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SOME PERTURBED OSTROWSKI TYPE INEQUALITIES FOR
ABSOLUTELY CONTINUOUS FUNCTIONS (II)

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, further perturbed Ostrowski type inequalities for
absolutely continuous functions are established.

1. INTRODUCTION

In order to obtain various perturbed Ostrowski type inequalities, in the earlier
paper [24] we established the following equality:

Lemma 1. Let f : [a,b] — C be an absolutely continuous on [a,b] and x € [a,b].
Then for any A\ (z) and A2 (x) complex numbers, we have

(1.1) f(x)+

ﬁ {(b—x)zAz(x)—(:U—a)2>\1(a:)} —bia/abf(t)dt

bia/j(ta)[f'(t)A1(:E)]dt+b1

b
[ e-nr @@,
where the integrals in the right hand side are taken in the Lebesgue sense.

The following equality in terms of one parameter holds:

Corollary 1. With the assumption in Lemma 1, we have for any A (x) € C that

a;bz>)\(x)bia/abf(t)dt
1

= ba/;(t—a)[f'(t)—)\(x)]dt—i—bla/x t—b)[f' (t) — A (x)] dt.

Remark 1. If we take A(xz) = 0 in (1.2), then we get Montgomery’s identity for
absolutely continuous functions, namely

(1.2)  f(z)+ (

b
(13) fa@) -y [ rwa
T b
:bia/a (t—a)f’(t)dt—kbia/w (t = b) ' (1) dt,

for x € [a,b].

We have the following midpoint representation:
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Corollary 2. With the assumption in Lemma 1, we have for any A1, Ao € C that

b
(50 gm0 te- - [

a+b
1 2

b
:b—a/a “‘aﬂf'(t)—Mdefa/ (t=B) [/ (1) = Ao] .

a+b
2

In particular, if A1 = Ao = A\, then we have the equality

(1.5) f(a;b) —bia/abf(t)dt

_ 1/2
Cb—al,

The identity (1.1) has many particular cases of interest.
If € (a,b) is a point of differentiability for the absolutely continuous function
f i [a,b] — C, then we have the equality:

o) 1@+ (=) rw- s [ roa

b
(-0l @) - Nde+ — [ ¢-n)1f -

. b
= /,l(t_a)[f’(t)—f’(:v)]d”ﬁ/w (t=0)[f' () - ' (2)]dt.

—a

In particular we have

(1.7 () - [ rwa

a+b

— [ ealro-r(50)]e

vt [anlro-r (4]«

b—a Jat
2

provided f’ (2+2) exists and is finite.
a

2
For z € (a,b), if we take in (1.1)
)\1(513): f(ZIJ)—f(CL) and )\2(513): f(b)_f(l‘)7
T—a b—x
then we get, after some elementary calculations,

— X r—a a b
e = e BT

_ ! [(ta) {f’(t)f(x)f(a)} dt

b—a T—a

+b1a/:(t—b) {f’(t)—f(b;_i(x)}dt.
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In particular, we have

19) ;{f<a;b>+f(b);f(a)}_bla/:’f(t)dt

a+b
2

:bia/a (t-a)

b _ atb
*z;ia/az,, (t="b) [f’(t)f(b) 15 )]dt-

f1@) -

If we assume that the lateral derivatives f! (a) and f” (b) exist and are finite, then
we have from (1.1) for A\ (z) = f} (a) and A (x) = f_ (b)

b
(L10)  J @)+ g (b= O = =0 £ @] — = [ s @
1

- [ e-alro- @]

b—a

for all x € [a,b].
In particular, we have

b
(1.11) f<a;b> b5 b—a) [7 ()~ £ (@)] - bia/ f () dt
1 ath

[ e-alro- @

:b—a

b
eria/azb(tb) L () = f2 ()] dt.

If we take in (1.1) A2 (z) = Ao (z) = f' (“E2) , provided this derivative exists and
is finite, then we get

(1.12) f(:c)+<a;rbx)f’(a;b)bia/abf(t)dt
i [ o |ra-r(50)]

o [enro-r(t)]a
for all z € [a,b] .

