p > 1;

1
p +

1
q = 1;

kf 0 � i�fk1 :

3. An Inequality Generalizing Ostrowski�s

The following result holds:

Theorem 7. Let f; g : [a; b]! C be absolutely continuous functions on the interval
[a; b] : If 0 < m � jg (t)j �M <1 for any t 2 [a; b] ; then

(3.1)

�����f (x)
Z b

a

g (t) dt� g (x)
Z b

a

f (t) dt

�����

�
�
M

m

�2
8>>>>>>>>>><>>>>>>>>>>:

kf 0g � fg0k1 (b� a)
2

�
1
4 +

�
x� a+b

2

b�a

�2�
if f 0g � fg0 2 L1 [a; b] ;

kf 0g � fg0kp
h
(b�x)1+1=q+(x�a)1+1=q

1+1=q

i if f 0g � fg0 2 Lp [a; b]
p > 1;

1
p +

1
q = 1;

kf 0g � fg0k1 (b� a)
for any x 2 [a; b] :
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Proof. Utilizing (2.2) we have

(3.2)

�����f (x)
Z b

a

g (t) dt� g (x)
Z b

a

f (t) dt

�����
�
Z b

a

jg (t) f (x)� f (t) g (x)j dt

�

8>>>>>>>><>>>>>>>>:

kf 0g � fg0k1 jg (x)j
R b
a

�
jg (t)j

���R xt 1
jg(s)j2 ds

���� dt;
kf 0g � fg0kp jg (x)j

R b
a

�
jg (t)j

���R xt 1
jg(s)j2q ds

���1=q� dt;
kf 0g � fg0k1 jg (x)j

R b
a

�
jg (t)j sups2[t;x]([x;t])

n
1

jg(s)j2

o�
dt

for any x 2 [a; b] ; which is of interest in itself.
Since 0 < m � jg (t)j �M <1 for any t 2 [a; b] ; then

jg (x)j
Z b

a

 
jg (t)j

�����
Z x

t

1

jg (s)j2
ds

�����
!
dt �

�
M

m

�2 Z b

a

jx� tj dt

=

�
M

m

�2 241
4
+

 
x� a+b

2

b� a

!235 ;

jg (x)j
Z b

a

0@jg (t)j �����
Z x

t

1

jg (s)j2q
ds

�����
1=q
1A dt

�
�
M

m

�2 Z b

a

jx� tj1=q dt =
�
M

m

�2
(b� x)1+1=q + (x� a)1+1=q

1 + 1=q

and

jg (x)j
Z b

a

 
jg (t)j sup

s2[t;x]([x;t])

(
1

jg (s)j2

)!
dt �

�
M

m

�2 Z b

a

dt =

�
M

m

�2
(b� a)

for any x 2 [a; b] and by (3.2) we get the desired result (3.1). �

Remark 1. If we take g (t) = 1; t 2 [a; b] in the �rst inequality (3.1) we recapture
Ostrowski�s inequality.
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Corollary 5. With the assumptions in Theorem 7 we have the midpoint inequalities

(3.3)

�����f
�
a+ b

2

�Z b

a

g (t) dt� g
�
a+ b

2

�Z b

a

f (t) dt

�����

�
�
M

m

�2
8>>>>>>>><>>>>>>>>:

1
4 (b� a)

2 kf 0g � fg0k1 if f 0g � fg0 2 L1 [a; b] ;

1
21=q(1+1=q)

(b� a)1+1=q kf 0g � fg0kp
if f 0g � fg0 2 Lp [a; b]

p > 1;
1
p +

1
q = 1:

The following result also holds:

Theorem 8. Let f; g : [a; b]! C be absolutely continuous functions on the interval
[a; b] ; g (x) 6= 0 for x 2 [a; b] and g�2 2 L1 [a; b] : Then

(3.4)

�����f (x)g (x)

Z b

a

g (t) dt�
Z b

a

f (t) dt

�����

�


g�2

1 �

8>>>>>>>>><>>>>>>>>>:

kf 0g � fg0k1
R b
a
jg (t)j jx� tj dt; if f 0g � fg0 2 L1 [a; b] ;

kf 0g � fg0kp
R b
a
jg (t)j jx� tj1=q dt

if f 0g � fg0 2 Lp [a; b]
p > 1;

1
p +

1
q = 1;

kf 0g � fg0k1
R b
a
jg (t)j dt

for any x 2 [a; b] :

Proof. Utilizing (2.2) we have

(3.5)

