Some Trace Inequalities of Čebyšev Type for Functions of Operators in Hilbert Spaces

S.S. Dragomir

Abstract. Some trace operator inequalities for synchronous functions that are related to the Čebyšev inequality for sequences of real numbers are given.

1. Introduction

For \(p = (p_1, \ldots, p_n) \), \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) \(n \)-tuples of real numbers, consider the Čebyšev functional

\[
T_n(p; a, b) := P_n \sum_{i=1}^{n} p_i a_i b_i - \sum_{i=1}^{n} p_i a_i \sum_{i=1}^{n} p_i b_i,
\]

where \(P_n := \sum_{i=1}^{n} p_i \).

In 1882-1883, Čebyšev [4] and [5] proved that, if \(a \) and \(b \) are monotonic in the same (opposite) sense and \(p \) is nonnegative, then

\[
T_n(p; a, b) \geq (\leq) 0.
\]

The inequality (1.2) was mentioned by Hardy, Littlewood and Polya in their book [16] in 1934 in the more general setting of synchronous sequences, i.e., if \(a, b \) are synchronous (asynchronous), this means that

\[
(a_i - a_j)(b_i - b_j) \geq (\leq) 0
\]

for each \(i, j \in \{1, \ldots, n\} \), then (1.2) holds true.

For general real weights \(p \), Mitrović and Pečarić has shown in [21] that the inequality (1.2) holds true if

\[
0 \leq P_k \leq P_n \text{ for } k \in \{1, \ldots, n - 1\},
\]

and \(a, b \) are monotonic in the same (opposite) sense.

We say that the functions \(f, g : [a, b] \rightarrow \mathbb{R} \) are synchronous (asynchronous) on the interval \([a, b]\) if they satisfy the following condition:

\[
(f(t) - f(s))(g(t) - g(s)) \geq (\leq) 0 \text{ for each } t, s \in [a, b].
\]
It is obvious that, if \(f, g \) are monotonic and have the same monotonicity on the interval \([a, b]\), then they are synchronous on \([a, b]\) while if they have opposite monotonicity, they are asynchronous.

For some extensions of the discrete Čebyšev inequality for synchronous (asynchronous) sequences of vectors in an inner product space, see \([12]\) and \([13]\).

Let \(A \) be a selfadjoint linear operator on a complex Hilbert space \((H, \langle \cdot, \cdot \rangle)\). The \textit{Gelfand map} establishes a \(\ast \)-isometrically isomorphism \(\Phi \) between the set \(C(\text{Sp}(A)) \) of all \textit{continuous functions} defined on the \textit{spectrum} of \(A \), denoted \(\text{Sp}(A) \), and the \(C^* \)-algebra \(C^*(A) \) generated by \(A \) and the identity operator \(1_H \) on \(H \) as follows:

For any \(f, g \in C(\text{Sp}(A)) \) and any \(\alpha, \beta \in \mathbb{C} \) we have
\[
\begin{align*}
(i) & \quad \Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g); \\
(ii) & \quad \Phi(fg) = \Phi(f) \Phi(g) \quad \text{and} \quad \Phi(f^*) = \Phi(f)^*; \\
(iii) & \quad \|\Phi(f)\| = \|f\| := \sup_{t \in \text{Sp}(A)} |f(t)|; \\
(iv) & \quad \Phi(f_0) = 1_H \quad \text{and} \quad \Phi(f_1) = A, \text{ where } f_0(t) = 1 \text{ and } f_1(t) = t, \text{ for } t \in \text{Sp}(A).
\end{align*}
\]

With this notation we define
\[
f(A) := \Phi(f) \quad \text{for all } f \in C(\text{Sp}(A))
\]
and we call it the \textit{continuous functional calculus} for a selfadjoint operator \(A \).

If \(A \) is a selfadjoint operator and \(f \) is a real valued continuous function on \(\text{Sp}(A) \), then \(f(t) \geq 0 \) for any \(t \in \text{Sp}(A) \) implies that \(f(A) \geq 0 \), i.e., \(f(A) \) is a positive operator on \(H \). Moreover, if both \(f \) and \(g \) are real valued functions on \(\text{Sp}(A) \) then the following important property holds:

\[
\text{(P)} \quad f(t) \geq g(t) \quad \text{for any } t \in \text{Sp}(A) \quad \text{implies that } f(A) \geq g(A)
\]
in the operator order of \(B(H) \).

