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SOME PERTURBED OSTROWSKI TYPE INEQUALITIES FOR
ABSOLUTELY CONTINUOUS FUNCTIONS (I)

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, some two parameters perturbed Ostrowski type
inequalities for absolutely continuous functions are established.

1. INTRODUCTION

We start with the following result that generalizes Ostrowski’s inequality for real
valued differentiable functions whose derivative are bounded.

Theorem 1 (Dragomir, 2003 [20]). Let f : [a,b] — R be an absolutely continuous
function on [a,b] and x € [a,b]. Suppose that there exist the functions m;, M; :
[a,b] — R (i =T1,2) with the properties:

(1.1) my (z) < f'(t) < My (z) for a.e. t € |a,x]
and
(1.2) mo () < f'(t) < My (z)  for a.e. t € (x,b].
Then we have the inequalities:
(1.3) ﬁ [ma (@) (2 — @)® — My (2) (b — )?]
sﬂz)bia/abf(t)dt
< ﬁ (M1 (@) (2 — ) —ma (2) (b~ 2)?]

The constant % is sharp on both sides.

In the case that the derivative is globally bounded on [a,b] by two constants,
then we have:

Corollary 1. If f : [a,b] — R is absolutely continuous on [a,b] and the derivative
f" ¢ [a,b] — R is bounded above and below, that is, there exists the constants M > m
such that

(1.4) —co<m < f'(t) <M < oo for a.e. t € [a,b],
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then we have the inequality

b
2(b—a)

(1.5) -
b
<f@ - [
1

{m(m —a)2 - M(b—x)ﬂ

§m [M(cc—a)Z—m(b—x)Q}

for all © € [a,b]. The constant 3 is the best in both inequalities.
We may rewrite Corollary 1 in the following equivalent manner:

Corollary 2. With the assumptions on Corollary 1, we have:

(1.6) ’f(x)—(m—a;rb> (M;m>—bia/abf(t)dt

1 r — atb ?
(M —m) (b~ a) 4+< — )

<

DO =

for all z € [a, b].

Remark 1. If we assume that || f'||, := ess sup |f’ (t)| < oo, then obviously we
t€la,b]

may choose in (1.5) m = || f'||, and M = ||f'|| ., obtaining Ostrowski’s inequality

for absolutely continuous functions whose derivatives are essentially bounded:

< gl -+ 0]

2
1 x — atb
4+< — ) - ) f e

for all x € [a,b]. The constant % here is best.

‘f@:)—b_la/ (et

Remark 2. Ostrowski’s inequality for absolutely continuous mappings in terms of
/'l basically states that

/ b
1) -l e+ 0-07) < r - [T
< st [+ oo

for all z € [a, b].
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Now, if we assume that (1.1) and (1.2) hold, then — |/ f'|| < mi(x), ma ()
and M, (z), Ma (x) < ||f'||, which implies:

(1.8) — 2'(5% [(x —a)? + (b- z)Q]
b
Sz(bl_a)[ml(x)(:caﬁMg(x)(bz)ﬂgf(x)bia/a F(t)dt
1 ) ,
_m{Ml(ﬂi)(J?—a) —mg(x)(b_x)]

<2”(J;/V°Z) (@) + (- 2],

Thus, the inequality (1.3) may also be regarded as a refinement of the classical
Ostrowski result.

An important particular case is z = 4t

Corollary 3. Assume that the derivative f’: [a,b] — R satisfy the conditions:

b
(1.9) —oo<my < f'(t) < My < oo for a.e. t€ [a, H}
and
b
(1.10) —o0 <ma < f'(t) < My < oo for a.e. te(a; ,b}.

Then we have the inequalities

/f

(1.11) é(ml—Mg)(b—a) < f<“+b>
S M1 )(b—a

The constant % s the best in both inequalities.

Finally, if we know some global bounds for the derivative f’ on [a,b], then we
may state the following corollary.

Corollary 4. Under the assumptions of Corollary 1, we have the midpoint inequal-

ity:
a+b
1(5) - [ row

The constant é 1s best.

(M —m)(b—a).

(1.12) é

For other Ostrowski type inequalities see [1]-[19] and [21]-[42].

