
SOME PERTURBED OSTROWSKI TYPE INEQUALITIES FOR
ABSOLUTELY CONTINUOUS FUNCTIONS (I)

S. S. DRAGOMIR1;2

Abstract. In this paper, some two parameters perturbed Ostrowski type
inequalities for absolutely continuous functions are established.

1. Introduction

We start with the following result that generalizes Ostrowski�s inequality for real
valued di¤erentiable functions whose derivative are bounded.

Theorem 1 (Dragomir, 2003 [20]). Let f : [a; b] ! R be an absolutely continuous
function on [a; b] and x 2 [a; b]. Suppose that there exist the functions mi, Mi :
[a; b]! R

�
i = 1; 2

�
with the properties:

(1.1) m1 (x) � f 0 (t) �M1 (x) for a.e. t 2 [a; x]

and

(1.2) m2 (x) � f 0 (t) �M2 (x) for a.e. t 2 (x; b] :

Then we have the inequalities:

1

2 (b� a)

h
m1 (x) (x� a)2 �M2 (x) (b� x)2

i
(1.3)

� f (x)� 1

b� a

Z b

a

f (t) dt

� 1

2 (b� a)

h
M1 (x) (x� a)2 �m2 (x) (b� x)2

i
:

The constant 12 is sharp on both sides.

In the case that the derivative is globally bounded on [a; b] by two constants,
then we have:

Corollary 1. If f : [a; b]! R is absolutely continuous on [a; b] and the derivative
f 0 : [a; b]! R is bounded above and below, that is, there exists the constantsM > m
such that

(1.4) �1 < m � f 0 (t) �M <1 for a.e. t 2 [a; b] ;
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then we have the inequality

1

2 (b� a)

h
m (x� a)2 �M (b� x)2

i
(1.5)

� f (x)� 1

b� a

Z b

a

f (t) dt

� 1

2 (b� a)

h
M (x� a)2 �m (b� x)2

i
for all x 2 [a; b]. The constant 12 is the best in both inequalities.

We may rewrite Corollary 1 in the following equivalent manner:

Corollary 2. With the assumptions on Corollary 1, we have:�����f (x)�
�
x� a+ b

2

��
M +m

2

�
� 1

b� a

Z b

a

f (t) dt

�����(1.6)

� 1

2
(M �m) (b� a)

241
4
+

 
x� a+b

2

b� a

!235
for all x 2 [a; b].

Remark 1. If we assume that kf 0k1 := ess sup
t2[a;b]

jf 0 (t)j < 1, then obviously we

may choose in (1.5) m = kf 0k1 and M = kf 0k1, obtaining Ostrowski�s inequality
for absolutely continuous functions whose derivatives are essentially bounded:�����f (x)� 1

b� a

Z b

a

f (t) dt

����� � kf 0k1
2 (b� a)

h
(x� a)2 + (b� x)2

i

=

241
4
+

 
x� a+b

2

b� a

!235 (b� a) kf 0k1 ;
for all x 2 [a; b]. The constant 14 here is best.

Remark 2. Ostrowski�s inequality for absolutely continuous mappings in terms of
kf 0k1 basically states that

� kf 0k1
2 (b� a)

h
(x� a)2 + (b� x)2

i
� f (x)� 1

b� a

Z b

a

f (t) dt(1.7)

� kf 0k1
2 (b� a)

h
(x� a)2 + (b� x)2

i
for all x 2 [a; b].
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Now, if we assume that (1.1) and (1.2) hold, then �kf 0k1 � m1 (x), m2 (x)
and M1 (x), M2 (x) � kf 0k1, which implies:

� kf 0k1
2 (b� a)

h
(x� a)2 + (b� x)2

i
(1.8)

� 1

2 (b� a)

h
m1 (x) (x� a)2 �M2 (x) (b� x)2

i
� f (x)� 1

b� a

Z b

a

f (t) dt

� 1

2 (b� a)

h
M1 (x) (x� a)2 �m2 (x) (b� x)2

i
� kf 0k1
2 (b� a)

h
(x� a)2 + (b� x)2

i
:

Thus, the inequality (1.3) may also be regarded as a re�nement of the classical
Ostrowski result.