The following result provides an inequality of Čebyšev type for functions of one selfadjoint operator:

Let \(A \) be a selfadjoint operator on the Hilbert space \((H, \langle \cdot, \cdot \rangle)\) with \(\text{Sp}(A) \subseteq [m, M] \) for some real numbers \(m < M \). If \(f, g : [m, M] \to \mathbb{R} \) are continuous and synchronous (asynchronous) on \([m, M]\), then \([9]\)
\[
(1.5) \quad \langle f(A)g(A)x, x \rangle \geq (\leq) \langle f(A)x, x \rangle \langle g(A)x, x \rangle
\]
for any \(x \in H \) with \(\|x\| = 1 \).

As a particular case of interest we notice that if \(A \) is a positive selfadjoint operator on \(H \), then
\[
(1.6) \quad \langle A^{p+q}x, x \rangle \geq \langle A^px, x \rangle \langle A^qx, x \rangle
\]
for any \(x \in H \) with \(\|x\| = 1 \) and \(p, q > 0 \).

It is known, see for instance \([22, \text{p. 356-358}]\), that if \(A \) and \(B \) are two \textit{commuting bounded selfadjoint operators} on the complex Hilbert space \(H \), then there exists a bounded selfadjoint operator \(S \) on \(H \) and two bounded functions \(\varphi \) and \(\psi \) such that \(A = \varphi(S) \) and \(B = \psi(S) \). Moreover, if \(\{E_\lambda\} \) is the spectral family over the closed interval \([0, 1]\) for the selfadjoint operator \(S \), then \(S = \int_{0-}^1 \lambda dE_\lambda \), where the integral is taken in the Riemann-Stieltjes sense, the functions \(\varphi \) and \(\psi \) are summable with respect with \(\{E_\lambda\} \) on \([0, 1]\) and
\[
(1.7) \quad A = \varphi(S) = \int_{0-}^1 \varphi(\lambda) dE_\lambda \quad \text{and} \quad B = \psi(S) = \int_{0-}^1 \psi(\lambda) dE_\lambda.
\]
Now, if A and B are as above with $\text{Sp}(A), \text{Sp}(B) \subseteq J$ an interval of real numbers, then for any continuous functions $f, g : J \to \mathbb{C}$ we have the representations

\begin{equation}
\begin{aligned}
f(A) &= \int_{0^-}^{1} (f \circ \varphi)(\lambda) \, dE_{\lambda} \quad \text{and} \\
g(B) &= \int_{0^-}^{1} (g \circ \psi)(\lambda) \, dE_{\lambda}.
\end{aligned}
\end{equation}

Definition 1. We say that the continuous functions $f, g : J \to \mathbb{R}$ are operator synchronous (asynchronous) on J, if for any A and B two commuting bounded selfadjoint operators on the complex Hilbert space H with $\text{Sp}(A), \text{Sp}(B) \subseteq J$ we have

\begin{equation}
(f(A) - f(B)) (g(A) - g(B)) \geq (\leq) 0
\end{equation}

in the operator order.

In what follows, unless specified, H will be a complex Hilbert space.

In [10] we proved the following basic result:

Theorem 1. The continuous functions $f, g : J \to \mathbb{R}$ are synchronous (asynchronous) on J if and only if they are operator synchronous (asynchronous) on J.

The case of monotonic functions is as follows:

Corollary 1. If the continuous functions $f, g : J \to \mathbb{R}$ have the same monotonicity on J, then for any A and B two commuting bounded selfadjoint operators on the Hilbert space H with $\text{Sp}(A), \text{Sp}(B) \subseteq J$ we have

\begin{equation}
f(A)g(A) + f(B)g(B) \geq g(A)f(B) + f(A)g(B)
\end{equation}

in the operator order.

Remark 1. We observe that the above inequality (1.10) can provide numerous inequalities of interest for two commuting selfadjoint operators.

For instance, if A and B are positive commuting operators on H then for any $p, q > 0$ we have

\begin{equation}
A^{p+q} + B^{p+q} \geq B^{p}A^{q} + A^{p}B^{q}.
\end{equation}

If the commuting operators A and B are positive definite on H, then also

\begin{equation}
A \ln(A) + B \ln(B) \geq B \ln(A) + A \ln(B).
\end{equation}

Also, if A and B are commuting operators on H with $0 \leq A, B \leq \frac{\pi}{2}1_{H}$, then

\begin{equation}
\sin(A) \cos(A) + \sin(B) \cos(B) \leq \sin(B) \cos(A) + \sin(A) \cos(B).
\end{equation}

In order to obtain some similar results for trace of operators in Hilbert spaces we need some preliminary facts as follows.