Motivated by the above results, we establish in this paper some perturbed Os-
trowski type inequalities for complex valued differentiable functions whose deriv-
atives are either bounded or of bounded variation. Applications for midpoint in-
equalities are provided as well.
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2. SOME IDENTITIES

We start with the following identity that will play an important role in the
following:

Lemma 1. Let f : [a,b] — C be an absolutely continuous on [a,b] and x € [a,b].
Then for any A1 (x) and As () complex numbers, we have

2.1) f(z)+ ﬁ [(b — ) X (@) = (x —a)’ M (@)] —

T b
o [earo-n@iar 2 [0 o -ne)a

—-a J,

where the integrals in the right hand side are taken in the Lebesgue sense.

Proof. Utilising the integration by parts formula in the Lebesgue integral, we have
22 [ ol o-nwl
— (- a) [F ()~ N @) 8 —/Z[ £ )= (@) ] de
—w—a)[f( /f ) dt + )\1 (@) (* - a?)
— (r—a) f(2) = M (@) 2z (z — a) / F () dt + >\1( ) (2% — a?)
(z— a) /f it — 5 (e~ a)* M (2)

and

(2.3 /:(t—b)[f’@)—kz(w)]dt
= (=B [F ()~ A (@) 1)L —/b[ £ () = Ao (2) ] de
— (-2 [f( /f Vit + s (@) (1~ 47)
—(b-2)f /f )t — (b= )Xo () 2+ o (2) (8 — 27)

/f dt+ —2)* Ay (z).

If we add the identities (2.2) and (2.3) and divide by b — a we deduce the desired
identity (2.1). O

Corollary 5. With the assumption in Lemma 1, we have for any X (x) € C that

(2.4) f(a:)—&—(a;b—x))\(x)—bla/abf(t)dt

z b
:bia/a (t*a)[f'(t)f)\(:z:)]dthbl /(tfb)[f’(t)f)\(;p)]dt_

—-a J,
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Remark 3. If we take A(x) = 0 in (2.4), then we get Montgomery’s identity for
absolutely continuous functions, i.e.

b
el ACL
T b
:bia/a (t—a)f’(t)dteria/w (t = b) ' (1) dt,

(2.5) f ) =

for x € [a,b].
We have the following midpoint representation:

Corollary 6. With the assumption in Lemma 1, we have for any A1, Ao € C that

b
I e P e AL

+b
1 =z

— = [ ol - aa

b
b—a /+ (t=0)[f (t) — Ao]dt.

In particular, if A1 = Ao = A, then we have the equality

27) f<a+b>

:bia/az (t—a)[f (t) — dt+—/ (t =) [f (t) — Al dt.

Remark 4. The identity (2.1) has many particular cases of interest.
If x € (a,b) is a point of differentiability for the absolutely continuous function
f:a,b] — C, then we have the equality:

28 f@+ (5 -a) @)

=bia/z(t—a)[f’(t>—f( )]dt+b% (t—=b)[f' (t) — f ()] dt.

In particular we have

(2.9) f(a+b) b
-/ 2b<tfa> {f’(ﬂf’(aﬂ)ﬂdt
- [f'(t)—f/(“‘;b)}dt

provided f’ ("TH’) exists and is finite.
For z € (a,b), if we take in (2.1)

@ =) i @) =

T—a b—=x

)\1 (.’L‘) =
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then we get, after some elementary calculations,

— X Tr—a a b
SO | I RN EEMUETENIC) F iyl

b—a b—a
:bla/:(t—a) {f/(t)—JW} dt
+bia/:(tb) {f’(t)f(b;_i(x)}dt.

In particular, we have

(2.11) ;{f(“;b>+f(b);f(a)}—bia/abf(t)dt

:bia/ (t—a) _f(a—;b)_f@]dt

b—
T2

f1 @)

+

M ‘

If we assume that the lateral derivatives f' (a) and f' (b) exist and are finite, then
we have from (2.1) for Ay (z) = f! (a) and Ay (z) = f (D)

b
212) (@) + g [6-a 7 0 - =0 £ @] -5 [ roa

i [ ol @) a

b
+bia/$ (t=0) [f'(t) — 2 (b)] at,

for all x € [a,b].
In particular, we have

b
(2.13) f<a+b> +é(b—a) [f(b) = f4 (a)] — bia/ f(t)dt

=

b
* bia/azb (t=b) [f (t) = fL (0)] at.