An important particular case is x = a+b
2 providing the following corollary.

Corollary 3. Assume that the derivative f 0 : [a; b]! R satisfy the conditions:

(1.9) �1 < m1 � f 0 (t) �M1 <1 for a.e. t 2
�
a;
a+ b

2

�
and

(1.10) �1 < m2 � f 0 (t) �M2 <1 for a.e. t 2
�
a+ b

2
; b

�
:

Then we have the inequalities

1

8
(m1 �M2) (b� a) � f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt(1.11)

� 1

8
(M1 �m2) (b� a) :

The constant 18 is the best in both inequalities.

Finally, if we know some global bounds for the derivative f 0 on [a; b], then we
may state the following corollary.

Corollary 4. Under the assumptions of Corollary 1, we have the midpoint inequal-
ity:

(1.12)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt

����� � 1

8
(M �m) (b� a) :

The constant 18 is best.

For other Ostrowski type inequalities see [1]-[19] and [21]-[42].
Motivated by the above results, we establish in this paper some perturbed Os-

trowski type inequalities for complex valued di¤erentiable functions whose deriv-
atives are either bounded or of bounded variation. Applications for midpoint in-
equalities are provided as well.



4 S. S. DRAGOMIR1;2

2. Some Identities

We start with the following identity that will play an important role in the
following:

Lemma 1. Let f : [a; b] ! C be an absolutely continuous on [a; b] and x 2 [a; b] :
Then for any �1 (x) and �2 (x) complex numbers, we have

f (x) +
1

2 (b� a)

h
(b� x)2 �2 (x)� (x� a)2 �1 (x)

i
� 1

b� a

Z b

a

f (t) dt(2.1)

=
1

b� a

Z x

a

(t� a) [f 0 (t)� �1 (x)] dt+
1

b� a

Z b

x

(t� b) [f 0 (t)� �2 (x)] dt;

where the integrals in the right hand side are taken in the Lebesgue sense.

Proof. Utilising the integration by parts formula in the Lebesgue integral, we haveZ x

a

(t� a) [f 0 (t)� �1 (x)] dt(2.2)

= (t� a) [f (t)� �1 (x) t]jxa �
Z x

a

[f (t)� �1 (x) t] dt

= (x� a) [f (x)� �1 (x)x]�
Z x

a

f (t) dt+
1

2
�1 (x)

�
x2 � a2

�
= (x� a) f (x)� �1 (x)x (x� a)�

Z x

a

f (t) dt+
1

2
�1 (x)

�
x2 � a2

�
= (x� a) f (x)�

Z x

a

f (t) dt� 1
2
(x� a)2 �1 (x)

and Z b

x

(t� b) [f 0 (t)� �2 (x)] dt(2.3)

= (t� b) [f (t)� �2 (x) t]jbx �
Z b

x

[f (t)� �2 (x) t] dt

= (b� x) [f (x)� �2 (x)x]�
Z b

x

f (t) dt+
1

2
�2 (x)

�
b2 � x2

�
= (b� x) f (x)�

Z b

x

f (t) dt� (b� x)�2 (x)x+
1

2
�2 (x)

�
b2 � x2

�
= (b� x) f (x)�

Z b

x

f (t) dt+
1

2
(b� x)2 �2 (x) :

If we add the identities (2.2) and (2.3) and divide by b � a we deduce the desired
identity (2.1). �

Corollary 5. With the assumption in Lemma 1, we have for any � (x) 2 C that

f (x) +

�
a+ b

2
� x
�
� (x)� 1

b� a

Z b

a

f (t) dt(2.4)

=
1

b� a

Z x

a

(t� a) [f 0 (t)� � (x)] dt+ 1

b� a

Z b

x

(t� b) [f 0 (t)� � (x)] dt:
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Remark 3. If we take � (x) = 0 in (2.4), then we get Montgomery�s identity for
absolutely continuous functions, i.e.

