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SOME GRUSS TYPE RESULTS VIA POMPEIU’S LIKE
INEQUALITIES

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, some Griiss type results via Pompeiu’s like inequal-
ities are proved.

1. INTRODUCTION

In 1946, Pompeiu [18] derived a variant of Lagrange’s mean value theorem, now
known as Pompeiu’s mean value theorem (see also [18, p. 83]).

Theorem 1 (Pompeiu, 1946 [18]). For every real valued function f differentiable
on an interval [a, b] not containing 0 and for all pairs 1 # x5 in [a,b], there exists
a point & between x1 and xo such that

(1) nl (@) ZnI 0 e epre).

1 — X2
The following inequality is useful to derive some Ostrowski type inequalities, see
[9].

Corollary 1 (Pompeiu’s Inequality). With the assumptions of Theorem 1 and if
If = £f'lloo = SuPteapy If (£) = tf (1)] < 00 where £(t) = ¢, t € [a,b], then
(1.2) tf (@) —zf O < If = £f ]l |z — 2]
for any t,x € [a,b].

The inequality (1.2) was obtained by the author in [9].

For other Ostrowski type inequalities concerning the p-norms [|f — £f'|, see [1],
[2], [17] and [19].

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev
functional:

b b b
3 Cthg= g [ o2 [ [ gwar

In 1935, Griiss [10] showed that

1
provided that there exists the real numbers m, M, n, N such that
(1.5) m<ft)<M and n<g(t)<N forae t€/]alb].
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The constant i is best possible in (1.3) in the sense that it cannot be replaced by
a smaller quantity.

Another, however less known result, even though it was obtained by Cebysev in
1882, [7], states that

1 2
(16) O < 17 I (0~ )2,
provided that f’, g’ exist and are continuous on [a,b] and || f'||, = sup,ejq4 [f' ()]
The constant 1—12 cannot be improved in the general case.
The Cebysev inequality (1.6) also holds if f,g : [a,b] — R are assumed to be
absolutely continuous and f', g" € Lo [a,b] while || f']| = esssup,e(qp [f' ()] -

A mixture between Griiss’ result (1.4) and Cebysev’s one (1.6) is the following
inequality obtained by Ostrowski in 1970, [15]:

(1.7) C(f9l <5 (0—a)(M—m)|g'll,

ool —

provided that f is Lebesgue integrable and satisfies (1.5) while g is absolutely con-
tinuous and ¢’ € Lo [a,b]. The constant & is best possible in (1.7).

The case of euclidean norms of the derivative was considered by A. Lupas in [12]
in which he proved that

(1) CUal < 5 17111l 06— a)

provided that f, g are absolutely continuous and f’, ¢’ € Ls [a,b]. The constant %
is the best possible.
Recently, P. Cerone and S.S. Dragomir [3] have proved the following results:

b b P »
(1.9 IC(f,9)|<7hgﬂf%lg—vllq-b_1a</a 10~ 5= [ s dt) ,

Wherep>1and%—I—%:lorp:landq:oo,and

1 1P
1.10 C(f,g9)| <inf|lg— - ——ess su t) — s)ds|,
(L10) 100 < il =, gess sw |0~ 5= [ 7
provided that f € L, [a,b] and g € L, [a,b] (p>1,%+é=1;p=1,q=ooor

p=00,q=1).
Notice that for ¢ = co,p = 1 in (1.9) we obtain

1 b
. < i - b _a
(1.11) IC(f,g)I_erelﬂfgllg Voo b_a/a

1 b
<llglloe - 5=

@) - [ rs)as
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and if g satisfies (1.5), then

f(t)—ﬁ/ F(s)ds| dt

1 b

. < i — o
112) el <t lo- e 5= [
n+ N 1 /”
g 2 w b—al/,

1 1 b
i(N_n).b—a/a

The inequality between the first and the last term in (1.12) has been obtained by
Cheng and Sun in [8]. However, the sharpness of the constant %, a generalization
for the abstract Lebesgue integral and the discrete version of it have been obtained
in [4].

For other recent results on the Griiss inequality, see [11], [13] and [16] and the
references therein.

In this paper, some Griiss type results via Pompeiu’s like inequalities are proved.

dt

b
10 - [ 1)

dt.