If we take in (2.1) A (x) = Ao () = f' (2%2) , provided this derivative exists and
is finite, then we get

24 r@+ (B -a) () - [ s
—s [ amalro-r(*30)]a
s [an[ro-r (4]

+

for all x € [a,b].
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If we assume that the derivatives f' (a), f' (b) and f'(x) exist and are finite,
then by taking

M (2) = fi (a);rf (@ N (z) = f (w);rff (b)
in (2.1) we get
b
(2.15) g (5 -a) fw - [ s
1 2 pr 2 g
F a0 0~ @) £ ()
:bia/a (t — a) [f/(t)—er(a);f(x)]dt
b / T ’
+ﬁ - [f’(t)—f ( )—;f_(b)}dt.
In particular, we have
b
(2.16) D) s oo - @ -—— [ ra
2 16 b—a ),
afd " (a 1 (a+b
:bia/a (t_a)[f/(t)_f+()+2f(2)‘|dt
b / (a+b 1
+b—1a/a;rb(t_b) lf’(t)—f (5 );rf_(b)}dt.

3. INEQUALITIES FOR BOUNDED DERIVATIVES

Now, for v,I' € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

Ua) (1,T)
= {f : [a,b] — C|Re {(I‘ - f@) (m —7)} > 0 for almost every ¢ € [a,b]}

and

, Tl 1
Ay (7.T) 1= {f:[a,b]mq ‘f(t)V; < 5I0 1] forae. te[a,b]}.

The following representation result may be stated.

Proposition 1. For any~,T € C, v # I, we have that U[a’b] (v,T) and A[a,b] (v, T)
are nonempty, convex and closed sets and

(3.1) Utap) (1:T) = By (7,1) -
Proof. We observe that for any z € C we have the equivalence
y+T 1
_ -
== 5=l

if and only if
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This follows by the equality

1 v+T .
ST = = |z = 5—| =Re[(T—2)(z-7)]
4 2
that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. |

On making use of the complex numbers field properties we can also state that:

Corollary 7. For any v, € C, v # I',we have that

(32) Upap) (1, T) ={f : [a,b] > C | (Rel' = Re f (t)) (Re f (t) — Re?)
+(Iml —Imf (¢)) (Im f (¢) — Im~y) > 0 for a.e. t € [a,b]}.

Now, if we assume that Re (I') > Re (y) and Im (I") > Im (vy) , then we can define
the following set of functions as well:

(33) Sy (nT) = {f : [, = C| Re(T) > Re f (1) > Re(y)
and Im (T") > Im f (¢) > Im (y) for a.e. t € [a,b]}.

One can easily observe that g[a,b] (7,T) is closed, convex and
(34) 0 7é S[a,b] (’Y?F) - _[a,b] (7ar) :
Theorem 2. Let f : [a,b] — C be an absolutely continuous on [a,b] and z € (a,b).

Suppose that Viari € C with Vi 7é Ii,i=1,2 and f/ € U[a,m} (Vlarl)ﬂU[x,b] (’7271—‘2)7
then we have

b
(35) %@%wla/fﬁmt

+; |:(b—l‘)2 Loty (z — a)? M]

2(b—a) 2 2
1 z—a\’ b—z\?
<2 |iry =y (222 Ty — ol (=) | (b=
_4[1 nl (52 +1rs vﬂ(b_a)]( )
1
Sz(b a)
[ w,”"*’b 2
b (52| maIry =l 02 = vl
r 2p 2p 1/p 1
|G (2] i i = el
p>1,24+1=1,
N
L |5 || I =l + T2 = 3l
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Proof. Since f’ € Upg 41 (71, T1) MUz 4] (72, T2) , then by taking the modulus in (2.1)
for Ay (z) = B30 and A (z) = 72572 we get

b
‘f@)bia/.ﬂﬂﬁ

e i
1

r

S et

< f () 5 |dt
1 b / FQ +’72
+ m/ t=0)|f" (t)— 5 dt

o1 vﬂ/ s ! vﬂ/ y
—Qa

ey o (229 s - |915 (b—a)

_4 =M b—a 2772 b—a a

and the first inequality in (3.5) is proved.
The last part follows by Holder’s inequality

(=

mn 4+ pg < (m* +p)" (07 +¢%)"7
wherem,n,p,qZOanda>lwithi+%:1. O

Corollary 8. Let f : [a,b] — C be an absolutely continuous on [a,b] and x € (a,b).
Suppose that v, I' € C with v # T, and f € Upay (7,T'), then we have

b r
f(x)+<a+ —:r) 7 /f £ dt
2 —a
2
1 1 x — atb
§2W—7|4+< h_;) (h—a).
In particular, we have

(419) -

Remark 5. If the derivative f' : [a,b] — R is bounded above and below, that is,
there exists the constants M > m such that

(3.6)

(3.7) t) dt

< IT =1l a).