f (x)� 1

b� a

Z b

a

f (t) dt(2.5)

=
1

b� a

Z x

a

(t� a) f 0 (t) dt+ 1

b� a

Z b

x

(t� b) f 0 (t) dt;

for x 2 [a; b] :

We have the following midpoint representation:

Corollary 6. With the assumption in Lemma 1, we have for any �1; �2 2 C that

f

�
a+ b

2

�
+
1

8
(b� a) (�2 � �1)�

1

b� a

Z b

a

f (t) dt(2.6)

=
1

b� a

Z a+b
2

a

(t� a) [f 0 (t)� �1] dt+
1

b� a

Z b

a+b
2

(t� b) [f 0 (t)� �2] dt:

In particular, if �1 = �2 = �; then we have the equality

f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt(2.7)

=
1

b� a

Z a+b
2

a

(t� a) [f 0 (t)� �] dt+ 1

b� a

Z b

a+b
2

(t� b) [f 0 (t)� �] dt:

Remark 4. The identity (2.1) has many particular cases of interest.
If x 2 (a; b) is a point of di¤erentiability for the absolutely continuous function

f : [a; b]! C, then we have the equality:

f (x) +

�
a+ b

2
� x
�
f 0 (x)� 1

b� a

Z b

a

f (t) dt(2.8)

=
1

b� a

Z x

a

(t� a) [f 0 (t)� f 0 (x)] dt+ 1

b� a

Z b

x

(t� b) [f 0 (t)� f 0 (x)] dt:

In particular we have

f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt(2.9)

=
1

b� a

Z a+b
2

a

(t� a)
�
f 0 (t)� f 0

�
a+ b

2

��
dt

+
1

b� a

Z b

a+b
2

(t� b)
�
f 0 (t)� f 0

�
a+ b

2

��
dt

provided f 0
�
a+b
2

�
exists and is �nite.

For x 2 (a; b) ; if we take in (2.1)

�1 (x) =
f (x)� f (a)

x� a and �2 (x) =
f (b)� f (x)

b� x ;
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then we get, after some elementary calculations,

1

2

�
f (x) +

(b� x) f (b) + (x� a) f (a)
b� a

�
� 1

b� a

Z b

a

f (t) dt(2.10)

=
1

b� a

Z x

a

(t� a)
�
f 0 (t)� f (x)� f (a)

x� a

�
dt

+
1

b� a

Z b

x

(t� b)
�
f 0 (t)� f (b)� f (x)

b� x

�
dt:

In particular, we have

1

2

�
f

�
a+ b

2

�
+
f (b) + f (a)

2

�
� 1

b� a

Z b

a

f (t) dt(2.11)

=
1

b� a

Z a+b
2

a

(t� a)
"
f 0 (t)�

f
�
a+b
2

�
� f (a)

b�a
2

#
dt

+
1

b� a

Z b

a+b
2

(t� b)
"
f 0 (t)�

f (b)� f
�
a+b
2

�
b�a
2

#
dt:

If we assume that the lateral derivatives f 0+ (a) and f
0
� (b) exist and are �nite, then

we have from (2.1) for �1 (x) = f 0+ (a) and �2 (x) = f
0
� (b)

f (x) +
1

2 (b� a)

h
(b� x)2 f 0� (b)� (x� a)

2
f 0+ (a)

i
� 1

b� a

Z b

a

f (t) dt(2.12)

=
1

b� a

Z x

a

(t� a)
�
f 0 (t)� f 0+ (a)

�
dt

+
1

b� a

Z b

x

(t� b)
�
f 0 (t)� f 0� (b)

�
dt;

for all x 2 [a; b] :
In particular, we have

f

�
a+ b

2

�
+
1

8
(b� a)

�
f 0� (b)� f 0+ (a)

�
� 1

b� a

Z b

a

f (t) dt(2.13)

=
1

b� a

Z a+b
2

a

(t� a)
�
f 0 (t)� f 0+ (a)

�
dt

+
1

b� a

Z b

a+b
2

(t� b)
�
f 0 (t)� f 0� (b)

�
dt:

If we take in (2.1) �2 (x) = �2 (x) = f 0
�
a+b
2

�
; provided this derivative exists and

is �nite, then we get

f (x) +

�
a+ b

2
� x
�
f 0
�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt(2.14)

=
1

b� a

Z x

a

(t� a)
�
f 0 (t)� f 0

�
a+ b

2

��
dt

+
1

b� a

Z b

x

(t� b)
�
f 0 (t)� f 0

�
a+ b

2

��
dt;

for all x 2 [a; b] :
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If we assume that the derivatives f 0+ (a), f
0
� (b) and f

0 (x) exist and are �nite,
then by taking

�1 (x) =
f 0+ (a) + f

0 (x)

2
and �2 (x) =

f 0 (x) + f 0� (b)

2

in (2.1) we get

f (x) +
1

2

�
a+ b

2
� x
�
f 0 (x)� 1

b� a

Z b

a

f (t) dt(2.15)

+
1

4 (b� a)

h
(b� x)2 f 0� (b)� (x� a)

2
f 0+ (a)

i
=

1

b� a

Z x

a

(t� a)
�
f 0 (t)�

f 0+ (a) + f
0 (x)

2

�
dt

+
1

b� a

Z b

x

(t� b)
�
f 0 (t)�

f 0 (x) + f 0� (b)

2

�
dt:

In particular, we have

f

�
a+ b

2

�
+
1

16
(b� a)

�
f 0� (b)� f 0+ (a)

�
� 1

b� a

Z b

a

f (t) dt(2.16)

=
1

b� a

Z a+b
2

a

(t� a)
"
f 0 (t)�

f 0+ (a) + f
0 �a+b

2

�
2

#
dt

+
1

b� a

Z b

a+b
2

(t� b)
"
f 0 (t)�

f 0
�
a+b
2

�
+ f 0� (b)

2

#
dt:

3. Inequalities for Bounded Derivatives

Now, for ;� 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions

�U[a;b] (;�)

:=
n
f : [a; b]! CjRe

h
(�� f (t))

�
f (t)� 

�i
� 0 for almost every t 2 [a; b]

o
and

��[a;b] (;�) :=

�
f : [a; b]! Cj

����f (t)�  + �2
���� � 1

2
j�� j for a.e. t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 1. For any ;� 2 C,  6= �; we have that �U[a;b] (;�) and ��[a;b] (;�)
are nonempty, convex and closed sets and

(3.1) �U[a;b] (;�) = ��[a;b] (;�) :

Proof. We observe that for any z 2 C we have the equivalence����z �  + �2
���� � 1

2
j�� j

if and only if
Re [(�� z) (�z � �)] � 0:
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This follows by the equality

1

4
j�� j2 �

����z �  + �2
����2 = Re [(�� z) (�z � �)]

that holds for any z 2 C.
The equality (3.1) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 7. For any ;� 2 C,  6= �;we have that

�U[a;b] (;�) = ff : [a; b]! C j (Re�� Re f (t)) (Re f (t)� Re )(3.2)

+(Im�� Im f (t)) (Im f (t)� Im ) � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re () and Im (�) � Im () ; then we can de�ne
the following set of functions as well:

�S[a;b] (;�) := ff : [a; b]! C j Re (�) � Re f (t) � Re ()(3.3)

and Im (�) � Im f (t) � Im () for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (;�) is closed, convex and

(3.4) ; 6= �S[a;b] (;�) � �U[a;b] (;�) :

Theorem 2. Let f : [a; b]! C be an absolutely continuous on [a; b] and x 2 (a; b) :
Suppose that i;�i 2 C with i 6= �i; i = 1; 2 and f 0 2 �U[a;x] (1;�1)\ �U[x;b] (2;�2),
then we have�����f (x)� 1

b� a

Z b

a

f (t) dt(3.5)

+
1

2 (b� a)

�
(b� x)2 �2 + 2

2
� (x� a)2 �1 + 1

2

�����
� 1

4

"
j�1 � 1j

�
x� a
b� a

�2
+ j�2 � 2j

�
b� x
b� a

�2#
(b� a)