In [24] we obtained the following perturbed Ostrowski type inequalities:

+
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Theorem 1. Let f : I — C be a differentiable function on I and [a,b] C I. If the
derivative f': I — C is of bounded variation on [a,b], then

b a
(113) |f<x>b_1a/f<t>dt+;( S -a) @)
1 2

Frgmay [0 977 0 - -0 @]

<! [(”b:_Z)Q\:/(f’H (2_2)2\!@')] (- a)

b Jaql/a
V() ]

for any x € [a,b].

We say that v : [a,b] — C is Lipschitzian with the constant L > 0, if it satisfies
the condition

lv(t) —v(s)| < Lt —s| for any t,s € [a,b].

Theorem 2. Let f : I — C be a differentiable function on I and [a,b] C I. Let
€ (a,b). If the derivative f' : I — C is Lipschitzian with the constant K1 (x) on
[a,z] and constant Ky (x) on [z,b], then

b a
(114) ‘f(aa)—bia/ rwaes 5 (2 -a) 1@
1

g [0 97 0 - -0 @]

< é l(i_g)gm (@) + (Z_Z)P’KQ(@] (b—a)?
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For other Ostrowski type inequalities see [1]-[19] and [21]-[43].
Motivated by the above results, we establish in this paper other perturbed Os-
trowski type inequalities for complex valued differentiable functions.

2. INEQUALITIES FOR DERIVATIVES OF BOUNDED VARIATION

) Assume that the function f : I — C is differentiable on the interior of I, denoted
I, and [a,b] C I. Then, from (1.6) we have the equality

“;bx)f%x)bia/abf(t)dt

T b
o[- rwies s [enro-rela

b—a J,

(2.1) f(z)+ <

for any z € [a,b].
We have the following result:

Theorem 3. Let f : I — C be a differentiable function on I and [a,b] C I. If the
deriwative f': I — C is of bounded variation on [a,b], then

(2:2) ’f<x>+(“‘;”—m)f'<x>—b_la/abf(wdt

1

x x b t
b—aVa oV [ (bt)\yc/(f’)dt]

IN

IN

Lo [(Z_Z)Q\Z/U')cm <Z_Z>2\:/(f’)]
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1
§§(b—a)
N b T b
b (2] [;\/<f'>+; \/(f’)—\/(f/)],
) 0y11/P = q b qa+1/4q
‘ [i‘s)p+ =) ] H\/(f’) + V&) ]
p>1,5+ =1, ’ B
a+b b
B+ 5[ V@
for any x € [a,b].
Proof. Taking the modulus in (2.1) we have
b
(23) |f<x>+(";bx) F@-5= | 1o

[ e-alr©-r @

b
+bia / (t=0)[f" (t) = [ (x)]dt
<2 [e-airo-rea
b
ﬂ,% (b—1)[f (t) = f (2)]dt.

Since the derivative f’ : I — C is of bounded variation on [a, z] and [z,b], then

xT

1f' (¢ \/ ) for t € [a, x]

t

and
t
If (t \/ ) for ¢ € [z,b].

Therefore

/x(t—a)|f/(t)_f/(ac)|dt < /xt—a\/ dt
x—a2\7

IA
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and
b b t
/(b—t)lf’(t)—f’(x)ldt < /(b—t)\/(f’)dt

1 2b /
< S0-2°\V (),

which, by (2.3) produce the first two inequalities in (2.2).
The last part follows by Holder’s inequality
mn +pq < (m® +p*)/* (n” + QB)I/B ;
wherem,n,p,qZOanda>lwithéJr%:l. O
Corollary 3. With the assumptions of Theorem 3, we have

a+b 1 b
1(50) - 52 | s

(2.4)

1 b
<< b-a)\/ ()

Remark 2. Ifp € (a,b) is a median point in bounded variation for the derivative,
P

b
i.e. \/ (f) = \/ (f"), then under the assumptions of Theorem 3 we have
P

a

o+ () rw- it [ o

(2.5)

I
| =

=

|

| =

_|_
VR
=

|

[ V)

atb\ ?| b
b_a> V(-

3. INEQUALITIES FOR LIPSCHITZIAN DERIVATIVES

We start with the following result.