—oco<m < f'(t) <M < oo for a.e. t € [a,b],

then we recapture from (3.6) the inequality (1.6).
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Remark 6. Let f : [a,b] — C be an absolutely continuous on [a,b] . Suppose that
Vi, Ti € Cwith v, # T, 1 =1,2 and [’ € U[a7aT+b] (v, T1) N U[%ﬂ)b} (v9,T2), then
we have from (8.5) that

b b .
f(a;— )_b—la/a f(t)dt+;(b_a)<F2~26-’yQ_ 1_;_71)‘

1
< E[|P1—’Y1‘+|F2—72H (b—a).

(3.8)

4. INEQUALITIES FOR DERIVATIVES OF BOUNDED VARIATION

Assume that the function f : I — C is differentiable on the interior of I, denoted
I, and [a,b] C I. Then, as in (2.15), we have the equality

(4.1 @y () rw- k[ row
= (b2 O =@’ f @)
_ bia/m(t—a) [ff(t)_f'(“)‘gf“”’)}dt
it [en]ro - TR0,

for any x € [a,}].

Theorem 3. Let f : I — C be a differentiable function on I and [a,b] C I. If the
derwative f': I — C is of bounded variation on [a,b], then

(42) |f(w)b_la/abf(t)dH;(a;br)f’(x)

(0= 1 0~ (=0 @]

2 b

< KE:Z)Q\?U"H(?}:E) \w/<f'>] (b—a)

b Jaql/a
V() ]
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for any x € [a,b].

Proof. Taking the modulus in (4.1) we have

(13) 1@t a2 @

b—a

Fip—a [0~ O - (=) F (o)

! /j(ta) [f’(t)f/(“)*f/(f”)} dt‘

2
1a/:(t_b)[f,(t)_f’(wﬂf’(b)}dt

2
R PP
b
+ﬁ/ (b—1)

!
O
Since f’: I — C is of bounded variation on [a,z] and [z, b] , then

dt

f’(t)—fl(m);rf/(b)’dt.

P ACES dC AU AR AU
< S0~ F @I+ 1f @)~ 7 0
< %\m/(f’)
for any ¢ € [a, 2] and, similarly, a
f'(t)—f'(x)jf'(b)‘s;\b/<f’)
for any ¢ € [z,b]. z
Then
/j(ta) f,(t)if’(a);rf’(fﬂ) dt < ;\i/(f’)/j(ta)dt
- eV
and )
[ o-n]ro- L0, o ;\Z/u')/:(b—t)dt

and by (4.3) we get the desired inequality (4.2).
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The last part follows by Holder’s inequality

a 1
mn +pg < (m* +p*)* (nf +¢%)"”

Wherem,n,p,qEOanda>lwithé—i—%:l. (]

Corollary 9. Let f : I — C be a differentiable function on I and [a,b] C I. If the
derivative f': I — C is of bounded variation on [a,b], then

(1.4 ‘f( ) -5 [ F 0 oo 0)- 1 (o)

Remark 7. If p € (a,b) is a median point in bounded variation for the derivative,
P

b
i.€e. = 1), then under the assumptions of Theorem 3, we have
V(
P

a

b
(@5) ‘f(p)—bla/f(t)dt+;<a;b—p)f'(p)

g [0- 97 0 - 0= 7 @]

5. INEQUALITIES FOR LIPSCHITZIAN DERIVATIVES
We say that v : [a,b] — C is Lipschitzian with the constant L > 0, if it satisfies
the condition

lv(t) —v(s)| < L|t—s| for any t,s € [a,b].

Theorem 4. Let f : I — C be a differentiable function on I and [a,b] C I. Let
€ (a,b). If the derivative f' : I — C is Lipschitzian with the constant Ky () on
[a,z] and constant Ky (x) on [z,b], then

(1) ‘f(:r)—b_la/abf(t)dH;(a;b—x>f’(x)

g [0 9 0 - @0 @]
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r—a

b—a

)3K1 (2)

(

()"

p>1, 1+*=

|

atb
T— 3

b—a

1
1+

Proof. Since f'
constant K5 (z) on [z,b], then

f(a) + 1" (z)
2

@) -

IN

IN

for any t € [a, 2] and, similarly,

[ (@) + £ (b)

HOREE

l

for any ¢ € [z, b].
Then

and

-1 = Cis Lipschitzian with the constant K (z)

13

b—x
b—a

i

)3K2 <x>] (b ay?