� 1

4
(b� a)

�

8>>>>>>>>>>><>>>>>>>>>>>:

�
1
4 +

�
x� a+b

2

b�a

�2�
max fj�1 � 1j ; j�2 � 2jg :

��
x�a
b�a

�2p
+
�
b�x
b�a

�2p�1=p
[j�1 � 1j

q
+ j�2 � 2j

q
]
1=q

p > 1; 1p +
1
q = 1;h

1
2 +

���x� a+b
2

b�a

���i [j�1 � 1j+ j�2 � 2j] :
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Proof. Since f 0 2 �U[a;x] (1;�1)\ �U[x;b] (2;�2) ; then by taking the modulus in (2.1)
for �1 (x) =

�1+1
2 and �2 (x) =

�2+2
2 we get�����f (x)� 1

b� a

Z b

a

f (t) dt

+
1

2 (b� a)

�
(b� x)2 �2 + 2

2
� (x� a)2 �1 + 1

2

�����
� 1

b� a

����Z x

a

(t� a)
�
f 0 (t)� �1 + 1

2

�
dt

����
+

1

b� a

�����
Z b

x

(t� b)
�
f 0 (t)� �2 + 2

2

�
dt

�����
� 1

b� a

Z x

a

(t� a)
����f 0 (t)� �1 + 12

���� dt
+

1

b� a

Z b

x

(t� b)
����f 0 (t)� �2 + 22

���� dt
� 1

b� a
j�1 � 1j

2

Z x

a

(t� a) dt+ 1

b� a
j�2 � 2j

2

Z b

x

(b� t) dt

=
1

4

"
j�1 � 1j

�
x� a
b� a

�2
+ j�2 � 2j

�
b� x
b� a

�2#
(b� a)

and the �rst inequality in (3.5) is proved.
The last part follows by Hölder�s inequality

mn+ pq � (m� + p�)
1=� �

n� + q�
�1=�

;

where m;n; p; q � 0 and � > 1 with 1
� +

1
� = 1: �

Corollary 8. Let f : [a; b]! C be an absolutely continuous on [a; b] and x 2 (a; b) :
Suppose that ;� 2 C with  6= �; and f 0 2 �U[a;b] (;�), then we have�����f (x) +

�
a+ b

2
� x
�
� + 

2
� 1

b� a

Z b

a

f (t) dt

�����(3.6)

� 1

2
j�� j

241
4
+

 
x� a+b

2

b� a

!235 (b� a) :
In particular, we have

(3.7)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt

����� � 1

8
j�� j (b� a) :

Remark 5. If the derivative f 0 : [a; b] ! R is bounded above and below, that is,
there exists the constants M > m such that

�1 < m � f 0 (t) �M <1 for a.e. t 2 [a; b] ;

then we recapture from (3.6) the inequality (1.6).
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Remark 6. Let f : [a; b] ! C be an absolutely continuous on [a; b] : Suppose that
i;�i 2 C with i 6= �i; i = 1; 2 and f 0 2 �U[a; a+b2 ]

(1;�1) \ �U[ a+b2 ;b] (2;�2), then

we have from (3.5) that�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt+
1

8
(b� a)

�
�2 + 2
2

� �1 + 1
2

������(3.8)

� 1

16
[j�1 � 1j+ j�2 � 2j] (b� a) :

4. Inequalities for Derivatives of Bounded Variation

Assume that the function f : I ! C is di¤erentiable on the interior of I; denoted
�I; and [a; b] � �I: Then, as in (2.15), we have the equality

f (x) +
1

2

�
a+ b

2
� x
�
f 0 (x)� 1

b� a

Z b

a

f (t) dt(4.1)

+
1

4 (b� a)

h
(b� x)2 f 0 (b)� (x� a)2 f 0 (a)

i
=

1

b� a

Z x

a

(t� a)
�
f 0 (t)� f

0 (a) + f 0 (x)

2

�
dt

+
1

b� a

Z b

x

(t� b)
�
f 0 (t)� f

0 (x) + f 0 (b)

2

�
dt;

for any x 2 [a; b] :

Theorem 3. Let f : I ! C be a di¤erentiable function on �I and [a; b] � �I: If the
derivative f 0 : �I ! C is of bounded variation on [a; b] ; then�����f (x)� 1

b� a

Z b

a

f (t) dt+
1

2

�
a+ b

2
� x
�
f 0 (x)(4.2)

+
1

4 (b� a)

h
(b� x)2 f 0 (b)� (x� a)2 f 0 (a)

i����
� 1

4

"�
x� a
b� a

�2 x_
a

(f 0) +

�
b� x
b� a

�2 b_
x

(f 0)

#
(b� a)

� 1

4
(b� a)

�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�
1
4 +

�
x� a+b

2

b�a

�2�"
1
2

b_
a

(f 0) + 1
2

�����
x_
a

(f 0)�
b_
x

(f 0)

�����
#
;

��
x�a
b�a

�2p
+
�
b�x
b�a

�2p�1=p "" x_
a

(f 0)

#q
+

"
b_
x

(f 0)

#q#1=q
p > 1; 1p +

1
q = 1;

h
1
2 +

���x� a+b
2

b�a

���i b_
a

(f 0) ;
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for any x 2 [a; b] :

Proof. Taking the modulus in (4.1) we have�����f (x)� 1

b� a

Z b

a

f (t) dt+
1

2

�
a+ b

2
� x
�
f 0 (x)(4.3)

+
1

4 (b� a)

h
(b� x)2 f 0 (b)� (x� a)2 f 0 (a)

i����
� 1

b� a

����Z x

a

(t� a)
�
f 0 (t)� f

0 (a) + f 0 (x)

2

�
dt

����
+

1

b� a

�����
Z b

x

(t� b)
�
f 0 (t)� f

0 (x) + f 0 (b)

2

�
dt

�����
� 1

b� a

Z x

a

(t� a)
����f 0 (t)� f 0 (a) + f 0 (x)2

���� dt
+

1

b� a

Z b

x

(b� t)
����f 0 (t)� f 0 (x) + f 0 (b)2

���� dt:
Since f 0 : �I ! C is of bounded variation on [a; x] and [x; b] ; then����f 0 (t)� f 0 (a) + f 0 (x)2

���� =
jf 0 (t)� f 0 (a) + f 0 (t)� f 0 (x)j

2

� 1

2
[jf 0 (t)� f 0 (a)j+ jf 0 (x)� f 0 (t)j]

� 1

2

x_
a

(f 0)

for any t 2 [a; x] and, similarly,����f 0 (t)� f 0 (x) + f 0 (b)2

���� � 1

2

b_
x

(f 0)

for any t 2 [x; b] :
Then Z x

a

(t� a)
����f 0 (t)� f 0 (a) + f 0 (x)2

���� dt � 1

2

x_
a

(f 0)

Z x

a

(t� a) dt

=
1

4
(x� a)2

x_
a

(f 0)

and Z b

x

(b� t)
����f 0 (t)� f 0 (x) + f 0 (b)2

���� dt � 1

2

b_
x

(f 0)

Z b

x

(b� t) dt

=
1

4
(b� x)2

b_
x

(f 0)

and by (4.3) we get the desired inequality (4.2).



12 S. S. DRAGOMIR1;2

The last part follows by Hölder�s inequality

mn+ pq � (m� + p�)
1=� �

n� + q�
�1=�

;

where m;n; p; q � 0 and � > 1 with 1
� +

1
� = 1: �

Corollary 9. Let f : I ! C be a di¤erentiable function on �I and [a; b] � �I: If the
derivative f 0 : �I ! C is of bounded variation on [a; b] ; then�����f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt+
1

16
(b� a) [f 0 (b)� f 0 (a)]

�����(4.4)

� 1

16
(b� a)

b_
a

(f 0) :

