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SOME PERTURBED OSTROWSKI TYPE INEQUALITIES FOR
FUNCTIONS OF BOUNDED VARIATION

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, some general two parameters perturbed Ostrowski
type inequalities for functions of bounded variation are established.

1. INTRODUCTION

In order to extend the classical Ostrowski’s inequality for differentiable functions
with bounded derivatives to the larger class of functions of bounded variation,
the author obtained in 1999 (see [17] or the RGMIA preprint version of [19]) the
following result

(1.1)

/abf(t)dtf(x)(ba) < B(baw\x“;bu\?(fx

for any = € [a,b] and f a function of bounded variation on [a,b]. Here VZ ()
denotes the total variation of f on [a,b] and the constant 1 is best possible in (1.1).
The best inequality one can obtain from (1.1) is the midpoint inequality, namely

[roa-r(“2)o-0

for which the constant % is also sharp.
For recent related results, see [1]-[4], [6]-[10], [13]-[15], [26]-[30] and [32]-[44].
For a function of bounded variation v : [a,b] — C we define the Cumulative
Variation Function (CVF) V : [a,b] — [0,00) by

b

< b-a\V ),

a

(1.2)

v =\ ),

the total variation of v on the interval [a,t] with ¢ € [a,D].

It is know that the CVF is monotonic nondecreasing on [a,b] and is continuous
in a point ¢ € [a,b] if and only if the generating function v is continuing in that
point. If v is Lipschitzian with the constant L > 0, i.e.

lv(t)—v(s)] < L|t—s| for any t,s € [a,b],

then V is also Lipschitzian with the same constant.
The following lemma will be used in the sequel and is of interest in itself as well
[11, p. 177]. For a simple proof see also [22].
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Lemma 1. Let f, u : [a,b] — C. If f is continuous on [a,b] and u is of bounded

variation on [a,b], then the Riemann-Stieltjes mtegmlf ft (t) exists and

[ romo|< [ |d( u)><tr€n[a>§]| )'\a/(“)

The following result may be stated.

(1.3)

Theorem 1. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

b
/f(t)dt—f(w)(b—a)

g/( <f>>dt+/: (\i/(f)) it

x b
<@-a)\/(H+0b-2)\/ ()

(1.4)

IA

for any x € [a,b].
The following midpoint inequality holds:
Corollary 1. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

(15) /abfa)dtf(“;b)(ba)
s/ a\?(f) dt+[; a\t/%<f> dtgi(b@\:/m

The first inequality in (1.5) is sharp and the constant % in the second, is best
possible.

Motivated by the above results, in this paper we establish some two parameters
perturbed Ostrowski type inequalities for functions of bounded variation.

2. SOME IDENTITIES

We start with the following identity that will play an important role in the
following:

Lemma 2. Let f : [a,b] — C be a function of bounded variation on [a,b] and
x € [a,b]. Then for any A1 (z) and Ay (x) complex numbers, we have

_bia(f@@du() At (@ +———/)t—b — A2 (@) ],

where the integrals in the right hand side are taken in the Riemann-Stieltjes sense.

(2.1) f(x)+
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Proof. Utilising the integration by parts formula in the Riemann-Stieltjes integral,
we have

@2 [ -adio-ns
— (=) [f (O - M @ —/Z[ £ =X (@) )t
— e —a)[f( /f Yt + Sh (@) (2 — %)
—(r—a) f(2) = M (@) 2z (z — a) /f £) dt + )\1()(3: ~a?)
(z—a) /f it — 5 (e~ a)* M (2)

b

(2.3) / (t—b)dlf (1) — Ao (2)1]
’ b
— D)) - he @A) f/ () = Ao (2) ) dt
=0b-a)[f( /f )dt + )\2 ( —x)
—(b—a)f /f Yt — (b—2) A (2) @ + Az()(b )

/ ft dt+ —2)% X\ (2).

By adding the equalities (2.2) and (2.3) and dividing by b — a we get the desired
representation (2.1). O

Corollary 2. With the assumption in Lemma 2, we have for any X (x) € C that

(2.4) f(m)—i—(a;b—w))\ . —bia/abf(t)dt

T b
Zbia/a “—a”[f(’f)—ﬂﬂf)ﬂnfaé (t=b)d[f (t) — A()1].

We have the following midpoint representation:

Corollary 3. With the assumption in Lemma 2, we have for any A1, Ao € C that

(25) (552 + 50— 0u-n) ——/ I
1

a+b
2

e RGO

1

b
+b—a/a;rb (tib)d[f(t)*/\gt].
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In particular, if A1 = Ao = A, then we have the equality

(2.6) f(a+b)

a+b
1

St R LR UR

—a

b
L ¢=ndiro -,

Remark 1. If we take A (x) = 0 in (2.4) we recapture the Montgomery type identity
established in [19].

3. INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION

We denote by £ : [a,b] — [a,b] the identity function, namely ¢ (¢) = ¢ for any
tela,b].
We have the following result:

Theorem 2. Let f : [a,b] — C be a function of bounded variation on [a,b] and
x € |a,b]. Then for any A1 (z) and Aa (x) complex numbers, we have the inequality

(3.1) 'f(a:)+2(ba)[(b—x>2A2<x)—(x_a) A (2 _7/f t)dt

i /az<\j/(f—/\1(z)€)>dt+/x <\f/f N (& )dt]

IN

i

a

IN

b

"”;"Z}<v<f M (o +vf Az (@ )

1
e

d
where \/ (g) denotes the total variation of g on the interval [c,d) .

c
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Proof. Taking the modulus in (2.1) and using the property (1.3) we have

b
62 |f@)+ 55 [0- M@ - @-a?h @] - = [ 0@
<o | [ e waro-x@i)
b
tya | O - r )

< bia/:a—a)d(\/(f—xmgc)e))

+ﬁ : (b—t)d(\a/(f—Ag(x)e))

Integrating by parts in the Riemann-Stieltjes integral, we have

/m(t—a)d<\/(f—h(w)€)

a

and

Using (3.2) we deduce the first inequality in (3.1).
We also have

/x (\/(f—h W)) dt < (z—a)\/ (f = M (2)0)
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and
t

b b
/ <\/(f—)\2(:c)£)>dt< EENAEPHE

M
which prove the second inequality in (3.1).
The last part is obvious. O

The following result generalizes the inequality (1.4).

Corollary 4. Let f : [a,b] — C be a function of bounded variation on [a,b] and
x € [a,b]. Then for any X\ (z) a complex number, we have the inequality

b
(3.3) ’f(m)—k(a;b—x))\(x)—bia/a £t dt
x x b t
bial/ (\/(f—A(a:)f))dt+/ (\/(f—A(x)é))dt]

z b
< (xa)\/(f)\(f)g)Jr(b:c)\/(f)\(g;)g)]
b b .
N (F-2@0+1 [\ (F=r@0 -V
<{ " ’ .
a+b b
ERa == AVACESYE)

Remark 2. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then
for any A € C we have the inequalities

f<a+b>
Sbia[/a“f (a\-f/(f—,\ﬂ))dt—&-/ (\t/f Aé) }

b
Si\a/f AL) .

This is equivalent to

(3.5) |f<“+b> _a/f £) dt
Sbiaizé{/;;(a\/“””))d”/ (\7f ”) ]

(3.4) t) dt

—_
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4. INEQUALITIES FOR LIPSHITZIAN FUNCTIONS

We can state the following result:

Theorem 3. Let f : [a,b] — C be a bounded function on [a,b] and x € (a,b). If
A1 (z) and Ay (x) are complex numbers and there exist the positive numbers Ly (x)
and Lo () such that f — Ay (x) € is Lipschitzian with the constant Ly (x) on the
interval [a, x] and f—MXg (x) £ is Lipschitzian with the constant Lo (x) on the interval

[x,b], then

Proof. It is known that, if g : [¢,d] — C is Riemann integrable and u :

IN

IN

[c,d] —

C is Lipschitzian with the constant L > 0, then the Riemann-Stieltjes integral
d .
J> g (t) du(t) exists and

d d
/g(t)du(t) gL/ g (t)] dt.
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Taking the modulus in (2.1) and using the property (4.2) we have

b
|f(z)+2(bl_a) {(bf:c)Q)\g(x)*(a:—a)Q)\l(x)]7bia/ Fb)dt
Sbia /;(t_a)d[f(t)—)\l(x)t]’

b
+bia /r (t=b)d[f (t) = A2 (z)1]

IN

- lLl(x)/;(t—a)dt—i—Lg(a:)/:(b—t)dt]

Li(z) (—a)’+ Ly (2) (b—2)°
2(b—a)

% [Ll (@) (§:2>2+L2 ) <Z:Zﬂ (b—a),

and the first inequality in (4.1) is proved.
By Holder’s inequality we have

INA
L —
?“H
|
Q2
~—
W
=)
—
=
\‘|
QI8
~—
W
L)
—_
—
=
_Q
—
~
—rg
—
&
=
_|_
&~
hS]
—
8
=
N~—
-
~
3

max { (ﬂ;;g)Q, (g:g)Q} L1 (x) + Lo (2)]

which proves, upon simple calculations, the last part of the inequality (4.1). ([

Corollary 5. Let f : [a,b] — C be a bounded function on [a,b] and z € (a,b).
If X(z) is a complex number and there exist the positive number L (x) such that
f = X(x) £ is Lipschitzian with the constant L (x) on the interval [a,b], then

(4.3) |f(x)+(a;b—m>/\(x)—bia/abf(t)dt

1 x—aTer ?
< 4+< b—a) L(z)(b—a).
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Remark 3. If A is a complex number and there exist the positive number L such
that f — M is Lipschitzian with the constant L on the interval [a,b], then

(4.4) ‘f (a;—b>—b1a/abf(t)dt <-L(b—a).

1
4

5. INEQUALITIES FOR MONOTONIC FUNCTIONS

Now, the case of monotonic integrators is as follows:

Theorem 4. Let f : [a,b] — R be a bounded function on [a,b] and x € (a,b). If
A1 (z) and A2 (z) are real numbers such that f — A1 (z) ¢ is monotonic nondecreasing
on the interval [a,x] and f — Ay (x) £ is monotonic nondecreasing on the interval

[x,b], then

b
(5.1) ‘f<x>+2(b_a)[(b—xfmc)—(m—a>2A1<x>}—b_la / F ()t

_% [)\1 (2) (z —a)? + A2 () (b — x)2]]
<t - (@)~ f (@)~ A (@) (7 )
+(b—2) [ (6) = £ (&) = X (2) (b— )]}
LIf () = F (@) =M (@) (@ =) = Xa (2) (b= )
|7 (@) = KOO — 4 (@) (e - @) + 3 (@) (b - )
<
3|5

X [f(0) = fla) = A (z) (z —a) = Ag (2) (b— )],

Proof. It is known that, if g : [¢,d] — C is continuous and u : [¢, d] — C is monotonic
nondecreasing, then the Riemann-Stieltjes integral fj g (1) du (t) exists and

d
52 [ atwau

d
< [lowlau.
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Taking the modulus in (2.1) and using the property (5.2) we have

1

b
(5.3) T [P @ - @] - [ o

f (@) +

Sbia /:(ta)d[f(t))q(x)t]‘
b

+b% / (t— ) d[f () — Ao (2)1]

< 1a[(ta)d[f(t)A1(x)t]

Integrating by parts in the Riemann-Stieltjes integral we have

[ -l -2 @
— G-l O-N@ - [ FO-N@ia

x

:@—amﬂ@—kdﬂxki/[ﬂw—AMMHﬁ

SEQ*CZ,2

2

:(x—a)f(x)—Al(x)z(m—a)—/xf(t)dH—)\l(x)
-0 @~ [ F0d- 0@ -

and

b
[ 6-0dis® -2
’ b
S 0-0UO-X@ak+ [ FO-X@ia
/f dt — g ( /mww—mvm—&md

:/ P dt = (2)° S5 =) f @)+ (b 2) o (2)

b
:/ f(t)dt—(b—m)f(x)—%)\g(x)(b—:p)Q.
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If we add these equalities, we get

b

/wufa)d[f(t)—Al(:c)tH/ (b—t)d[f (t) — ha (2)1]

x

:(x—a)f(x)—/xf(t)dt—%)q(x)(x_a)?
b
[ 1®dt- -2 @)= P 02y
b
:(Qm—a—b)f(x)+/ sgn (t —x) f(t)dt
[ (@) (@ = @) + 22 (2) (0 — 2]

1
2

and by (5.3) we get the first inequality in (5.1).
Now, since f — A1 (z) £ is monotonic nondecreasing on the interval [a, x|, then

x

(t—a)d[f(t) = A (z)1]
(z—a)[f(x) =X (@) z = f(a) + A\ (2) a]
(z —a)[f (x) = f(a) = A1 (2) (x — a)]

IN S~

and, since f — Ay (2) £ is monotonic nondecreasing on the interval [z, b] , then also

b

(b—t)d[f () = A2 (z)1]

(b—z)[f(0) = A2 () b= f (2) + A2 () 2]
=(b—=)[f(b) = f(2) = Aa () (b— )]

IN 35

These prove the second inequality in (5.1).

The last part follows by the properties of maximum and the details are omitted.
O

Corollary 6. Let f : [a,b] — R be a bounded function on [a,b] and x € (a,b).
If A(x) is a real number such that f — X\ (x) £ is monotonic nondecreasing on the
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interval [a,b], then

b
(5.4) f(z)+<a+ba:))\(z) L [ rwa

IN

a+tb
r—

b—a

}

X [f(0) = f(a) = A(z) (b—a)].

Remark 4. If A is a real number such that f — M\ is monotonic nondecreasing on
the interval [a,b], then

a+b 1 b
5.9 - — t)dt
(5.5 (5 -5 [ 1o
1 b a+b 1 5
< — t— t)ydt — -X(b—
b[/ san (1= “52) £yt - A a)]
1
< 5 1f(0) = fla) = A(b—a)].
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