' 154 (2) + K2 (&),

on [a,z] and

@)+ () -
2
(1) = f (@) + 1S () -

Ky (2) [|t —af + |z = t]]

/() - f" ()|

F ol

N =N =N =

K (z)(x —a)

IN

1
S5 (@) [t = o]+ b~ 1]

1
SKa () (0 =)

IA

b

%KQ (z) (b—m)/ (b—t)dt

x

<

= %(b—m)gKg(x).

Making use of the inequality (4.3) we deduce the first bound in (5.1).

The second part is obvious.
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Corollary 10. Let f : I — C be a differentiable function on I and [a,b] C I. If the
derivative f': I — C is Lipschitzian with the constant K on [a,b] then

(52) 1@t [ras () e
e [0 70— - £ @]

for any z € [a,b].

In particular, we have

b
63 | ()t ool o - @l [

(1]
2]
(3]
(4]

(5]

(6]
[7]
(8]
[9]
[10]

[11]

[13]

[14]

[15]

REFERENCES

A. M. ACU, A. BABOS and F. SOFONEA, The mean value theorems and inequalities of
Ostrowski type. Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5-16.

A. M. ACU and F. SOFONEA, On an inequality of Ostrowski type. J. Sci. Arts 2011, no.
3(16), 281-287.

F. AHMAD, N. S. BARNETT and S. S. DRAGOMIR, New weighted Ostrowski and Cebysev
type inequalities. Nonlinear Anal. 71 (2009), no. 12, €1408-e1412.

M. W. ALOMARI, A companion of Ostrowski’s inequality with applications. Transylv. J.
Math. Mech. 3 (2011), no. 1, 9-14.

M. W. ALOMARI, M. DARUS, S. S. DRAGOMIR and P. CERONE, Ostrowski type in-
equalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett.
23 (2010), no. 9, 1071-1076.

G. A. ANASTASSIOU, Ostrowski type inequalities. Proc. Amer. Math. Soc. 123 (1995), No.
12, 3775-3781.

G. A. ANASTASSIOU, Univariate Ostrowski inequalities, revisited. Monatsh. Math. 135
(2002), No. 3, 175-189.

G. A. ANASTASSIOU, Ostrowski inequalities for cosine and sine operator functions. Mat.
Vesnik 64 (2012), no. 4, 336-346.

G. A. ANASTASSIOU, Multivariate right fractional Ostrowski inequalities. J. Appl. Math.
Inform. 30 (2012), no. 3-4, 445-454.

G. A. ANASTASSIOU, Univariate right fractional Ostrowski inequalities. Cubo 14 (2012),
no. 1, 1-7.

N. S. BARNETT, S. S. DRAGOMIR and I. GOMM, A companion for the Ostrowski and the
generalised trapezoid inequalities. Math. Comput. Modelling 50 (2009), no. 1-2, 179-187.
P. CERONE, W.-S. CHEUNG and S. S. DRAGOMIR, On Ostrowski type inequalities for
Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation.
Comput. Math. Appl. 54 (2007), No. 2, 183-191.

P. CERONE and S. S. DRAGOMIR, Midpoint-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 135-200, Chapman &
Hall/CRC, Boca Raton, FL, 2000.

P. CERONE and S. S. DRAGOMIR, Trapezoidal-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 65-134, Chapman &
Hall/CRC, Boca Raton, FL, 2000.

P. CERONE;, S. S. DRAGOMIR and C. E. M. PEARCE, A generalised trapezoid inequality
for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.



[16]
[17]

18]

[19]

[20]

[21]

22]

23]

[24]
[25]
[26]
[27]
(28]
[29]
[30]
31]
32]
33]
[34]

[35]

PERTURBED OSTROWSKI TYPE INEQUALITIES 15

S. S. DRAGOMIR, The Ostrowski inequality for mappings of bounded variation, Bull. Aus-
tral. Math. Soc., 60 (1999), 495-826.

S. S. DRAGOMIR, On the mid-point quadrature formula for mappings with bounded varia-
tion and applications, Kragujevac J. Math., 22 (2000), 13-19.

S. S. DRAGOMIR, On the Ostrowski’s integral inequality for mappings with bounded varia-
tion and applications, Math. Ineq. & Appl., 4(1) (2001), 33-40. Preprint, RGMIA Res. Rep.
Coll. 2(1999), No. 1, Article 7. [Online: http://rgmia.vu.edu.au/v2nl.html].