2. Some Facts on Trace of Operators

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_{i}\}_{i \in I}$ an orthonormal basis of H. We say that $A \in B(H)$ is a Hilbert-Schmidt operator if

\begin{equation}
\sum_{i \in I} \|Ae_{i}\|^{2} < \infty.
\end{equation}
It is well known that, if $\{e_i\}_{i \in I}$ and $\{f_j\}_{j \in J}$ are orthonormal bases for H and $A \in \mathcal{B}(H)$ then
\begin{equation}
\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in J} \|Af_j\|^2 = \sum_{j \in J} \|A^*f_j\|^2
\end{equation}
showing that the definition (2.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_2(H)$ the set of Hilbert-Schmidt operators in $\mathcal{B}(H)$. For $A \in \mathcal{B}_2(H)$ we define
\begin{equation}
\|A\|_2 := \left(\sum_{i \in I} \|Ae_i\|^2 \right)^{1/2}
\end{equation}
for $\{e_i\}_{i \in I}$ an orthonormal basis of H. This definition does not depend on the choice of the orthonormal basis.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because $\|Ax\| = \|Ax\|$ for all $x \in H$, A is Hilbert-Schmidt iff $|A|$ is Hilbert-Schmidt and $\|A\|_2 = \|A\|_2$. From (2.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $\|A\|_2 = \|A^*\|_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 2. We have:

(i) $\mathcal{B}_2(H)$ is a Hilbert space with inner product
\begin{equation}
\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^*Ae_i, e_i \rangle
\end{equation}
and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$;

(ii) We have the inequalities
\begin{equation}
\|A\| \leq \|A\|_2
\end{equation}
for any $A \in \mathcal{B}_2(H)$ and
\begin{equation}
\|AT\|_2, \|TA\|_2 \leq \|T\| \|A\|_2
\end{equation}
for any $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$;

(iii) $\mathcal{B}_2(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.
\begin{equation}
\mathcal{B}(H) \mathcal{B}_2(H) \mathcal{B}(H) \subseteq \mathcal{B}_2(H);
\end{equation}

(iv) $\mathcal{B}_{fin}(H)$, the space of operators of finite rank, is a dense subspace of $\mathcal{B}_2(H)$;

(v) $\mathcal{B}_2(H) \subseteq \mathcal{K}(H)$, where $\mathcal{K}(H)$ denotes the algebra of compact operators on H.

If $\{e_i\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is trace class if
\begin{equation}
\|A\|_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.
\end{equation}
The definition of $\|A\|_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$.
The following proposition holds:

Proposition 1. If \(A \in B_1(H) \), then the following are equivalent:

(i) \(A \in B_1(H) \);

(ii) \(|A|^{1/2} \in B_2(H) \);

(ii) \(A \) (or \(|A| \)) is the product of two elements of \(B_2(H) \).

The following properties are also well known:

Theorem 3. With the above notations:

(i) We have

\[
\|A\|_1 = \|A^*\|_1 \quad \text{and} \quad \|A\|_2 \leq \|A\|_1
\]

for any \(A \in B_1(H) \);

(ii) \(B_1(H) \) is an operator ideal in \(B(H) \), i.e.

\[
B(H)B_1(H)B(H) \subseteq B_1(H);
\]

(iii) We have

\[
B_2(H)B_2(H) = B_1(H);
\]

(iv) We have

\[
\|A\|_1 = \sup \{ \langle A, B \rangle_2 \mid B \in B_2(H), \|B\| \leq 1 \};
\]

(v) \(B_1(H) \) is a Banach space.

(iv) We have the following isometric isomorphisms

\[
B_1(H) \cong K(H)^* \quad \text{and} \quad B_1(H)^* \cong B(H),
\]

where \(K(H)^* \) is the dual space of \(K(H) \) and \(B_1(H)^* \) is the dual space of \(B_1(H) \).

We define the **trace** of a trace class operator \(A \in B_1(H) \) to be

\[
\text{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,
\]

where \(\{e_i\}_{i \in I} \) is an orthonormal basis of \(H \). Note that this coincides with the usual definition of the trace if \(H \) is finite-dimensional. We observe that the series (2.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 4. We have:

(i) If \(A \in B_1(H) \) then \(A^* \in B_1(H) \) and

\[
\text{tr}(A^*) = \text{tr}(A);
\]

(ii) If \(A \in B_1(H) \) and \(T \in B(H) \), then \(AT, TA \in B_1(H) \) and

\[
\text{tr}(AT) = \text{tr}(TA) \quad \text{and} \quad \| \text{tr}(AT) \| \leq \|A\|_1 \|T\|;
\]

(iii) \(\text{tr}(\cdot) \) is a bounded linear functional on \(B_1(H) \) with \(\| \text{tr} \| = 1 \);

(iv) If \(A, B \in B_2(H) \) then \(AB, BA \in B_1(H) \) and \(\text{tr}(AB) = \text{tr}(BA) \);

(v) \(B_{fin}(H) \) is a dense subspace of \(B_1(H) \).