�����f (x)g (x)

Z b

a

g (t) dt�
Z b

a

f (t) dt

�����

�

8>>>>>>>><>>>>>>>>:

kf 0g � fg0k1
R b
a

�
jg (t)j

���R xt 1
jg(s)j2 ds

���� dt;
kf 0g � fg0kp

R b
a

�
jg (t)j

���R xt 1
jg(s)j2q ds

���1=q� dt;
kf 0g � fg0k1

R b
a

�
jg (t)j sups2[t;x]([x;t])

n
1

jg(s)j2

o�
dt

for any x 2 [a; b].
Since �����

Z x

t

1

jg (s)j2
ds

����� � 

g�2

1 jx� tj ;
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Z x

t

1

jg (s)j2q
ds

�����
1=q

�


g�2

1 jx� tj1=q

and

sup
s2[t;x]([x;t])

(
1

jg (s)j2

)
�


g�2

1

for any x; t 2 [a; b] ; then on making use of (3.5) we get the desired result (3.4). �

We have the midpoint inequalities:

Corollary 6. With the assumptions of Theorem 8 we have

(3.6)

�����f
�
a+b
2

�
g
�
a+b
2

� Z b

a

g (t) dt�
Z b

a

f (t) dt

�����

�


g�2

1�

8>>>>>>>><>>>>>>>>:

kf 0g � fg0k1
R b
a
jg (t)j

��a+b
2 � t

�� dt; if f 0g � fg0 2 L1 [a; b] ;

kf 0g � fg0kp
R b
a
jg (t)j

��a+b
2 � t

��1=q dt if f 0g � fg0 2 Lp [a; b]
p > 1;

1
p +

1
q = 1:

We have the following exponential version of Ostrowski�s inequality as well:

Theorem 9. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] and � 2 R, � 6= 0: Then for any x 2 [a; b] we have

(3.7)

�����exp (i� (b� x))� exp (�i� (x� a))i�
f (x)�

Z b

a

f (t) dt

�����

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

kf 0 � i�fk1 (b� a)
2

�
1
4 +

�
t� a+b

2

b�a

�2�
; if f 0 � i�f 2 L1 [a; b] ;

kf 0 � i�fkp
(b�x)1+1=q+(x�a)1+1=q

1+1=q ;

if f 0 � i�f
2 Lp [a; b]

p > 1;
1
p +

1
q = 1;

kf 0 � i�fk1 :
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Proof. If we write the inequality (3.2) for g (t) = exp (i�t) ; t 2 [a; b] ; then we get�����f (x)
Z b

a

exp (i�t) dt� exp (i�x)
Z b

a

f (t) dt

�����

�

8>>>>>>>>>><>>>>>>>>>>:

kf 0 � i�fk1
R b
a
jx� tj dt; if f 0 � i�f 2 L1 [a; b]

kf 0 � i�fkp jg (x)j
R b
a
jx� tj1=q dt;

if f 0 � i�f
2 Lp [a; b]
p > 1;

1
p +

1
q = 1

kf 0 � i�fk1 ;
which, after simple calculation, is equivalent with (3.7).
The details are omitted. �

Corollary 7. With the assumptions of Theorem 9 we have the midpoint inequalities

(3.8)

�����exp
�
i�
�
b�a
2

��
� exp

�
�i�

�
b�a
2

��
i�

f

�
a+ b

2

�
�
Z b

a

f (t) dt

�����

�

8>>>>>><>>>>>>:

1
4 kf

0 � i�fk1 (b� a)
2
; if f 0 � i�f 2 L1 [a; b] ;

1
21=q(1+1=q)

(b� a)1+1=q kf 0 � i�fkp ;
if f 0 � i�f 2 Lp [a; b]
p > 1; 1p +

1
q = 1;

or, equivalently

(3.9)

�����2 sin
�
�
�
b�a
2

��
�

f

�
a+ b

2

�
�
Z b

a

f (t) dt

�����

�

8>>>>>><>>>>>>:

1
4 kf

0 � i�fk1 (b� a)
2
; if f 0 � i�f 2 L1 [a; b] ;

1
21=q(1+1=q)

(b� a)1+1=q kf 0 � i�fkp ;
if f 0 � i�f 2 Lp [a; b]
p > 1; 1p +

1
q = 1:

4. An Application for CBS-Inequality

The following inequality is well known in the literature as the Cauchy-Bunyakovsky-
Schwarz inequality, or the CBS-inequality, for short:

(4.1)

�����
Z b

a

f (t) g (t) dt

�����
2

�
Z b

a

jf (t)j2 dt
Z b

a

jg (t)j2 dt;
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provided that f; g 2 L2 [a; b] :
We have the following result concerning some reverses of the CBS-inequality:

Theorem 10. Let f; g : [a; b]! C be absolutely continuous functions on the inter-
val [a; b] with g (t) 6= 0 for all t 2 [a; b] : Then

(4.2) 0 �
Z b

a

jg (t)j2 dt
Z b

a

jf (t)j2 dt�
�����
Z b

a

f (t) g (t) dt

�����
2

� 1

2
�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

kf 0g � fg0k21
�R b

a
jg (t)j2 dt

�2 �R b
a

1
jg(t)j2 dt

�2
; if

f 0g � fg0 2 L1 [a; b] ;
1
jgj2 2 L [a; b]

kf 0g � fg0k2p
�R b

a
jg (t)j2 dt

�2 �R b
a

1
jg(t)j2q dt

�2=q
; if

f 0g � fg0 2 Lp [a; b] ;
1

jgj2q 2 L [a; b]
p > 1;

1
p +

1
q = 1;

kf 0g � fg0k21
�R b

a
jg (t)j2 dt

�2
ess supt2[a;b]

n
1

jg(t)j4

o
; if 1

jgj 2 L1 [a; b] :

Proof. Utilising the inequality (2.2) we have

(4.3)
���g (t)f (x)� f (t) g (x)���

�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

kf 0g � fg0k1 jg (t) g (x)j
���R xt 1

jg(s)j2 ds
��� if f 0g � fg0

2 L1 [a; b] ;

kf 0g � fg0kp jg (t) g (x)j
���R xt 1

jg(s)j2q ds
���1=q

if f 0g � fg0
2 Lp [a; b]

p > 1;
1
p +

1
q = 1;

kf 0g � fg0k1 jg (t) g (x)j sups2[t;x]([x;t])
n

1
jg(s)j2

o
:

for any t; x 2 [a; b] :
Taking the square in (4.3) and integrating over (t; x) 2 [a; b]2 we have

(4.4)
Z b

a

Z b

a

���g (t)f (x)� f (t) g (x)���2 dtdx

�

8>>>>>>><>>>>>>>:

kf 0g � fg0k21
R b
a

R b
a
jg (t) g (x)j2

���R xt 1
jg(s)j2 ds

���2 dtdx;
kf 0g � fg0k2p

R b
a

R b
a
jg (t) g (x)j2

���R xt 1
jg(s)j2q ds

���2=q dtdx;
kf 0g � fg0k21

R b
a

R b
a
jg (t) g (x)j2 sups2[t;x]([x;t])

n
1

jg(s)j4

o
dtdx:
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Observe thatZ b

a

Z b

a

���g (t)f (x)� f (t) g (x)���2 dtdx
=

Z b

a

Z b

a

�
jg (t)j2 jf (x)j2 � 2Re

h
g (t)f (x) f (t) g (x)

i
+ jg (x)j2 jf (t)j2

�
dtdx

=

Z b

a

jg (t)j2 dt
Z b

a

jf (x)j2 dx� 2Re
"Z b

a

f (t) g (t)dt

Z b

a

f (x) g (x) dx

#

+

Z b

a

jg (x)j2 dx
Z b

a

jf (t)j2 dt

= 2

24Z b

a

jg (t)j2 dt
Z b

a

jf (t)j2 dt�
�����
Z b

a

f (t) g (t) dt

�����
2
35 ;

Z b

a

Z b

a

24jg (t) g (x)j2 �����
Z x

t

1

jg (s)j2
ds

�����
2
35 dtdx

�
 Z b

a

jg (t)j2 dt
!2 Z b

a

1

jg (t)j2
dt

!2
;

Z b

a

Z b

a

24jg (t) g (x)j2 �����
Z x

t

1

jg (s)j2q
ds

�����
2=q
35 dtdx

�
 Z b

a

jg (t)j2 dt
!2 Z b

a

1

jg (t)j2q
dt

!2=q
and Z b

a

Z b

a

"
jg (t) g (x)j2 sup

s2[t;x]([x;t])

(
1

jg (s)j4

)#
dtdx

�
 Z b

a

jg (t)j2 dt
!2
ess sup

t2[a;b]

(
1

jg (t)j4

)
;

then by (4.4) we get the desired result (4.2). �
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