S. S. DRAGOMIR, On the trapezoid quadrature formula and applications, Kragujevac J.
Math., 23 (2001), 25-36.

S. S. DRAGOMIR, Improvements of Ostrowski and generalised trapezoid inequality in terms
of the upper and lower bounds of the first derivative. Tamkang J. Math. 34 (2003), no. 3,
213-222.

S. S. DRAGOMIR, Refinements of the generalised trapezoid and Ostrowski inequalities for
functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450-460.

S.S. DRAGOMIR, Some inequalities for continuous functions of selfadjoint operators in
Hilbert spaces, Acta Math. Vietnamica, to appear. Preprint RGMIA Res. Rep. Coll.
15(2012), Art. 16. http://rgmia.org/v15.php.

S. S. DRAGOMIR, Refinements of the Ostrowski inequality in terms of the cumulative
variation and applications, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 29, pp. 15
[http://rgmia.org/papers/vi6/vi6a29.pdf] .

7. LIU, Some inequalities of perturbed trapezoid type. J. Inequal. Pure Appl. Math. 7 (2006),
no. 2, Article 47, 9 pp.

7. LIU, A note on Ostrowski type inequalities related to some s-convex functions in the second
sense. Bull. Korean Math. Soc. 49 (2012), no. 4, 775-785.

Z. LIU, A sharp general Ostrowski type inequality. Bull. Aust. Math. Soc. 83 (2011), no. 2,
189-209.

Z. LIU, New sharp bound for a general Ostrowski type inequality. Tamsui Ozxf. J. Math. Sci.
26 (2010), no. 1, 53-59.

7. LIU, Some Ostrowski type inequalities and applications. Vietnam J. Math. 37 (2009), no.
1, 15-22.

Z. LIU, Some companions of an Ostrowski type inequality and applications. J. Inequal. Pure
Appl. Math. 10 (2009), no. 2, Article 52, 12 pp.

M. MASJED-JAMEI and S. S. DRAGOMIR, A new generalization of the Ostrowski inequal-
ity and applications. Filomat 25 (2011), no. 1, 115-123.

B. G. PACHPATTE, A note on a trapezoid type integral inequality. Bull. Greek Math. Soc.
49 (2004), 85-90.

J. PARK, On the Ostrowskilike type integral inequalities for mappings whose second deriva-
tives are s*-convex. Far Fast J. Math. Sci. (FIMS) 67 (2012), no. 1, 21-35.

J. PARK, Some Ostrowskilike type inequalities for differentiable real (o, m)-convex mappings.
Far East J. Math. Sci. (FJIMS) 61 (2012), no. 1, 75-91

M. Z. SARIKAYA, On the Ostrowski type integral inequality. Acta Math. Univ. Comenian.
(N.S.) 79 (2010), no. 1, 129-134.

W. T. SULAIMAN, Some new Ostrowski type inequalities. J. Appl. Funct. Anal. 7 (2012),
no. 1-2, 102-107.

K.-L. TSENG, Improvements of the Ostrowski integral inequality for mappings of bounded
variation II. Appl. Math. Comput. 218 (2012), no. 10, 5841-5847.

K.-L. TSENG, S.-R. HWANG, G.-S. YANG, and Y.-M. CHOU, Improvements of the Os-
trowski integral inequality for mappings of bounded variation I. Appl. Math. Comput. 217
(2010), no. 6, 2348-2355.

N. UJEVIC, Error inequalities for a generalized trapezoid rule. Appl. Math. Lett. 19 (2006),
no. 1, 32-37.

S. W. VONG, A note on some Ostrowskilike type inequalities. Comput. Math. Appl. 62
(2011), no. 1, 532-535.

Y. WU and Y. WANG, On the optimal constants of Ostrowskilike inequalities involving n
knots. Appl. Math. Comput. 219 (2013), no. 14, 7789-7794.

Q. WU and S. YANG, A note to Ujevi¢’s generalization of Ostrowski’s inequality. Appl. Math.
Lett. 18 (2005), no. 6, 657-665.



16 S.S. DRAGOMIRY2

[42] Y.-X. XIAO, Remarks on Ostrowskilike inequalities. Appl. Math. Comput. 219 (2012), no.
3, 1158-1162.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTYy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2ScHo0L OF COMPUTATIONAL & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA



