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WEIGHTED GENERALIZATION OF SOME INEQUALITIES FOR
DIFFERENTIABLE CO-ORDINATED CONVEX FUNCTIONS
WITH APPLICATIONS TO 2D WEIGHTED MIDPOINT
FORMULA AND MOMENTS OF RANDOM VARIABLES

M. A. LATIF, S. S. DRAGOMIR'2, AND E. MOMONIAT

ABSTRACT. In this paper, a new weighted identity for differentiable functions
of two variables defined on a rectangle from the plane is established. By
using the obtained identity and analysis, some new weighted integral inequal-
ities for the classes of co-ordinated convex, co-ordinated wright-convex and
co-ordinated quasi-convex functions on the rectangle from the plane are es-
tablished which provide weighted generalization of some recent results proved
for co-ordinated convex functions. Some applications of our results to random
variables and 2D weighted quadrature formula are given as well.

1. INTRODUCTION

A function f: T — R, 0§ # I C R, is said to be convex on I if the inequality

FAz+ (@ =Ny) <Af @)+ (1 =) f(),

holds for all z, y € I and A € [0, 1].
The most celebrated inequality for convex functions is the Hermite-Hadamard’s
inequality (see for instance [7]). This double inequality is stated as:

(1.1) f(a+b)§ ! /abf(x)dng(a);f(b)7

2 b—a
where f : I — R, () # I C R a convex function, a, b € I with a < b. The inequalities
in (1.1) are reversed if f is a concave function.

The inequalities (1.1) have various applications for generalized means, infor-
mation measures, quadrature rules etc., and there is growing literature provid-
ing its new proofs, extensions, refinements and generalizations, see for example
[2, 4, 5, 6,9, 21, 22] and the references therein.

Let us consider now a bidimensional interval [a, b] x [c,d] in R? with a < b and
¢ < d, a mapping f : [a,b] x [¢,d] — R is said to be convex on [a,b] X [c,d] if the
inequality

FOr+ (1 =)z, Ay + (1= Nw) < Af(z,y) + (1= N f(zw),
holds for all (z,v), (z,w) € [a,b] X [¢,d] and X € [0,1] .
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A modification for convex functions on [a,b] X [¢,d], which are also known as
co-ordinated convex functions, was initiated by Dragomir [4, 6] as follows:

A function f : [a,b] X [¢,d] — R is said to be convex on the co-ordinates on
[a,b] x [c, d] if the partial mappings fy : [a,b] = R, fy(u) = f(u,y) and f; : [¢,d] —
R, f»(v) = f(z,v) are convex where defined for all z € [a,b],y € [c,d].

A formal definition for co-ordinated convex functions may be stated as follows:

Definition 1. [13] A function f : [a,b] X [c,d] — R is said to be convex on the
co-ordinates on [a,b] X [c,d] if the inequality

flz+ (1 —t)y,su+ (1—s)w)
< tsf(z,u) + 11— s)f(z,w) +s(1 =) f(y,u) + (1 = £)(1 = ) f(y, w),

holds for all (t,s) € [0,1] x [0,1] and (z,u), (y,w) € [a,b] X [c,d].

Clearly, every convex mapping f : [a,b] X [¢, d] = R is convex on the co-ordinates.
Furthermore, there exists co-ordinated convex function which is not convex, (see
for example [4, 6]).

The following Hermite-Hadamard type inequality for co-ordinated convex func-
tions on the rectangle from the plane R? was also proved in [4]:

Theorem 1. [4] Suppose that f : [a,b] X [¢,d] — R is co-ordinated conver on
[a,b] X [¢,d]. Then one has the inequalities:

a+b c+d
a2 s (5050

b d
(5 s 1 (2500))
b pd
Sm//f(%y)dydx
b b
<ilbia/f(ac,c)dx+b_1a/ f(z,d)dx

d 1 d
+ﬁ/€ f(a,y)derE/c f(b,y)dy

CFa )+ @ d) + S (be) + ] (bd)
- 4

The above inequalities are sharp.

Latif and Dragomir [15], proved the following Hermite-Hadamard type inequal-
ities.

Theorem 2. [15] Let f : [a,b] x [¢,d] C R* — R be a partial differentiable mapping

on [a,b] x [c,d] in R? witha <b, ¢c < d. If ‘% is convex on the co-ordinates on
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[a,b] X [c,d], then one has the inequalities:

1 bopd a+b c+d
(1.3) (b_CL)(d_c)/a/cf(l‘,y)dyda:—Ff< 5 ' g )
1 b c+d 1 d a-+b
—b_a/af(x, : )dw—d_C/C f( : ,y)dy
2 2 2 2
L b-a)d—o [ |5 @0+ |55 @] + |5 0.0] + [ 5 0.9

- 16 4

The next two results from [15] involve powers of the absolute value of g:gt.

Theorem 3. [15] Let f : [a,b] X [¢,d] C R? — R be a partial differentiable mapping
on [a,b] x [e,d] in R? with a < b, ¢ < d. If %

co-ordinates on [a,b] X [c,d], then one has the inequalities:

q
, q > 1, is convexr on the

1 bord a+b c+d
(1.4) (b_CL)(d_c)/a/cf(l‘,y)dyda:—Ff( 5 2)
1 b c+d 1 d a+b
-/ f(x,2 )dm—d_c C f( : ,y)dy
62]‘ q 2f q 82f 62]” s
_b-a@-o [|5F @] + |5 @l + |5 oo +] 5 0.0
T o4(pt1)r 4 ’

where + + 1 =1.
Py
Theorem 4. [15] Let f : [a,b] X [¢,d] C R? — R be a partial differentiable mapping
q
on [a,b] x [e,d] in R? with a < b, ¢ < d. If ‘% , q > 1, is conver on the

co-ordinates on [a,b] X [c,d], then one has the inequalities:

1 e a+b ct+d
(1.5) (b—a)(d—c)/a/cf(x’y)dydx+f( 5 2)
1 b c+d 1 d a+b
_ba/af(gg7 2 )dm_dc/c f( 2 ,y)dy
_b-a@-q [[§F @ + |5 @] + |5 o] + |55 ea]

- 16 4

In a recent paper [22], M. E. Ozdemir et al. give the notion of co-ordinated quasi-
convex functions which generalize the notion of co-ordinated convex functions as
follows:

Definition 2. [20] A function f : [a,b] X [¢,d] C R? — R is said to be quasi-convex
on [a,b] X [c,d] if the inequality

f()\(E + (1 - )‘)Za /\y + (]- - A)w) < max{f(x,y), f(z,w)},
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holds for all (x,y), (z,w) € [a,b] X [¢,d] and A € [0,1] .

A function f : [a,b] x [¢,d] = R is said to be quasi-convex on the co-ordinates on
[a,b] x [c, d] if the partial mappings f, : [a,b] = R, fy(u) = f(u,y) and f; : [c,d] —
R, fz(v) = f(z,v) are quasi-convex where defined for all = € [a,b],y € [c, d].

The definition of co-ordinated quasi-convex functions may be stated as follows.

Definition 3. [16] A function f : [a,b] X [¢,d] C R? — R is said to be quasi-convex
on the co-ordinates on [a,b] X [c,d] if

f(t$+ (1 —t)2,8y+ (1 - S)’IU) < ma‘X{f(x7y) ,f(x,w),f(z,y),f(z,w)},
for all (z,y), (z,w) € [a,b] X [¢,d] and (s,t) € [0,1] x [0,1] .

The class of co-ordinated quasi-convex functions on [a,b] x [¢,d] is denoted by
QC([a,b] X [c,d]). It has also been proved in [20] that every quasi-convex functions
on [a,b] x [e,d] is quasi-convex on the co-ordinates on [a,b] X [¢,d]. The following
example reveals that there exists quasi-convex function on the co-ordinates which
is not quasi-convex.

Example 1. [16]The function f : [—2,2]2 — R, defined by f(z,y) = |z]||y],
where |.| is the floor function. This function is quasi-convex on the co-ordinates
2 . ) 2
n [—2,2]" but is not quasi-convex on [0,1]”.
For example, take (z,y) = (-2,1), (z,w) = (1,-1) and A = %, then

fOz+ (1 =Nz, y+(1-Nw)=f (—;O) =0,
on the other hand
max {f(gc,y),f(z,w)} = max {f (_27 1) f (17 _1)} =
which shows that f(Ax + (1 — ANz, Ay + (1 — Nw) > max {f(z,y), f(z,w)}.

Another generalization of the notion of the co-ordinated convex functions is the
concept of wright-convex functions which is given in the definition below.

Definition 4. [20] A function f : [a,b] X [c,d] C R? — R is said to be wright-convex
on [a,b] x [¢,d] if the inequality
fOz+ (1= Nz, Ay + (1= Aw) + f((1 = Nz + Az, (1 = Ny + Aw)
< max {f(z,2), f(y,w)},
holds for all (z,z), (y,w) € [a,b] X [¢,d] and X € [0,1] .
A function f : [a, b] x [c, d] — R is said to be wright-convex on the co-ordinates on

[a,b] x [c, d] if the partial mappings f, : [a,b] = R, fy(u) = f(u,y) and f; : [¢,d] —
R, fz(v) = f(z,v) are wright-convex where defined for all z € [a,b],y € [c,d].

Definition 5. [20] A function f : [a,b] x [c,d] C R? — R is said to be wright-convex
on the co-ordinates on [a,b] x [c,d] if

fltx+ (1 —t)z,sy+ (1 —s)w)+ f((1 —t)z +tz, (1 — s)y + sw)

< f@y)+ f(zy)+ fz0)+ f(zw0)
for all (z,2), (y,w) € [a,b] X [c,d] and (s,t) € [0,1] x [0,1] .
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The class of co-ordinated wright-convex functions on [a, b] X [¢, d] is represented by
W ([a, b] X [c,d]). It has also been proved in [20] that every wright-convex functions
on [a,b] X [¢,d] is wright-convex on the co-ordinates on [a, b] X [¢, d].

For more recent results on co-ordinated convex, co-ordinated quasi-convex, co-
ordinated m-convex, co-ordinated (a ,m)-convex and co-ordinated s-convex func-
tions on a rectangle [a, b] X [c, d] from the plane R?, we refer the readers to [1, 5, §],
[10]-[20].

In the present paper, we establish a new weighted identity for differentiable
mappings defined on a rectangle [a,b] x [c,d] from the plane R? and by using the
obtained identity and analysis, some new weighted integral inequalities for differ-
entiable co-ordinated convex, co-ordinated wright-convex and co-ordinated quasi
convex functions are proved. The results proved in the paper provide a weighted
generalization of the results given in Theorem 2, Theorem 3 and Theorem 4. Ap-
plications of our results to random variables and 2D weighted midpoint formula
are provided as well.

2. MAIN RESULTS

We need the following lemma to establish our main results of this section.

Lemma 1. Let f : A C R? = R be a twice differentiable mapping on A° and
p:[a,b] x [¢,d] = [0,00) be continuous and symmetric to “£% and <t for [a,b] x

le,d] C A° witha < b, ¢ < d. If &k € L([a,b] x [¢,d]), then

(2.1) f(“;bvc;d> /cd/bp(x,y)dxdy+/d/bf(w,y)p(wvy)dxdy
_/d/bf<x,c+d) (0,) dady — // (%5 o) dady
(b—a d—c // Vms /mt xydxdy] {88815 (U1 (1) Un ()

£atf<m<> L2 (9) = e (L1 (0. U2 (9) + o L1 (0. L (9)] i,
where
U () = 15 tat Tt L) = Tt 1,
Ug(s):1;Sc+1+SdL2() I;SC—I—l;Sd.
Proof. Let
(b_a d—ec La(s) pLi(®) 52
1= s V [ sy | s @ 0.026)
O U0 Lo (5)) — 2o f (L () Un (5)) + 2o f (L (1), L ()| st
 Ds0t ! 8 0s0t 118,218 9501 1 2 (s S
and

La(s) pLa(t)
/ / p(x,y)dedy = q(t,s).
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then
b—a)(d—c 0?
Ot [ [ 1) [ (00 0,V 6) o (0 0, £ 5
o? 0?
asatf( 1(1),U2(s) + 5o F (L1 (1) L2 (5)) | dsdt.
Now by integration by parts and by using the symmetry of p (x,y) about « = “T“’
and y = C+d , we have
(2.9) Yzald=c // (t, s) aat F (UL (t),Us (s)) dsdt
:(”f [ 0:9) s 0000 ) a5 a
:(b—a)4(d—c)/0 ldzc (t, s)gtf(Ul(t),Uz(S))O

1 (t
</dd /Ui(t) p(z,y) dxdy>

/+d/ (/Ul(t p(z,y)d )gtf(Ul(t) y) dtdy
d

2
a+b c+d b c+d
(55 ) Loty [ [ (055" ) e doay

2 2 2

d b ’ a4+ b d b
- f vy | (2, y) dedy + p(z,y) f(z,y) dxdy.
c+d Jatb 2 ctd Jatb

2 2

Similarly, we have

STy
52 Lo, e
/ / (‘” ,y> a:yd:l:der/ / f (2,y) dedy,

U1 (t) Lg (3)) dsdt

> x,y) dedy
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o) = CmO [ ) O 1 0,03 ) dsa
:f(a—i—b’c—i—d) /Cdd /a;bp(sc,y)dxdy—/jd /a;bf <x,c—i2_d>p(3:7y)dmdy
/ / (a+b,y) T,y dmdy+/ /°+b (x,y) dxdy

and

—a — C 1 1 2
(2.5) M / / q(t,s)%f(Ll (t), Lo (5)) dsdt

f(a+bc+d)/ /”b Iydxdy/ / < >p(x,y)dxdy
/ /( )xydxdy+/ / (. y) dedy.

Adding (2.2)-(2.5), we get the desired result. O

Remark 1. If we take p (z,y) = m for all (z,y) € [a,b] x [¢,d] in Lemma
1, we get Lemma 1 from [15, page 13].

Now by using lemma 1, we present the main results of this section.

Theorem 5. Let f : A C R2 — R be a twice differentiable mapping on A° and
p:[a,b] x [c,d] = [0,00) be continuous and symmetric to 4L and <4 for [a,b] x

le,d] C A° witha <b, ¢ < d. If 24 € L([a,b] x [c,d]) and

co-ordinates on [a,b] X [c,d], then

(2.6 |f(a;b,cgd) /d/bp<x,y>dxdy+/d/bfu,y)p(x,y)dxdy
R e e

b*a (d ) 82f a an agf
- 4 Ha f%( ’C)‘+‘ 50 (@ ’d)‘+ dsot (b’c)‘+’658t (b’d)H

t
1 1 Lz(S) Ll(t)
x/ // / p (z,y) dedydtds.
0 0 c a

asat 1s convex on the
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Proof. Taking absolute value on both sides of (2.1) and using the properties of
absolute value, we have

f<a+b,c+d> /d/bp(%y)dxder/d/bf(x,y)p(fcvy)dl‘dy
[ L (5 penan= [ (%5
(b—a)( —c// /L2(5)/1(t) xydxdy]{

(2.7)

) z,y) dzdy

o f (U1 (t),Uz2(s))

Osot

+‘(f;f<vl<> <>>+\Mtf< L0,V ()| + [ (21 0. L () s
By the convexity of | 2L | on the co-ordinates on [a, b] x [¢, d], we have
28) |2 010,02 5)
() (5 ool () (5[5 ]
) ol () () 2]
29) |2 (01 0). L (s)
() (5 ool (5°) (5[5 ]
) (5wl () (5 o]
210) |5 F (110,02 ()
<(5) (5[5 ol = (5) (5°) e ]
() () e+ (57) (5°) v
and
@11 [ (L1 (0. L2 (o)
() ) (49 (5 e
(5) () ls@ ool () () ol

Using (2.8)-(2.11) in (2.7), we get (2.6). O
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Remark 2. If we take p (x,y) = m for all (z,y) € [a,b] X [¢c,d] in Theorem
5, we get Theorem 2 from [15].

A more general result is given in the following theorem.

Theorem 6. Let f : A C R?2 — R be a twice differentiable mapping on A° and

p:[a,b] x [c,d] = [0,00) be continuous and symmetric to “£2 and <4 for [a,b] x
[e,d] C A° witha <b, ¢ <d. If aajgt € L([a,b] X [¢,d]) and 8sat is convez on

the co-ordinates on [a,b] X [¢,d] for ¢ > 1, then

(2.12) ‘f (a;b7c;d) /cd/abp(x,y)dfcder/cd[lbf(x,y)p(x,y)dxdy
L )wydfdy// (5

<(b-a)(d-c)

) ey

1 1 Lo (S) Ly (t)
X / / / / p(z,y) dedydsdt.
0 Jo Je a

Proof. Taking absolute value on both sides of (2.1), by using the properties of
absolute value and the Holder inequality, we have

(2.13) ‘f (a;b7c;d) /cd/abp(x,y)dfcder/Cd/abf(w,y)p(w,y)dxdy
_/Cd/:f(at,c d) (x,y)dxdy — // ( ) (x,y) dxdy

< (b—a4 —0) (/ / [/Lz s)/le (o) dedy det> ~
</01 /o1 /Lgm /L1 (z,y dxdy] ’aa;f(Ul 0.0 ) qudt>é
+ </01 /01 _/CLQ 5) /Ll (z,y) da:dy_ aici)tf(Ul (1), L2 () qudt>é
(/1/1 :/CLM/ )

</ / /Cm(s) /am(t)p(a:,y) dxdy: 8228tf(L1 (1) Ly (&) qudt)q

By the power-mean inequality (af + a5 + a5 +a} < 47" (a1 + az +az + aq)"” for ay,

_|_

Li(t) i 52 q q
(2 y) dady | | 2o ] (L1 (1), Us ()|

q
on the co-ordinates on

az, a3, ag > 0 and r < 1) and using the convexity of ‘a p
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[a,b] X [¢,d] for ¢ > 1, we have

oo ([ L s
o
(/
“(f

1

q q
dsdt)
1
q q
dsdt)

82
0sot

S—

fUL(F),Uz ()

S—

1 La(s) pLy (t) 0?2
/ (z,y) dzdy 858tf(U1 (t), L2 (s))

L[ pLa(s) pLa(D) 2 q 7
l / / P,y dwdy] D (L (1), Us (5) dsdt)

1 V - /Ll (2,1 dxdy] ’ai;f(Ll (), La (5)) qudt>;]
{ [ ( [ dwdy>

S—

S—

q 2

| ugd (U012 (9)

q

| oo @ 0 026

q 2

82
| (01 (0.2 (9)

_1 [| 8%F
4 H ds0t (“’C)‘ N

F(La(t), L2 (s))

q 7
} dsdt}

0% f

dsot (b, d)H

U 1 pLa(s) pLa(d) 7
X / / / / p (z,y) dedydsdt
0 0 c a

A usage of (2.14) in (2.13) yields the desired result. d

K
0s0t

Q=

o2 f 92 f
as01 @ )‘ * ‘ aso1 09

_|_

Remark 3. If we take p (z,y) = m for all (z,y) € [a,b] X [c,d] in Theorem
6, we get Theorem 4.

A different approach leads to the following result.

Theorem 7. Let f : A C R?2 — R be a twice differentiable mapping on A° and
p:[a,b] x [c,d] = [0,00) be continuous and symmetric to %2 and <£2 for [a,b] x

q
le,d] € A° witha < b, ¢ < d. If 2L € L([a,] x [¢,d]) and |2k

1S conver on
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the co-ordinates on [a,b] X [¢,d] for ¢ > 1, then

(2.15) ‘f (a;b7c;d) /d/bp(x,y)dfcder/d/bf(w,y)p(w,y)dxdy
L e [ (5

P q 52 92 q q
24 @ o) + |2k @a) + |25 60| + |24 ]
4
1

(L L emin] o)

s

Q

1,1
where;—&—a—l.

Proof. From Lemma 1 and the Holder inequality, we have

0 ‘f (a;b’ c—;d) /d/bp(m’y)dxdy+/d/bf(x,y)P(x,y)dxdy
// ( c+d> (z,y) dedy — // <
- W </01/01 Vfﬂs) /aLl(t)P(l‘,y) ddeyrdsdt)p

) p(z,y) dedy

« [(/01/01 Mf(Ul(t),UQ(s))qudt)q
([ [ 1 )wqudty
(// 88(’% (8), U2 (s ))qudt>;

@f (L1 (t), L2 (s))

q 2
+ ( dsdt) .
0

By the power-mean inequality (af + a5 + a5 +a} < 47" (a1 + az +az + aq)"” for ay,

q
on the co-ordinates on

az, a3, ag > 0 and r < 1) and using the convexity of ‘a p
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[a,b] X [¢,d] for ¢ > 1, we have

1
dsdt)

247 ( 858t FUL(#), Uz (s))
+ ( | %f(m (t), L () qudt>é
+< @J‘(L1 (t), Uz (s)) dsdt) ( 338t F (L0 () Lo (s ))qudt>é

1,,
<4 [ 856% FUL(t),Us (s dsdt+// 838t f (UL (t), Ly (s)) dsdt
// 83815 (t), U2 (s det 85875 f (L (t), Lo (s)) dé’dﬁ]
2 q q %
|l C)\ + | (a d)’ 28 0.0 + |24 v.a)
B 4
From (2.16) and (2.17), we get (2.15). 0

Remark 4. If we take p (z,y) = m for all (x,y) € [a,b] X [¢c,d] in Theorem
7, we get Theorem 3.

Remark 5. Theorem 5-Theorem 7 continue to hold true if in their statements we
replace the condition “convex on the co-ordinates” with the condition “wright-convez
on the co-ordinates”. However, the details are left to the interested reader.

In what follows we give our results for the quasi-convex mappings on the co-
ordinates on [a,b] X [c, d].

Theorem 8. Suppose the assumptions of Theorem 5 are satisfied. If the map-

. 82
ping | 24

is quasi-convex on the co-ordinates on [a,b] X [c,d], then the following
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inequality holds

(2.18) ‘f (a;b,c;d) /d/bp(x,y)dwdy+/d/bf(x,y)p(w,y)dxdy
I ( ) et [ [ (S22 o
< =0 e {(m ) g (57|

32 bd a+b c+d
0sOt ’ 658t 2 7 2

b

—i—max{

b

)

0% f c+d
asot V|| gsan < 2 )
f (a —|— b d O?f (a+b c+d
Osot ’ "|9s0t 2 72
0% f c+d
+max{‘a ot ) | gsan (b 2 )
a + b 0%f (a+b c+d
65815 " | 9s0t 2 72
m 82f< )| 0% f c+d ?f (a+b
“asor ‘| osot " T2 )| | asor 2 ¢
0% f a+b c+d L2(s)
9e01 ( 5 )’H / / / / (x,y) dedydtds.
Proof. We continue inequality (2.7) in the proof of Theorem 1. Now, by the quasi-
convexity on the co-ordinates of ‘ﬁ‘on [a,b] x [c,d] , we obtain
2 82f

0 0% f c+d
219) |2 f @002 o) < max{ |55 0] | 58 (157,
0% f a+bd 0%f (a+b c+d
i (59| (55 5O}
02 H? 0? d
220) | (@)U o) < max{ | 7 @ [ (o550,

221) |2 (0,12 (3)] < o
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and

2 2
22 [ (@), 22 o)| < mox{| 5 0.0

f (a+D .
0s0t 2’ ’

0% f c+d
9sot \ ' 2

f (a+b c+d
0sot 2 72 ’

)

for all (¢,s) € [0,1] x [0,1]. A combination of (2.19)-(2.22) and (2.7)gives the
required inequality (2.18). O

Corollary 1. Suppose the assumptions of Theorem 8 are fulfilled and if p (x,y) =
m for all (z,y) € [a,b] X [¢,d], then the following inequality holds valid

a+b c+d 1 d b
(223 ‘f( LA )+ =g ) [ @ deay
1 c+d a+b
—bfa ( )d:c f(2 ,y>dy
b—a 02 f PF (, ctd
fax asat | st 2 )|’
82 a+b d a+b c+d
0sOt 2 ’ 85625 2 7 2
n ( c+d
ax 85675 2
d %f (a+b c+d
858t ’ "1 0sOt )
an Pf [ c+d
+max{ 815 (b,c) pyn (b 5 )
0%f (a+b c+d
8sat 2 1050t 2 72
Pf Pf [ c+d
+maX{‘858t (@) 83615( “ )’

?f (a+b Pf (a+b c+d
8sat T2 %) Plasar \ 2 0 2 '

Corollary 2. Suppose the assumptions of Theorem 8 are satisfied and additionally

b

a7d’

b
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(1) If f is non-decreasing on the co-ordinates on [a, b] X [¢, d], then the following
inequality holds true

(224 ‘f (5220 /d/bpu,y)dxdw/d/bf@,y)p(x,y)dxdy
[ peemama [ (%5

ot
(b—a)(d——c) [| 82f O2f fa+b 2f [ c+d
= 1 Ha 8t(b’d)’+‘8 8t< 7 ’d)’+ asat (b’ 7 )’

2 La(s) pLi(t
+ gsgt (a—2i-b c—&—d)H/ / / / p(z,y) dedydtds.

(2) If f is non-increasing on the co-ordinates on [a,b] X [c,d], then the following
inequality holds true

(2.25) |f (“2 Y [ e aas [ v
L Y [ [ (%5

) (z,y) dzdy
(b—a)(d—-c) [| O*f o*f c+d O?f [a+Db
= 1 Ha Bt(a’c)’+‘858t (“’ 2 )’* asat< 2 0)‘

0? a+b c+d 1 p1 pLa(s) pLa(t)
+ 35(;;( 2 7 9 )H/ / / / p(z,y) dedydtds.
0 0 c a

Corollary 3. If we take p (z,y) = m for all (x,y) € [a,b] X [¢,d] in Corol-
lary 2 and additionally

(1) If f is non-decreasing on the co-ordinates on [a,b] X [c,d], then the following
inequality holds true

a+b c+d 1 d b
(2.26) |f( i )+ iR //f(x,y)dzdy
1 c+d a+b
b a (x > )d - f( > ,y>dy

_ - a)4 H .0

|93 (axb ctd
0s0t 2 72 '
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(2) If f is non-increasing on the co-ordinates on [a, b] X [c,d], then the following
inequality holds true

atb ct+d 1 4 b
(2.27) |f( L )+ e //f(x,ymxdy
1 c+d a+b
b—a) <x 5 ) f( 5 ,y>dy
2
< o°f a7c—|—d
- Osot 2
82f a+b Pf (a+b c+d
+838t( 2 ’c>’+ asat< 2 2 )H
Theorem 9. Suppose the assumptions of Theorem 5 are satisfied. If the mapping

q
g;aft is quasi-convex on the co-ordinates on [a,b] x [e,d] for ¢ > 1, then the

following inequality holds

() /d/bpu,y)dxdw/d/bf@,y)p(x,y)dxdy
U A T -
SR G {\5251 o (5]
s (3 0)| o (5 5°) })

q}>q

o2 f 2f [ ctd
+<max{’a 8t(’d) aat(’ 2
q

(2.28)

0% f a—l—bd T 9%f (fa+b c+d
dsot \ 2 losot \ 2 7 2
92 q 2
f o°f c+d
+ (max{ 858t( ¢) (b
O%f (a+Db
0s0t 9 ¢

" | 050t 2
T 0% f a+b c+d
| 9sOt 2
0% f d
+(max{ 9501 (a,c)
O%*f (a+Db
asot \ 2 ¢

)

}>

1]
1 1 pLa(s) pLa(t)

></ // / p(x,y) dedydtds.
0 0 c a

Proof. We continue inequality (2.13) in the proof of Theorem ?7. Now, by the

q
quasi-convexity on the co-ordinates of ‘ on [a,b] X [c,d] for ¢ > 1 and the

o

q a2f- +

asot \ V2

TVO%f fa+b c+d
"1 OsOt 2 7 2

950t
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power-mean inequality, we obtain

82 q an q 82f C+d q

. —_— <

229) |t © 0.0 0| < max{| 2L 00 |2 (550
O%f (a+Db d T102f fa+b c+d\|*
0s0t 2’ 1050t 2 7 2 ’

82 q an q a2f C+d q

. < - -

(2:30) | 5agf L (1), U2 (3)) —max{ asor @D | sar <a’ 2 ) ’
0*f (a+Db d TN10%f fa+b c+d\|*
0sot 2’ "1 05Ot 2 7 2 ’

62 q an q aZf C—|—d q
. —_— <

230 | 0. Lo ()| <max{| T w0 [0 (57|
O%f (a+Db T10%f fa+b c+d\|*
dsot \ "2 )| |osat \ 2 2 ’

and

92 d 82 f TNRf [ etd\|!
) - < =L R (A e
230 |l (00 L (o) <max{| 2L o] |5 (o 0]

f (a+b c+d
0sot 2 72

)

for all (¢, s) € [0,1]x]0, 1]. Using (2.29)-(2.32) in (2.13) we get the desired result. O

)
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Corollary 4. Suppose the assumptions of Theorem 9 are fulfilled and if p (z,y) =

m for all (z,y) € [a,b] X [¢,d], then the following inequality holds valid

a+b c+d d rb
(2.33) |f( ;L, ;L )+ b—a)ld—c //f(:c,y)da:dy

(
1 C&C+d)d$— df<a+b£0(w

b—a 2 2
_ 2 2 q
S(b a)( axc o°f o f b,c—i—d
4 6587& "1 9sot 2
0% f a—l—bd 0% f a+b c+d
Osot 2 | 9s0t
o2 f
+ (max{’asat (a,d) ,
0% f a+bd 1
0s0t 2’
0% f
+<max{ D50t
0% f [a+b
st 2 ¢

+ (max{ 82f

q

)

2
o2 f

c+d
osor \ 2
a%“<a+b c+d>4}>3

q

"|9s0t 2 7 2
T 9% f b c+d\|!
losot 7 2

O%f [a+b c+d\|"\\7
1050t 2 7 2

q a2f C+d q
"osor \ 2
C10%f fa+b c+d
"1 OsOt 2 7 2

(b;¢)

q

)

)

0s0Ot (a,¢)

1
0*f (a+b RN
c .
st 2 7
Remark 6. Suppose the assumptions of Theorem 9 are satisfied and additionally

(1) If f is non-decreasing on the co-ordinates on [a,b] X [c, d], then (2.24) holds
valid.
(2) If f is non-increasing on the co-ordinates on [a,b] X [¢,d], then (2.25) holds
true.

Remark 7. In Corollary 4
(1) If f is non-decreasing on the co-ordinates on [a,b] X [c,d], then (2.26) holds
valid.

(2) If f is non-increasing on the co-ordinates on [a,b] X [c,d], then (2.27) holds
true.

3. APPLICATIONS TO RANDOM VARIABLES

Let 0 <a<b 0<c<d apf € R and let X and Y be two independent
continuous random variables having the bi-variate continuous probability density
function p : [a, b] x [c, d] — [0, 00) which is symmetric to %52 and <5 the a-moment
of X and the S-moment of Y about the origin are respectively defined as follows

b b
E@(}()::t/jtapl(t)dtpEf(}’)::J[ sPpy (5)ds
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which are assumed to be finite, here py : [a,b] — [0,00) and ps : [¢,d] — [0, 00)
are the marginal probability density functions of X and Y. Since X and Y are
independent random variables, we have

p(t,s) =p1(t)p2(s)
for all (¢,s) € [a,b] X [c,d].
Now we give some applications of our result to random variables.

Theorem 10. The inequality
a+b\" c+d\”’
(0= (452)) (- (5))

(b—a)(d—rc) a® L4 b P 4 dft
< .
= 1 ab 2 2
holds holds for0 <a <b, 0<c<d and a, > 2.

(3.1)

Proof. Let f(t,s) = t*s? on [a,b] x [c,d] for a, B > 2, we observe that ’828{9%;5)

aft®1s#=1 is convex on the co-ordinates on [a,b] x [c, d]. Since

*f *f *f *f
a0t |+ | i (“’d>‘+ aso1 09| T | ason

_ Cl/,ﬂ (aafl bafl) (Cﬁfl dﬁfl)

Lz S) Ll(t) u,+b 1
/ / T,y dxdy</ / g:ydxdyfi
La(s) pLa(t) 1
/ / / / (z,y) dedydtds < 1

f<a—2|—bc—|—d>// dedy_(ﬁ)
[ L (e pmma [ [11(%5

- <c;d> Eo (X)+ (“;rb> Es (V)

+

+’ (bd)’

and hence

Also

(c—i—d)
7y)p x,y) drdy

and .

/ / f(@,y)p(2,y)dedy = Eq (X) Eg (V).
The result follows irilmgdiately from the inequality (2.6). O
Theorem 11. The inequality

(o= (2) (5= () )
<ot (1)) (o (459)”)

holds holds for 0 <a <b,0<c<d and o, > 1.

(3.2)




20 M. A. LATIF, S. S. DRAGOMIR!2, AND E. MOMONIAT

Proof. Let f(t,s) = t*s? on [a,b] x [c,d] for a, B > 1, we observe that ‘azaj;%f) =

apt® 1sA~1 is non-decreasing and quasi-convex on the co-ordinates on [a, b] x [c, d].
The proof is similar to that of Theorem 10 by using the inequality (2.24) we obtain
the required result. O

Remark 8. For o = 8 =1, we have from Theorem 11 that

N D

where By (X) = E(X) and E1 (Y) = E(Y) are the expectation of the random
variables X and Y respectively.

4. APPLICATIONS TO 2D WEIGHTED MIDPOINT FORMULA

Let [a,b] X [c,d] be a rectangle from the plane R?. Suppose d; and dy are
the divisions ¢ = 9 < 71 < ++» < Tp_1 < T, = band ¢c = Yy < y1 <

© < Ym-1 < Ym = b of the intervals [a,b] and [c,d] respectively and let d =
{li, Tig1] X [y5,Yj41] : 0<i<n—1,0<j <m—1} be a corresponding division
of the rectangle [a,b] x [c,d] from the plane R2.

Consider the following 2D weighted quadrature formula

d b
(4.1) / / f(@,9)p () dedy = T (f,p.d) + E (f,p. ).
where
n—1lm-—1 -Tz+3?z+1 yi +y+1
(42) T (f,p,d) ;;[ ( , 2 2J )

y_]+1 $1+1 yJ+1 ‘T'i+1 . + .
></ / p(z,y) d:vdy+/ / f <xyj2y”1> p(z,y) dzdy
Yi T Yi Tq
Yj+1 Tit1 Z; eri
+/ / f <2+1,y>p(x7y) dwdy]
Yj Ty

J

for the midpoint version and E(f,p, d) denotes the associated approximation error.
The following results provide some estimates of the remainder term E(f,p, d).

q .
18

Theorem 12. Suppose the assumptions of Theorem 6 are satisfied. If ‘a 5

convez on the co-ordinates on [a,b] X [c,d] for ¢ > 1, then in (4.1), for every division
d of the rectangle [a,b] x [c,d] from the plane R?, the following holds

n—1lm-—1

43) [E(fp.d) <D (wig1 — i) (i1 — v5)
=0 5=0
2 q

92 q £l
855} (wi,y5) ‘ + aTgt (Zit1,Yj+1)

82
aTgt (it1,Y5)

q
|+

92 q
aTaft (mivijrl)’ +

4
1 p1 pLa(yj,y5+41,8) pLla(zizitr,t)
></ // / p (z,y) dedydsdt,
0 0 Y T;

k3
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where

1+ 1—1¢
Ly (2, xi41,t) = Txi + TxiJrl

and

1+s 1—s
Ly (y5,Yj+1,8) = 5 Yt Y

Proof. Applying Theorem 6 on the rectangles [z;, zi+1] X [y, yj+1] (0 < i <n —
1,0 < j < m — 1) of the division d of the rectangle [a,b] X [¢, d] from the plane R?,
we get

$i+$i T Yji+1 Tit1
(4.4) 'f( 5 Y Qy”l)/ / p(z,y) ddy

Yj Tq

Yji+1 Ti41 . .
! Yi +Yi+1
*/ / f(fc,] 2” >p(fc,y)dxdy
Y T;

J

Yj+1 Ti+1 T +xi
—/ / f (2 H,y)p(:ﬂ,y) dxdy
Yj T4

+ /yj+1 /Ii+1 f (@ y)p(z,y) dedy

Yi Tq

< (i1 — ) (Y01 — Yy5)

1
2 99 q

a
+ aTaft (Tit1,Y541)

P
+ aTaft (Tiv1,95)| +

4

1 p1l pLa(yj,95+41,8) pLi(zs,zitr,t)
X / / / / p (z,y) dedydsdt.
0 0 Y T;

k3

fi}
aTaft (xiayj) 3Taft (xiaijrl)

o]

2 'q

2 'q

Summing over 4 from 0 to n — 1 and j over 0 to m — 1, we deduce, by the triangle
inequality, that (4.3) holds. O

q

2
o"f on

Remark 9. The inequality (4.3) holds if the condition of convexity of |5-4;
the co-ordinates on [a,b] X [c,d] is replaced with the condition of wright-convexity

92 f q
of | o

on the co-ordinates on [a,b] X [c,d] for ¢ > 1.

osot| 8

14
Theorem 13. Suppose the assumptions of Theorem 6 are satisfied. If ‘ O
convex on the co-ordinates on [a,b] X [¢,d] for ¢ > 1, then in (4.1), for every division




22 M. A. LATIF, S. S. DRAGOMIR!2, AND E. MOMONIAT

d of the rectangle [a,b] x [c,d] from the plane R?, the following holds

45) |E(fipd)l < 7> > (@inn — ) (Y41 — y5)
=0

ot (L wityi|
"lasot \TT T2
Pf (wi+xiyr yj+yi+1 )|\ °
1050t 2 ’ 2
O*f T orf Y + Y1 \|*
+ <maX{‘M($iayj+l) ) asat (:L'ia 2 )
an Ti + Tip1 1 32f T+ Tit1 Y5+ Yi a a
950t o I s 2 ' 2
O*f ot Y + Y1 \ |
+ <max{‘638t (Ii-&-layj) ) @ <$z‘+17 2)
Pf (witwip TNO%f (wi+mi vty )| )
D50t 2 )| asae 2 2

>’f “o%f vty |
+ (max{‘asat(xi,yj) <wi, )

100t 2
OPf [z + Tiv1 e
950t 2 W

1
Of (@i+Tig1 Yj+ Yj+ T\ *
"1 0sOt 2 ’ 2
1 r1 prLa(yj,y5+1,8)  pLi(mizipr,t)
></ / / / p(x,y) dedydsdt.
0 JO Jy; T;

i

q

)

)

)

Proof. The proof follows from (2.28) by using the similar arguments as that of the
proof of Theorem 12. O

82f q
Remark 10. If ’M
equality holds

is non-decreasing in Theorem 13, then the following in-

(46) | f?pa iz Z lerl y]+1 Yj )

32f (Ei+$1‘+1
* 856t< 2 ’y”l)

+$z+1 y]+y]+1 n f . Yi T ¥Yj+1
asat 2 dsot \"T 2

1 pL2(yj,95+1,8) pLi(xsxit1t)
></ // / p (z,y) dedydsdt.
0 0 Yi xZ;

i

QJ

83(‘31& 331+17?Jg+1)
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q
and if ’g:gt is non-increasing in Theorem 13, then the following inequality holds
1 n—1m-—1
A7) [E(fip.d)| < (@it1 — 23) (yj+1 — ¥j)
=0 j=0
? *f Yi + Y1
g o)+ g (25|
N Pf (xi+ w1 A Pf (wi+miy1 y; +Yjm
dsot 2 Y dsot 2 2

1 prl pLa(yj,95+41,8) pLi(zs,ita,t)
X / / / / p (z,y) dedydsdt.
0 0 Yi T4

i
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