Utilising the trace notation we obviously have that

\[
\langle A, B \rangle_2 = \text{tr}(B^*A) = \text{tr}(AB^*) \quad \text{and} \quad \|A\|_2^2 = \text{tr}(A^*A) = \text{tr}(|A|^2)
\]

for any \(A, B \in B_2(H) \).
The following Hölder’s type inequality has been obtained by Ruskai in [23]

\[(2.12) \quad |\text{tr} \,(AB)| \leq \text{tr} \,(|AB|) \leq \left[\text{tr} \left(|A|^{1/\alpha} \right) \right]^{\alpha} \left[\text{tr} \left(|B|^{1/(1-\alpha)} \right) \right]^{1-\alpha} \]

where \(\alpha \in (0, 1)\) and \(A, B \in \mathcal{B}(H)\) with \(|A|^{1/\alpha}, |B|^{1/(1-\alpha)} \in \mathcal{B}_1(H)\).

In particular, for \(\alpha = \frac{1}{2}\) we get the Schwarz inequality

\[(2.13) \quad |\text{tr} \,(AB)| \leq \text{tr} \,(|AB|) \leq \left[\text{tr} \left(|A|^2 \right) \right]^{1/2} \left[\text{tr} \left(|B|^2 \right) \right]^{1/2} \]

with \(A, B \in \mathcal{B}_2(H)\).

If \(A \geq 0\) and \(P \in \mathcal{B}_1(H)\) with \(P \geq 0\), then

\[(2.14) \quad 0 \leq \text{tr} \,(PA) \leq \|A\| \text{tr} \,(P) \]

Indeed, since \(A \geq 0\), then \(|Ax, x\| \geq 0\) for any \(x \in H\). If \(\{e_i\}_{i \in I}\) is an orthonormal basis of \(H\), then

\[
0 \leq \left\langle AP^{1/2}e_i, P^{1/2}e_i \right\rangle \leq \|A\| \left\|P^{1/2}e_i\right\|^2 = \|A\| \left\langle Pe_i, e_i \right\rangle
\]

for any \(i \in I\). Summing over \(i \in I\) we get

\[
0 \leq \sum_{i \in I} \left\langle AP^{1/2}e_i, P^{1/2}e_i \right\rangle \leq \|A\| \sum_{i \in I} \langle Pe_i, e_i \rangle = \|A\| \text{tr} \,(P)
\]

and since

\[
\sum_{i \in I} \left\langle AP^{1/2}e_i, P^{1/2}e_i \right\rangle = \sum_{i \in I} \left\langle P^{1/2}AP^{1/2}e_i, e_i \right\rangle = \text{tr} \left(P^{1/2}AP^{1/2} \right) = \text{tr} \,(PA)
\]

we obtain the desired result (2.14).

This obviously imply the fact that, if \(A\) and \(B\) are selfadjoint operators with \(A \leq B\) and \(P \in \mathcal{B}_1(H)\) with \(P \geq 0\), then

\[(2.15) \quad \text{tr} \,(PA) \leq \text{tr} \,(PB) \]

Now, if \(A\) is a selfadjoint operator, then we know that

\[
|\langle Ax, x\rangle| \leq \|A\| |x, x\| \text{ for any } x \in H.
\]

This inequality follows by Jensen’s inequality for the convex function \(f(t) = |t|\) defined on a closed interval containing the spectrum of \(A\).

If \(\{e_i\}_{i \in I}\) is an orthonormal basis of \(H\), then

\[(2.16) \quad |\text{tr} \,(PA)| = \left| \sum_{i \in I} \left\langle AP^{1/2}e_i, P^{1/2}e_i \right\rangle \right| \leq \sum_{i \in I} \left| \left\langle AP^{1/2}e_i, P^{1/2}e_i \right\rangle \right| \leq \sum_{i \in I} \left| \|A\| P^{1/2}e_i, P^{1/2}e_i \right| = \text{tr} \,(P |A|) \]

for any \(A\) a selfadjoint operator and \(P \in \mathcal{B}_1(H)\) with \(P \geq 0\).

For the theory of trace functionals and their applications the reader is referred to [26].

For some classical trace inequalities see [6], [8], [20] and [30], which are continuations of the work of Bellman [2]. For related works the reader can refer to [1], [3], [6], [15], [17], [18], [19], [24] and [27].
3. Trace Inequalities for Synchronous Functions

We start with the following simple result:

Proposition 2. Let A and B be two commuting bounded selfadjoint operators on the Hilbert space H with $\text{Sp}(A), \text{Sp}(B) \subseteq J$ and assume that the continuous functions $f, g : J \to \mathbb{R}$ are synchronous on J. If $P \in \mathcal{B}_1(H)$ with $P \geq 0$, then

\[
\text{tr} [Pf(A) g(A)] + \text{tr} [Pf(B) g(B)] \geq \text{tr} [Pg(A) f(B)] + \text{tr} [Pf(A) g(B)].
\]

(3.1)

The proof follows from the inequality (1.10) for synchronous functions and the property (2.15) for the trace functional.

Theorem 5. Let A be a selfadjoint operator on the Hilbert space H with $\text{Sp}(A) \subseteq J$ and assume that the continuous functions $f, g : J \to \mathbb{R}$ are synchronous on J. If $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \geq 0$, then

\[
\frac{\text{tr} [Pf(A) g(A)]}{\text{tr}(P)} - \frac{\text{tr} [Pf(A)] \text{tr} [Pg(A)]}{\text{tr}(P)} \geq \left(\frac{\text{tr} [Pf(A)]}{\text{tr}(P)} - f \left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right) \right) \left(g \left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right) - \frac{\text{tr}[Pg(A)]}{\text{tr}(P)} \right).
\]

(3.2)
Corollary 2. With the assumptions of Theorem 5 and if one of the functions f and g is convex while the other is concave, then we have

$$\frac{\text{tr} [Pf (A) g (A)]}{\text{tr} (P)} - \frac{\text{tr} [Pf (A)]}{\text{tr} (P)} \frac{\text{tr} [Pg (A)]}{\text{tr} (P)} \geq \left(\frac{\text{tr} [Pf (A)]}{\text{tr} (P)} - f \left(\frac{\text{tr} (PA)}{\text{tr} (P)} \right) \right) \left(g \left(\frac{\text{tr} (PA)}{\text{tr} (P)} \right) - \frac{\text{tr} [Pg (A)]}{\text{tr} (P)} \right) \geq 0.$$

Proof. If f is convex and g is concave, then by Jensen’s inequality for trace [11] we have

$$\frac{\text{tr} [Pf (A)]}{\text{tr} (P)} \geq f \left(\frac{\text{tr} (PA)}{\text{tr} (P)} \right)$$

and

$$g \left(\frac{\text{tr} (PA)}{\text{tr} (P)} \right) \geq \frac{\text{tr} [Pg (A)]}{\text{tr} (P)}$$

and the last inequality in (3.4) is proved.

The following result also holds:

Theorem 6. Let A and B be two selfadjoint operators on the Hilbert space H with $\text{Sp} (A), \text{Sp} (B) \subseteq J$ and assume that the continuous functions $f, g : J \rightarrow \mathbb{R}$ are synchronous on J. If $P, Q \in \mathcal{B}_1 (H) \setminus \{0\}$ with $P, Q \geq 0$, then

$$\frac{\text{tr} [Pf (A) g (A)]}{\text{tr} (P)} + \frac{\text{tr} [Qf (B) g (B)]}{\text{tr} (Q)} \geq \frac{\text{tr} [Pf (A)]}{\text{tr} (P)} \frac{\text{tr} [Qg (B)]}{\text{tr} (Q)} + \frac{\text{tr} [Pg (A)]}{\text{tr} (P)} \frac{\text{tr} [Qf (B)]}{\text{tr} (Q)}$$

and, in particular

$$\frac{\text{tr} [Pf (A) g (A)]}{\text{tr} (P)} + \frac{\text{tr} [Pf (B) g (B)]}{\text{tr} (P)} \geq \frac{\text{tr} [Pf (A)]}{\text{tr} (P)} \frac{\text{tr} [Pg (B)]}{\text{tr} (P)} + \frac{\text{tr} [Pg (A)]}{\text{tr} (P)} \frac{\text{tr} [Pf (B)]}{\text{tr} (P)}.$$

Proof. We consider only the case of synchronous functions. In this case we have then

$$f (t) g (t) + f (s) g (s) \geq f (t) g (s) + f (s) g (t)$$

for each $t, s \in [a, b]$.

If we fix $s \in [a, b]$ and apply the property (P) for the inequality (1.8) then we have

$$f (A) g (A) + f (s) g (s) 1_H \geq g (s) f (A) + f (s) g (A)$$

in the operator order of $\mathcal{B} (H)$.