IN

b
10 - [ 1)

2. SOME PoOMPEIU’S TYPE INEQUALITIES

We can generalize the above inequality for the larger class of functions that
are absolutely continuous and complex valued as well as for other norms of the
difference f — £f.

Theorem 2. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] with b > a > 0. Then for any t,x € [a,b] we have

21 [tf (@) —af (@)

If—ef|, |z —t| if f—Uf € Lo [a,b],

if f—Cf' € Ly[a,b]

1/a 24 q 1/ fo p L™
<{ () N L - T e,
14,1_9
p+q ’

||f _ ef/”l max{t,w}

min{t,z} "’

or, equivalently

oa |L2_10)

t
If =€l — 3 if f—Lf € Lo [a,b],
if f —f' € L a,b]
1/q 1/ fo D )
< () I - el L — [ p>1,
1,17
p+q ?

If = 2f' s ey
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Proof. If f is absolutely continuous, then f// is absolutely continuous on the inter-
val [a, b] that does not containing 0 and

/j(fis))’ds:fiw)_fit)

for any ¢,z € [a,b] with = # ¢.

Since
/ ¢ (f (s)

then we get the following identity

)’ds:/w CLEY IO

S

(2.3) tf(x)xf(t)xt/jfl(s)i;f(s)d

for any ¢, x € [a,b] .

We notice that the equality (2.3) was proved for the smaller class of differentiable
function and in a different manner in [17].

Taking the modulus in (2.3) we have

(24) tf (@) —af ()] = |at /ths

x / _
< | [0 g
¢ s
and utilizing Holder’s integral inequality we deduce
SUPcit (o)) | (8) s = (9] ][} &= ds|,
T g p /P |z 1 1/q p>1,
(2.5) < at LLE1f (s)s = f(s)[Pds| " | [ Szds| L1
L[ 1f (s)s = f (s) ds| supseie ooy {52}
1f = €f Il 1z — 2],
/g T 1/q p > ]-7
= () M- A P
P q !
max{t,z}
I1F = €f'ly Sty
and the inequality (2.2) is proved. O

Remark 1. The first inequality in (2.1) also holds in the same form for 0 > b > a.

3. SOME GRUSS’ TYPE INEQUALITIES

We have the following result of Griiss type.



SOME GRUSS TYPE INEQUALITIES 5

Theorem 3. Let f, g : [a,b] — C be absolutely continuous functions on the interval
[a,b] withb>a> 0. If f',¢ € Ly [a,b], then

33 sb b b
(3.1) b 3a /(lf(t)g(t)dt—/a tf(t)dt/a tg (t) dt
1 4 / /
<S5 C=a) If = o llg = 49'lloc -

The constant % is best possible.

Proof. From the first inequality in (2.1) we have

b rb
(5:2) [ @@ = of @) g @)~ w9 (2) deda

b b
< [ [ 1es @) =5 @) (g (@) g (1) de

b b
s\lf—éf'uooug—zgfnm/ / (z — )? dtda.

Observe that

b b
| [ @ —ar @) g @) — a9 ) dias

b b
- / / [ (2) g (x) + 22 () g () — tg (1) of () — [ (£) teg (x)] didec

=2 [/abt2dt/abf(t)g(t)dt—/abtf(t)dt/abtg(t)dt]

d
/ab/ab(ai—t)thdx:;/ab [(b—$)3+(x—a)3}dx:é(b_ay{

Utilising the inequality (3.2), we deduce the desired result (3.1).
Now, assume that the inequality (3.1) holds with a constant B > 0 instead of
ie.

aln

L,

33 b b b

b 3a /f(t)g(t)dt—/ tf(t)dt/ tg (t)dt
<BO—a)" |If —tf'lllg 29l -

If we take f (t) =g (t) =1, t € [a,b], then

b — a3

(3.3)

b b b
f(t)g(t)dt—/ tf(t)dt/ tg (1) dt
a3

3
_re (b—a)—(bQ_a2>2:1(b—a)4

3 2 12
and
If=2f'lee =llg—€d'll oo =1

and by (3.3) we get B > ﬁ, which proves the sharpness of the constant. (I
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The following result for the complementary (p, ¢)-norms, with p,q > 1 and % +
% =1, holds.