Theorem 4. Let f : I — C be a differentiable function on I and [a,b] C I. Let
€ (a,b). If ; > —1 and Lo, > 0 with i = 1,2 are such that

(3.1) | (t) = f' (@) < Lo, (x =) for any t € [a,x)
and

(3-2) [f" () = f' (2)] < La, (t =)™ for any t € (2,b],
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then we have

r@ () rw- k[ roa

1 Lal a1+2 Lag ag+2
Sba[(aﬁl)(alw)(x‘“) Tt e Dy Y ﬂ'

(3.3)

Proof. Taking the modulus in (2.1) we have

b
(3.4) |f<x>+(“;b—x)f'<x>—b_1a/ oy
< [ -l 0 - 7 @l
b
vt o010 - 7 @)

Using the properties (3.1) and (3.2) we have
[0l O-F@la<in [ ¢-ae-oma
1
= Lg, (z — a)m”/ u(l—u) du
0

1

=Lq, (z— a)aH_Q/ u (1 —wu)du
0

1

— La _ a2
(@t D (ar ) 079
and
b b
[ 0-01F O F @l <L, [ 602"
1
= Loy (b—2)**2.
I A
Utilising (3.4) we get the desired result (3.3). O

Corollary 4. Let f: 1 — C be a differentiable function on I and [a,b] C I. If the
deriwative is ' of r-H-Hélder type on [a,b], i.e. we have the condition

@) = f (s <Ht— s

for any t,s € [a,b], where r € (0,1] and H > 0 are given, then

(35 ‘f(x>+(“;b—x)f'(m—bfa/abf(t)dt

r4+2 r+2
T—a b—x r+1
=) +(=2) ](b“) |

< H
T (r+1)(r+2)

for any x € [a,b].
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In particular, if f' is Lipschitzian with the constant L > 0, then

(36) ‘f@»+(“§b—x>f@ﬂ—b1a/ffwdt

for any x € [a,b].
4. INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS

The case of convex functions is as follows:

Theorem 5. Let f: I — C be a differentiable convez function on I and [a,b] C I.
Then for any x € [a,b] we have

Il (.’E)
(4.1) 0<7/ f@)dt— (a+b x) <! b
I3 (1‘)
where
I”@’:w_@fwlwf_wfm)—fw%—w%@<a;b—w>,
I (z) == %f’(b) (b—$)b:£/(a)($—a) —f’(x) (a;—b_x)
and
_&@%;{fwﬂh_ﬁtzﬁﬂm—a)fmﬂf%@<a;bx>
Proof. We have the equality
(42) b—a /f t)dt — f —<a+b m)f/(x)

b

i [ @ s [ e-olr @ £ @l

for any « € [a,b].
Since f is a differentiable convex function on I, then f’ is monotonic nondecreas-
ing on I and then

/wu—wuwm—funﬁzo
and ,
/‘w—wu%w—fwnﬁza

which proves the first inequality in (4.1).
We have

/am(t—a)[f’(x)— dt<x—a/a
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and

b

b
/ b—t)[f ()~ f (@) dt < (b—2) / () — ' (@)] dt

x

=b-2)[f () - f(@) - f(z)(b-2)].
Adding these inequalities we get

T b
(f—a)[f’(x)—f'(t)]dt+/ b—t)[f () = f (x)] dt
(z—a)[f' (=) (x—a) = f(z) + [ (a)]

(b—z)[f (b) = f(2) = f' () (b— )]

(b—z) f(b)+(z—a)f(a) = (b—a)f(z)

f@) 22 = (a+ b)) (b—a)

S~

a

<
+
JF

and by (4.2) we get the second inequality for I (x).
We also have

and

and by (4.2) we get the second inequality for I (z) .
Further, we use the Cebysev inequality for asynchronous functions (functions of
opposite monotonicity), namely

d d u
dic‘/c g(t)h(t)dtgﬁ/c g(t)dt.ﬁ/c h(t) dt.
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Therefore
[ e—ar@- s
<t [umaa L [ - s o
_(@-a) f@(@—a)—f(@)+f(a)
2z —a) z—a
= @ @)~ @)+ f ()]
and

b
bix/ b=t [f )= f (x)at

b b
<bix/$(b—t>dt~bim/ [f'(8) = f' ()] dt

b= [0 —f@)—f @) b-2)
2(b—=x) b—ux
= LU B~ @)~ f @) b )]

1

2 b—a
1[f()—f(@)—f(x)(b—a2)](b—2)
2 b—a

Y- a [[f () = f(z) = f'(2) (b—2)] (b—2)]

[H0em @) ) g (oo o)

which proves the inequality for I5 (z) .

Remark 3. From the first inequality in (4.1) we have

b — X r—a a a
an o [ras IO EC OO pg (and

for any z € [a,b].
From the second inequality in (4.1) we have

’ ! —2)° = f'(a) (z — a)?
(4.4) ﬁ/ f(t)dt_f(m)gé.f(b)(b )biﬁ()( )

for any x € [a,b].

x)

11
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From the third inequality in (4.1) we have

b — T a) T —a
[rasi[f0e-Df@Ea,

(4.5) o

b—a
for any = € [a,b].
5. INEQUALITIES FOR ABSOLUTELY CONTINUOUS DERIVATIVES

We use the Lebesgue p-norms defined as follows:

d 1/p
||g||[c7d],p = (/ |g (S)|p dt) y g € Lp [67 d]a p 2 1

191l.),00 = €58 sup |g(s)], g € Loo [c,d].
s€[c,d]

The case of absolutely continuous derivatives is as follows:

and

Theorem 6. Let f : I — C be a differentiable function on I and [a,b] C I. If the
derivative f' is absolutely continuous on [a,b], then for any x € [a, b]

(1) ‘f(x)Jr(a;b—x>f’(w)—b1a/:f(t)dt

% (.7} - a)3 Hf””[a#cLoo ?

1 1/q+2
= b—a (q+1)q(q+2) (z—a) ft ||f”H

L (e = @) 1" grapn

am,p7

§ =2 1"l .00

1/q+2
+ =X\ @ C= 2T e,

2
3 (0 =) 1" g a1 »

where p > 1, %Jr%:l.
Proof. Taking the modulus in (2.1) we have

52 @ - [was (G -a) @
<bia/j<t—a>f’(t)—f’<x>|dt+b_la/:<b—t>|f'<t>—f'<x>|dt
:ﬁ t—a/f” \+ b(b—t) "
gbf tfa/|f” )| ds +—/ ft/If” )| ds.
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Using Holder’s integral inequality we have for p > 1, % + é =1,
Jo t=a) (@ =) "Il 00 Ot
xr
[ [ 1ol < { e-ae- 0",
a t

S @)1 g
1oy S (£ — @) (2 — ) dt

IN

1" Ny Ji (8= @) (o — )"/ dt

15 Naap 1 fo (2= a)dt
§ (@ —a)*| ]

la,z],00

1/q+2 ”f//

= DTy (& —a) la,2).p

5(x—a)’| ]

la,z],1

and, similarly

£ 0=2)* 11"l s.100
b t are
[ =01 olas<? gt 6-2" " 1y,
L (b= 1"
Utilizing the inequality (5.2) we get the desired result (5.1).

Remark 4. Since

3 1 3
( _a’) Hf”H[a,r],oo—’— 7(b_$) ||f/,||[z,b],oo

6" 6
< 2@ ="+ 02 max {1 N wyoo s 17 N 100
c0-a) [ =@~ @ =a) (b= )+ 0= 2| 1 a0

then by (5.1) we get

(53) 'f<x>+(ajb—x)f'w)—bla/:f(t)dt

1[(x—a>2 (x—a) (b—x) (b—xﬂ
<= - +

-6 b—a b—a b—a b—a

X (b= ) 1", p),00

for any x € [a,b].

13
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Since
(w—@”“ﬂvwm@m+w—xf”“nﬂmwm
<@ =@+ 06— 2] 151+ 1 ]

= @™+ -

then by (5.1) we get

q
A I T T

1 b
(5.4 o+ () @ - [ faa
< q m—a)2q+1+(b—x)2q+1 Ha
“(q+1)(g+2) |\b-ua b—a
X (0= @) "
for any z € [a,b].
Since
(Z'—a) ||f//||a'r]1+( ) ||f”||[rb]1
<max {(@ =), (0= )"} 15" lgrages + 17" .
1 a+b[1?
= [36-a+ o 18
then by (5.1) we get
f(m)+<a+b ) /f t) dt
111
<53t ] b—a) [lf" a1

for any x € [a,b].
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