Remark 7. If p 2 (a; b) is a median point in bounded variation for the derivative,

i.e.
p_
a

(f 0) =
b_
p

(f 0) ; then under the assumptions of Theorem 3, we have

�����f (p)� 1

b� a

Z b

a

f (t) dt+
1

2

�
a+ b

2
� p
�
f 0 (p)(4.5)

+
1

4 (b� a)

h
(b� p)2 f 0 (b)� (p� a)2 f 0 (a)

i����
� 1

8
(b� a)

241
4
+

 
p� a+b

2

b� a

!235 b_
a

(f 0) :

5. Inequalities for Lipschitzian Derivatives

We say that v : [a; b]! C is Lipschitzian with the constant L > 0; if it satis�es
the condition

jv (t)� v (s)j � L jt� sj for any t; s 2 [a; b] :

Theorem 4. Let f : I ! C be a di¤erentiable function on �I and [a; b] � �I: Let
x 2 (a; b) : If the derivative f 0 : �I ! C is Lipschitzian with the constant K1 (x) on
[a; x] and constant K2 (x) on [x; b] ; then�����f (x)� 1

b� a

Z b

a

f (t) dt+
1

2

�
a+ b

2
� x
�
f 0 (x)(5.1)

+
1

4 (b� a)

h
(b� x)2 f 0 (b)� (x� a)2 f 0 (a)

i����
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� 1

8

"�
x� a
b� a

�3
K1 (x) +

�
b� x
b� a

�3
K2 (x)

#
(b� a)2

� 1

8
(b� a)2

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

��
x�a
b�a

�3
+
�
b�x
b�a

�3�
max fK1 (x) ;K2 (x)g ;

��
x�a
b�a

�2p
+
�
b�x
b�a

�2p�1=p
[Kq

1 (x) +K
q
2 (x)]

1=q

p > 1; 1p +
1
q = 1;h

1
2 +

���x� a+b
2

b�a

���i3 [K1 (x) +K2 (x)] :

Proof. Since f 0 : �I ! C is Lipschitzian with the constant K1 (x) on [a; x] and
constant K2 (x) on [x; b] ; then����f 0 (t)� f 0 (a) + f 0 (x)2

���� =
jf 0 (t)� f 0 (a) + f 0 (t)� f 0 (x)j

2

� 1

2
[jf 0 (t)� f 0 (a)j+ jf 0 (x)� f 0 (t)j]

� 1

2
K1 (x) [jt� aj+ jx� tj]

=
1

2
K1 (x) (x� a)

for any t 2 [a; x] and, similarly,����f 0 (t)� f 0 (x) + f 0 (b)2

���� � 1

2
K2 (x) [jt� xj+ jb� tj]

=
1

2
K2 (x) (b� x)

for any t 2 [x; b] :
ThenZ x

a

(t� a)
����f 0 (t)� f 0 (a) + f 0 (x)2

���� dt � 1

2
K1 (x) (x� a)

Z x

a

(t� a) dt

=
1

8
(x� a)3K1 (x)

and Z b

x

(b� t)
����f 0 (t)� f 0 (x) + f 0 (b)2

���� dt � 1

2
K2 (x) (b� x)

Z b

x

(b� t) dt

=
1

8
(b� x)3K2 (x) :

Making use of the inequality (4.3) we deduce the �rst bound in (5.1).
The second part is obvious. �
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Corollary 10. Let f : I ! C be a di¤erentiable function on �I and [a; b] � �I: If the
derivative f 0 : �I ! C is Lipschitzian with the constant K on [a; b] then�����f (x)� 1

b� a

Z b

a

f (t) dt+
1

2

�
a+ b

2
� x
�
f 0 (x)(5.2)

+
1

4 (b� a)

h
(b� x)2 f 0 (b)� (x� a)2 f 0 (a)

i����
� 1

8

"�
x� a
b� a

�3
+

�
b� x
b� a

�3#
K (b� a)2

for any x 2 [a; b] :
In particular, we have�����f

�
a+ b

2

�
+
1

16
(b� a) [f 0 (b)� f 0 (a)]� 1

b� a

Z b

a

f (t) dt

�����(5.3)

� 1

32
K (b� a)2 :
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