Theorem 4. Let f,g: [a,b] — C be absolutely continuous functions on the interval
[a,b] withb > a > 0. If f' € L,[a,b], ¢ € Ly[a,b] with p,q > 1,p,q # 2 and

% + % =1, then
b3 _a3 b b b
ea) |55 [ roema- [ o [ @
1
= 22q—1) T (2p 1) 1f = ££1l, llg = £'ll, Mg/ (a,0) My/” (a, ),
where

x4 t?
ta—1  ga-1

dtdz.

M, (a,b) ::/ab/ab

M, (a,b) < (b—a) qu/z (a,b)

We have the bounds

and
M, (a,b) < (b—a) N}/ (a,b)

where, forr > 1,

9 bl g2+l pm2r4S_g-2rds (p2 2 2 7’7& 3
2r+1 —2r43 2 ) 2

2 2 2 2
(b2—a2) (b%dng—b_“ ),r:§.
a

N, (a,b) :=

Proof. From the second inequality in (2.1) we have

1 | ta |
[tf(z) —zf(t)] < W 1f=2f'Il, i
and
1 o |

for any ¢,z € [a,b].
If we multiply these inequalities and integrate, then we get

(3.5) / / (tf () — 2 (1)) (tg () — xg (1)) dbdz

< [ [ 1eF @) 21 0) (tg (@) ~ 29 () e
1
<

S lE =l g~ eI,

1/4q

(2¢— 1) (2p —1)"
b b 4 1/p
<[

P P
”3 dtdz.

tp—1 - xp—1

24
ta—1  ga-l
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Utilizing Holder’s integral inequality for double integrals we have

b b 1/q 1/p

// dtdx
b b

<[/

1 1
= M}/ (a,b) M/? (a,b)

xP tP

=1 gp-1

dm) " ( [

ta—1 ga-1

ta—1 ga-1

1 g

1/p
dtdm)
forp,q>1and%+%:1.
Utilising Cauchy-Bunyakowsky-Schwarz integral inequality for double integrals

we have
J (a.h) = /ab /ab
b b 2 1/2
§</a/adtdx> (// (- ) )
o[ [ (& “)de)“
Observe that

N, (a,b) ::/ / <x1 - 1) dtdz
24
// 20— 1)altdgv P 1dtdx+/ /a 72(q71)dtdw
= / qua:/ t—2a-Vg (/ xda:)
patl _ g2a+1  p—2q+3 _ [—2¢+3 p2 _ g2 2
=92 . _
2¢+1 —2¢+3 ( 2 ) ’

provided g # %
If g = %, then

M@@_@%wa[

x4 t?

— | dtdz

cln— —

2 a 2

Vta® | b b2a2]

Therefore

My (a,b) < (b—a) Ny/? (a,b)
and, similarly

M, (a,b) < (b—a) NI}/Q (a,b).

Remark 2. The double integral

q (a,b) //tqlixq

can be computed exactly by iterating the integrals. However the final form is too
complicated to be stated here.

dtdz
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The Euclidian norms case is as follows:

Theorem 5. Let f,g: [a,b] — C be absolutely continuous functions on the interval
[a,b] withb>a> 0. If f',¢g € La|a,b], then

dt—/btf(t)dt/btg(t)dt

1 b 2
< 1=l la = el |0+ 0w - 2 00— ).

(3.7)

Proof. From the second inequality in (2.1) we have

ch t2 1/2

Itf(w)—xf(t)|<f||f L1l

and
1 z? t21/2
tg(x) —xzg ()| < —=|lg — 4d'|l, |=— — —
ltg (z) 9()|fﬁllg 9l

for any ¢, x € [a,b] .
If we multiply these inequalities and integrate, then we get

(3.8) /ab /ab (tf (x) —xf (1)) (tg (x) — xg () dtdx
< /b /b [(tf (z) —xf (1)) (tg () — zg (t))| dtdz
17— g — £/l / / did.
Since
/ / dtdx
LA <fi>dt+£<if>dt>df
_ /b <x2 2z —lna —lnb) + W) da
and '
/abe (2Inz —Ina— Inb)dz
— [ 92 tnade - n (ab) /ab 22da
(b3+2) —%(b3—a3)
while

/bb3+a3—2x3dx_(b3+a3)ln2 2
" 3z B 3 9



SOME GRUSS TYPE INEQUALITIES 9

then we conclude that

VA

Making use of the inequality (3.8) we deduce the desired result (3.7). O

b2
dtdzr = = [(b3+a3) - - (»® —d®)|.

Remark 3. It is an open question to the author Zf% is best possible in (3.7).

Theorem 6. Let f,g: [a,b] — C be absolutely continuous functions on the interval

[a,b] with b > a > 0. Then
b b
dt—/ tf(t)dt/ tg (1) dt

26 + a® — 3ab?
<f = f Ny — g, R

Proof. From the third inequality in (2.1) we have

(3.9)

b b
(3.10) / / (tf (x) —zf () (tg (x) — xg (1)) didz

b b
< [ [ et @) =of @) (g (@) g ()] ded

< If = £f'1 g — &9/l / / (En{{jj}‘{’) dtd.
Observe that
[ (el
:/a V;(M) dt+Lb<m>2dt]dx
:/b /x(f)thJF/_b (i)zdtl d

6a ’
which together with (3.10) produces the desired inequality (3.9). O

4. SOME RELATED RESULTS

The following result holds.

Theorem 7. Let f,g: [a,b] — C be absolutely continuous functions on the interval
[a,b] with b>a> 0. If f', g’ € L [a,b], then

o [ 1000, [ 10, [0,

2L2(a,b)7G( b) ,
12 ( )GQ( b) ||f Ef || ||g*€g ||Oo,

(4.1)

<(b-a)
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where G (a,b) := Vb is the geometric mean and
b—a
L(a,b) = Inb—1Ina
is the Logarithmic mean.
The inequality (4.1) is sharp.

Proof. From the first inequality in (2.2) we have

(f(mfv) B fgt)) (g;x) _ gf))’

1 2
<l -1l -0 (- 1)

(4.2)

for any ¢, x € [a,b] .
Integrating this inequality on [a, b]* we get

(4.3) /ab/ab (fix) = fit)) (gf) - gfp) dtda
: b(f(w)_fit))(g(w)_git)>'dtdx
< f—ef'oonf—ef/nm/b/b (1—i)2dtdx.
We have o
[ () (22
e
and

[ (G2) ar=zo-or SRS

Making use of (4.3) we get the desired result (4.1).
If we take f (t) g (t) = 1, then we have

[ f(t )

o) [LO90 [ 10, 190,
L?(a,b) — G? (a,b)
= (-0’ L2 (a,b) G2 (a, b)

and
1f = loe = llg = 9"l =
and we obtain in both sides of (4.1) the same quantity
L?(a,b) — G? (a,b
(b_ a) (a’7 ) (0’7 )
L2 (a,b) G?(a,b)

The case of Euclidian norms is as follows:
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Theorem 8. Let f, g : [a,b] — C be absolutely continuous functions on the interval
[a,b] with b>a > 0. If f',g' € La|a,b], then

o [ L090 [ 10, [0,

b
<Lir-epto- e, S5

Proof. From the second inequality in (2.2) for p = ¢ = 2 we have

(4.4)

f t 1 ol 1R
(45) e A e
and
t ol 1M
(4.6 19 90 < - 0l -

for any t,z € [a, b].
On multiplying (4.5) with (4.6) we derive

1 1 1
an  |(H2-L0) (292 < Fir - erlollo - | - 2
for any ¢,z € [a,b].
Integrating this inequality on [a, b]2 we get
b b
(4.8) / / <f;x) - ff)) (g;fc) B git))dtdz
(£ L0 (0] 9f>>‘dm
217 =21 g — £/l / / E
We have
/ / dtdx
z3
11 b1
:/a l/ (tg_mg)dwr/x (xg—t?))dt} dz
b T 1 1 b 1 1 b 3
:/a [/a (tg—xg)dwr/w <$3—t3>dt1 dx:(azb‘;) :
From (4.8) we then obtain the desired result (4.4). O

Remark 4. It is an open question to the author if% 1s the best possible constant

in (4-4)-

The interested reader may obtain other similar results in terms of the norms
If=2f'1l, llg — €9'll, with p,q > 1,p,q # 2 and % + % = 1. However the details are
omitted.
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