Utilising the property (2.15) we have

$$\text{tr} [P (f (A) g (A) + f (s) g (s) 1_H)] \geq \text{tr} [P (g (s) f (A) + f (s) g (A))],$$

which is equivalent to

$$\text{tr} [Pf (A) g (A)] + f (s) g (s) \text{tr} (P) \geq g (s) \text{tr} [Pf (A)] + f (s) \text{tr} [Pg (A)],$$
This inequality implies the following inequality in the order of $B(H)$
\[
\text{tr}[P f(A)g(A)]_H + \text{tr}(P) f(B)g(B) \geq \text{tr}[P f(A)] g(B) + \text{tr}[P g(A)] f(B).
\]
Utilising again the property (2.15) we have
\[
\text{tr}(Q) \text{tr}[P f(A)g(A)] + \text{tr}(P) \text{tr}[Q f(B)g(B)] \\
\geq \text{tr}[P f(A)] \text{tr}[Q g(B)] + \text{tr}[P g(A)] \text{tr}[Q f(B)]
\]
and the inequality (3.5) is proved.

Corollary 3. Let A be a selfadjoint operators on the Hilbert space H with $\text{Sp}(A) \subseteq J$ and assume that the continuous functions $f, g : J \rightarrow \mathbb{R}$ are synchronous on J. If $P, Q \in B_1(H) \setminus \{0\}$ with $P, Q \geq 0$, then
\[
\frac{\text{tr}[P f(A)g(A)]}{\text{tr}(P)} + \frac{\text{tr}[Q f(A)g(A)]}{\text{tr}(Q)} \\
\geq \frac{\text{tr}[P f(A)]}{\text{tr}(P)} \frac{\text{tr}[Q g(A)]}{\text{tr}(Q)} + \frac{\text{tr}[P g(A)]}{\text{tr}(P)} \frac{\text{tr}[Q f(A)]}{\text{tr}(Q)}
\]
and, in particular
\[
\frac{\text{tr}[P f(A)g(A)]}{\text{tr}(P)} \geq \frac{\text{tr}[P f(A)]}{\text{tr}(P)} \frac{\text{tr}[P g(A)]}{\text{tr}(P)}.
\]
The inequality (3.10) is a trace version of the Čebyšev inequality.
We can improve this inequality as follows.
Let A be a selfadjoint operator on the Hilbert space H with $\text{Sp}(A) \subseteq J$ and assume that the continuous functions $f, g : J \rightarrow \mathbb{R}$ are synchronous on J. For $P \in B_1(H) \setminus \{0\}$ with $P \geq 0$, we can define the functional
\[
C_{(f,g)}(A, P) := \frac{\text{tr}[P f(A)g(A)]}{\text{tr}(P)} - \frac{\text{tr}[P f(A)]}{\text{tr}(P)} \frac{\text{tr}[P g(A)]}{\text{tr}(P)} \geq 0.
\]
We have the following result:

Theorem 7. Let A be a selfadjoint operator on the Hilbert space H with $\text{Sp}(A) \subseteq J$, $P \in B_1(H) \setminus \{0\}$ with $P \geq 0$ and assume that the continuous functions $f, g : J \rightarrow \mathbb{R}$ are synchronous on J. Then we have
\[
C_{(f,g)}(A, P) \geq \max \{ |C_{(f|f|,g)}(A, P)|, |C_{(f|g|,g)}(A, P)|, |C_{(f|f|,g)}(A, P)| \}
\]
\[
\geq 0.
\]

Proof. Utilising the continuity of modulus property, we have
\[
(f(t) - f(s))(g(t) - g(s)) = |(f(t) - f(s))(g(t) - g(s))| \\
\geq |(f(t)| - |f(s))|(g(t) - g(s))|
\]
for any $t, s \in J$.
This is equivalent to
\[
f(t)g(t) + f(s)g(s) - f(t)g(s) - f(s)g(t) \\
\geq ||f(t)||g(t) + ||f(s)||g(s) - ||f(t)||g(s) - ||f(s)||g(t)|
\]
for any $t, s \in J$.
This implies in the order of $\mathcal{B}(H)$ that

\begin{equation}
\tag{3.13}
\begin{aligned}
f(A)g(A) + f(s)g(s)1_H - g(s)f(A) - f(s)g(A) \\
\geq ||f(A)||g(A) + |f(s)|g(s)1_H - g(s)|f(A)| - |f(s)||g(A)|
\end{aligned}
\end{equation}

for any $s \in J$.

Applying the property (2.15) we have

\begin{equation}
\tag{3.14}
\begin{aligned}
\text{tr}[Pf(A)g(A)] + f(s)g(s)\text{tr}(P) - g(s)\text{tr}[Pf(A)] - f(s)\text{tr}[Pg(A)] \\
\geq \text{tr}[P||f(A)||g(A)] + |f(s)|g(s)1_H - g(s)|f(A)| - |f(s)||g(A)|
\end{aligned}
\end{equation}

for any $s \in J$.

Using the property (2.16) we also have

\begin{equation}
\tag{3.15}
\begin{aligned}
\text{tr}[P||f(A)||g(A)] + |f(s)|g(s)1_H - g(s)|f(A)| - |f(s)||g(A)| \\
\geq \text{tr}[P||f(A)||g(A)] + |f(s)|g(s)\text{tr}(P) \\
- g(s)\text{tr}[P||f(A)||] - |f(s)|\text{tr}[Pg(A)]
\end{aligned}
\end{equation}

for any $s \in J$.

By (3.14) and (3.15) we have

\begin{equation}
\begin{aligned}
\text{tr}[Pf(A)g(A)] + f(s)g(s)\text{tr}(P) \\
- g(s)\text{tr}[Pf(A)] - f(s)\text{tr}[Pg(A)] \\
\geq \text{tr}[P||f(A)||g(A)] + |f(s)|g(s)\text{tr}(P) \\
- g(s)\text{tr}[P||f(A)||] - |f(s)|\text{tr}[Pg(A)]
\end{aligned}
\end{equation}

for any $s \in J$.

This inequality implies in the order of $\mathcal{B}(H)$ that

\begin{equation}
\tag{3.16}
\begin{aligned}
\text{tr}[Pf(A)g(A)]1_H + \text{tr}(P)f(A)g(A) \\
- \text{tr}[Pf(A)]g(A) - \text{tr}[Pg(A)]f(A) \\
\geq \text{tr}[P||f(A)||g(A)]1_H + \text{tr}(P)||f(A)||g(A) \\
- \text{tr}[P||f(A)||]g(A) - \text{tr}[Pg(A)]||f(A)||
\end{aligned}
\end{equation}

Taking the trace and repeating the reason, we deduce

\begin{equation}
\tag{3.17}
\begin{aligned}
\text{tr}(P)\text{tr}[Pf(A)g(A)] + \text{tr}(P)\text{tr}[Pf(A)g(A)] \\
- \text{tr}[Pf(A)]\text{tr}[Pg(A)] - \text{tr}[Pg(A)]\text{tr}[Pf(A)] \\
\geq \text{tr}[P||f(A)||g(A)]\text{tr}(P) + \text{tr}(P)\text{tr}[||f(A)||g(A)] \\
- \text{tr}[P||f(A)||]\text{tr}[Pg(A)] - \text{tr}[Pg(A)]\text{tr}[P||f(A)||]
\end{aligned}
\end{equation}

which is equivalent to

\[C_{(f,g)}(A,P) \geq |C_{(||f||,g)}(A,P)|. \]

The other inequalities follow in a similar way and the details are omitted. \qed
4. Some Examples

If we take the functions $f, g : [0, \infty) \to [0, \infty)$, $f(t) = t^p$ and $g(t) = t^q$ with $p, q > 0$ then by (3.4) we have

\begin{equation}
\frac{\text{tr}(PA^{p+q})}{\text{tr}(P)} - \frac{\text{tr}(PA^p) \text{tr}(PA^q)}{\text{tr}(P)} \geq \left(\frac{\text{tr}(PA^p)}{\text{tr}(P)} - \left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right)^p \right) \left(\left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right)^q - \frac{\text{tr}(PA^q)}{\text{tr}(P)} \right),
\end{equation}

for any $A \geq 0$ and $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \geq 0$.

If $p > 0$ and $q \in (0, 1)$, then we have a better result:

\begin{equation}
\frac{\text{tr}(PA^{p+q})}{\text{tr}(P)} - \frac{\text{tr}(PA^p) \text{tr}(PA^q)}{\text{tr}(P)} \geq \left(\frac{\text{tr}(PA^p)}{\text{tr}(P)} - \left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right)^p \right) \left(\left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right)^q - \frac{\text{tr}(PA^q)}{\text{tr}(P)} \right)
\end{equation}

\geq 0,

for any $A \geq 0$ and $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \geq 0$.

By using (3.5) we have for $p, q > 0$ that

\begin{equation}
\frac{\text{tr}(PA^{p+q})}{\text{tr}(P)} + \frac{\text{tr}(QB^{p+q})}{\text{tr}(Q)} \geq \frac{\text{tr}(PA^p) \text{tr}(QA^q)}{\text{tr}(P)} + \frac{\text{tr}(PA^q) \text{tr}(QB^p)}{\text{tr}(Q)}
\end{equation}

for any $A, B \geq 0$ and $P, Q \in \mathcal{B}_1(H) \setminus \{0\}$ with $P, Q \geq 0$.

In particular, we have

\begin{equation}
\frac{\text{tr}(PA^{p+q})}{\text{tr}(P)} + \frac{\text{tr}(QB^{p+q})}{\text{tr}(Q)} \geq \frac{\text{tr}(PA^p) \text{tr}(QA^q)}{\text{tr}(P)} + \frac{\text{tr}(PA^q) \text{tr}(QB^p)}{\text{tr}(Q)}
\end{equation}

for any $A \geq 0$ and $P, Q \in \mathcal{B}_1(H) \setminus \{0\}$ with $P, Q \geq 0$.

Also

\begin{equation}
\frac{\text{tr}(PA^{p+q})}{\text{tr}(P)} \geq \frac{\text{tr}(PA^p) \text{tr}(PA^q)}{\text{tr}(P)} \text{tr}(P)
\end{equation}

for any $A \geq 0$ and $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \geq 0$.

Moreover, if in (4.5) we choose $A = P$, then from (4.5) we get

\begin{equation}
\frac{\text{tr}(P^{p+q+1})}{\text{tr}(P)} \geq \frac{\text{tr}(P^{p+1}) \text{tr}(P^{q+1})}{\text{tr}(P)} \text{tr}(P)
\end{equation}

for $p, q > 0$ and $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \geq 0$.

If we take the functions $f, g : [0, \infty) \to [0, \infty)$, $f(t) = t^p$ and $g(t) = \ln t$ with $p \geq 1$ then by (3.4) we have

\begin{equation}
\frac{\text{tr}(PA^p \ln A)}{\text{tr}(P)} - \frac{\text{tr}(PA^p) \text{tr}(P \ln A)}{\text{tr}(P)} \geq \left(\frac{\text{tr}(PA^p)}{\text{tr}(P)} - \left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right)^p \right) \left(\ln \left(\frac{\text{tr}(PA)}{\text{tr}(P)} \right) - \frac{\text{tr}(P \ln A)}{\text{tr}(P)} \right)
\end{equation}

\geq 0,

for any positive definite operators A and P with $P \in \mathcal{B}_1(H) \setminus \{0\}$.
If we use (3.9), then we have for \(p > 0 \)

\[
\frac{\text{tr} \left(PA^p \ln A \right)}{\text{tr} (P)} + \frac{\text{tr} \left(QA^p \ln A \right)}{\text{tr} (Q)} \geq \frac{\text{tr} \left(PA^p \right)}{\text{tr} (P)} \frac{\text{tr} \left(Q \ln A \right)}{\text{tr} (Q)} + \frac{\text{tr} \left(P \ln A \right)}{\text{tr} (P)} \frac{\text{tr} \left(QA^p \right)}{\text{tr} (Q)}
\]

(4.8)

for any positive definite operators \(A, P \) and \(Q \) with \(P, Q \in B_1 (H) \setminus \{0\} \).

In particular

\[
\frac{\text{tr} \left(PA^p \ln A \right)}{\text{tr} (P)} \geq \frac{\text{tr} \left(PA^p \right)}{\text{tr} (P)} \frac{\text{tr} \left(P \ln A \right)}{\text{tr} (P)},
\]

(4.9)

for any positive definite operators \(A \) and \(P \) with \(P \in B_1 (H) \setminus \{0\} \).

If we apply the inequality (3.11), then we have an improvement of (4.9) as follows

\[
\frac{\text{tr} \left(PA^p \ln A \right)}{\text{tr} (P)} \geq \frac{\text{tr} \left(PA^p \right)}{\text{tr} (P)} \frac{\text{tr} \left(P \ln A \right)}{\text{tr} (P)} - \frac{\text{tr} \left(PA^p \ln A \right)}{\text{tr} (P)} \geq 0,
\]

(4.10)

for any positive definite operators \(A \) and \(P \) with \(P \in B_1 (H) \setminus \{0\} \).

If we use the inequality (3.10) for the \(f, g : [0, \infty) \rightarrow [0, \infty) \), \(f (t) = t \) and \(g (t) = t^{-1} \), then we get

\[
1 \leq \frac{\text{tr} \left(PA \right)}{\text{tr} (P)} \frac{\text{tr} \left(PA^{-1} \right)}{\text{tr} (P)},
\]

(4.11)

for any positive definite operators \(A \) and \(P \) with \(P \in B_1 (H) \setminus \{0\} \).

References

SOME TRACE INEQUALITIES OF ČEBYŠEV TYPE

Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa