SEVERAL INEQUALITIES FOR POSITIVE OPERATORS ON
HILBERT SPACES

LOREDANA CIURDARIU

Abstract. In this paper, several inequalities for positive definite operators defined on Hilbert spaces will be presented under suitable assumptions, starting from some refinements of the Kittaneh-Manasrah inequality which improves the well-known inequality of Young.

1. Introduction

It is necessary to recall the following results which are given in the papers [4] and [5] and will be used below in the demonstration of inequalities from Proposition 1, Theorem 2 and Proposition 3. In these demonstrations the same method as in the paper [1] will be utilized.

Lemma 1. ([4]) Let \(a \) and \(b \) be such that \(a, b \geq 0 \) and \(0 \leq \nu \leq 1 \). Then the following inequality holds:

\[
\nu a^2 + (1 - \nu)b^2 \leq (\nu b^{1-\nu})^2 + s_0(a - b)^2,
\]

where \(s_0 = \max\{\nu, 1 - \nu\} \).

Lemma 2. ([5]) For all \(x, y \) positive real numbers and \(\lambda \in (0, 1) \) we have the inequality

\[
2rE\left(x, y, \frac{1}{2}\right) \leq E(x, y, \lambda) \leq 2(1 - r)E\left(x, y, \frac{1}{2}\right),
\]

where

\[
E(x, y, \lambda) = \lambda \exp x + (1 - \lambda) \exp y - \exp(\lambda x + (1 - \lambda)y) - \frac{\lambda(1 - \lambda)}{2}(x - y)^2
\]

and \(r = \min\{\lambda, 1 - \lambda\} \).

Theorem 1. ([5]) For \(a, b \geq 1 \), and \(\lambda \in (0, 1) \) we have

\[
r(\sqrt{a} - \sqrt{b})^2 + A_1(\lambda) \log^2\left(\frac{a}{b}\right) \leq \lambda a + (1 - \lambda)b - a^{\lambda b^{1-\lambda}} \leq (1 - r)(\sqrt{a} - \sqrt{b})^2 + B_1(\lambda) \log^2\left(\frac{a}{b}\right)
\]

where \(r = \min\{\lambda, 1 - \lambda\} \), \(A_1(\lambda) = \frac{\lambda(1 - \lambda)}{2} - \frac{r}{4} \) and \(B_1(\lambda) = \frac{\lambda(1 - \lambda)}{2} - \frac{1 - r}{4} \).

\begin{flushleft}
Date: November 7, 2014.
2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Young’s inequality, selfadjoint operators.
\end{flushleft}
First, it is necessary to recall that for selfadjoint operators \(A, B \in B(H) \) we write \(A \leq B \) (or \(B \geq A \)) if \(\langle Ax, x \rangle \leq \langle Bx, x \rangle \) for every vector \(x \in H \). In this paper, we will consider \(A \) as being a selfadjoint linear operator on a complex Hilbert space \((H; \langle \cdot, \cdot \rangle) \) as in [1] and the references therein. The Gelfand map establishes a \(*\)-isometrically isomorphism \(\Phi \) between the set \(C(Sp(A)) \) of all continuous functions defined on the spectrum of \(A \), denoted \(Sp(A) \), an the \(C^* \)- algebra \(C^*(A) \) generated by \(A \) and the identity operator \(1_H \) on \(H \) as follows (i): For any \(f, g \in C(Sp(A)) \) and for any \(\alpha, \beta \in \mathbb{C} \) we have

(i) \(\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g) \);
(ii) \(\Phi(fg) = \Phi(f)\Phi(g) \) and \(\Phi(f) = \Phi(f^*) \);
(iii) \(||\Phi(f)|| = ||f|| = \sup_{t \in Sp(A)} |f(t)| \);
(iv) \(\Phi(f_0) = 1_H \) and \(\Phi(f_1) = A \), where \(f_0(t) = 1 \) and \(f_1(t) = t \) for \(t \in Sp(A) \).

Using this notation, as in [1] for example, we define

\[
f(A) := \Phi(f) \quad \text{for all} \quad f \in C(Sp(A))
\]

and we call it the continuous functional calculus for a selfadjoint operator \(A \). It is known that if \(A \) is a selfadjoint operator and \(f \) is a real valued continuous function on \(Sp(A) \), then \(f(t) \geq 0 \) for any \(t \in Sp(A) \) implies that \(f(A) \geq 0 \), i.e. \(f(A) \) is a positive operator on \(H \). In addition, if and \(f \) and \(g \) are real valued functions on \(Sp(A) \) then the following property holds:

(i) \(f(t) \geq g(t) \) for any \(t \in Sp(A) \) implies that \(f(A) \geq g(A) \)

in the operator order of \(B(H) \).

2. Main results

The following results present several inequalities for functions of positive operators.

Proposition 1. Let \(A \) and \(B \) be two positive definite operators on \(H \). Then we have

\[
\nu < A^2 x, x > + (1 - \nu) < B^2 y, y > \leq < A^{2 \nu} x, x > < B^{2(1 - \nu)} y, y > +
\]

\[
+ s_0 \left[< A^2 x, x > - 2 < Ax, x > < By, y > + < B^2 y, y > \right],
\]

for each \(x, y \in H \) with \(||x|| = ||y|| = 1 \), where \(0 \leq \nu \leq 1 \) and \(s_0 = \max \{ \nu, 1 - \nu \} \).

Proof. We consider the continue function \(f(a) = (a^\nu b^{(1 - \nu)})^2 + s_0(a - b)^2 - (\nu a^2 + (1 - \nu)b^2) \), which is positive for \(a \geq 0 \) and we fix \(b \geq 0 \) and then by the property (1) for each \(x \in H \) with \(||x|| = 1 \) we have that

\[
< (\nu A^2 + (1 - \nu)b^2 I)x, x > \leq < [A^{2 \nu} b^{2(1 - \nu)} + s_0(A^2 - 2Ab + b^2 I)]x, x >
\]

which is equivalent with

\[
\nu < A^2 x, x > + (1 - \nu)b^2 \leq
\]

\[
< b^{2(1 - \nu)} < A^{2 \nu} x, x > + s_0[< A^2 x, x > - 2b < Ax, x > + b^2 < x, x >]
\]

for each \(b > 0 \).

If we apply again the property (1) for last inequality, then for any \(y \in H \) with \(||y|| = 1 \) we get

\[
< [\nu < A^2 x, x > + (1 - \nu)b^2]y, y > \leq
\]

\[
< [b^{2(1 - \nu)} < A^{2 \nu} x, x > + s_0(2b < Ax, x > + b^2 < x, x >)]y, y >
\]
and this inequality is equivalent with
\[\nu < A^2 x, x > + (1 - \nu) < B^2 y, y > \leq \]
\[\leq A^{2(1-\nu)} x, x > < B^2 (1-\nu) y, y > + s_0 < A^2 x, x > - 2 < A x, x > B y, y > + < B^2 y, y > \]
for each \(x, y \in H \) with \(\|x\| = \|y\| = 1 \).

Taking now in previous inequality \(x = y \) we obtain the desired inequality.

As an interesting application of previous result, we have the following particular cases:

Remark 1. (i) If we take in previous inequality \(y = x \) then we have:
\[\nu < A^2 x, x > + (1 - \nu) < B^2 x, x > \leq A^{2(1-\nu)} x, x > + s_0 < A^2 x, x > - 2 < A x, x > B x, x > + < B^2 x, x > \]
for each \(x \in H \) with \(\|x\| = 1 \), where \(s_0 = \max \{\nu, 1 - \nu\} \).

(ii) If in addition \(A = B \) then in previous inequality we obtain:
\[1 - 2s_0 < A^2 x, x > - (A x, x >)^2 \leq A^{2(1-\nu)} x, x > \]
for each \(x \in H \) with \(\|x\| = 1 \), where \(s_0 = \max \{\nu, 1 - \nu\} \).

Theorem 2. Let \(A \) be a positive definite operator on \(H \). Then the following inequality holds:
\[r \left[2 < \exp(A)x, x > - 2 \left(< \exp \left(\frac{A}{2} \right) x, x > \right)^2 - \frac{1}{2} \left(< A^2 x, x > - (A x, x >)^2 \right) \right] \leq \]
\[\leq 1 - \nu < \exp(A)x, x > < \exp(1 - \nu)Ax, x > - \nu (1 - \nu) < A^2 x, x > - (A x, x >)^2 \]
\[\leq 1 - r \left[2 < \exp(A)x, x > - 2 \left(< \exp \left(\frac{A}{2} \right) x, x > \right)^2 - \frac{1}{2} \left(< A^2 x, x > - (A x, x >)^2 \right) \right] \]
for each \(x \in H \) with \(\|x\| = 1 \), where \(r = \min \{\lambda, 1 - \lambda\} \).

Proof. We write and then use the inequality from Lemma 2 with \(x \) replaced by \(a \) and \(y \) replaced by \(b \) obtaining:
\[r \left[\exp(a) + \exp(b) - 2 \exp \left(\frac{a + b}{2} \right) - \frac{1}{4} (a - b)^2 \right] \leq \]
\[\leq \lambda \exp(a) + (1 - \lambda) \exp(b) - \exp(\lambda a + (1 - \lambda)b) - \frac{\lambda(1 - \lambda)}{2} (a - b)^2 \leq \]
\[\leq (1 - r) \left[\exp(a) + \exp(b) - 2 \exp \left(\frac{a + b}{2} \right) - \frac{1}{4} (a - b)^2 \right] \cdot \]
We fix \(b > 0 \) and apply the property (1) for previous inequality obtaining:
\[< r[\exp(A) + \exp(b)1_H - 2 \exp \left(\frac{b}{2} \right) \exp \left(\frac{A}{2} \right) - \frac{1}{4} (A^2 - 2bA + b^21_H)]x, x > \leq \]
\[\leq [\lambda \exp(A) + (1 - \lambda) \exp(b)1_H - \exp(\lambda A) \exp((1 - \lambda)b) - \frac{\lambda(1 - \lambda)}{2} (A^2 - 2bA + b^21_H)]x, x > \]
\[\leq (1 - r)[\exp(A) + \exp(b)1_H - 2 \exp \left(\frac{b}{2} \right) \exp \left(\frac{A}{2} \right) - \frac{1}{4} (A^2 - 2bA + b^21_H)]x, x > \]
which is equivalent with the following

\[r[\langle \exp(A)x, x \rangle + \exp(b) - 2 \exp(\frac{b}{2}) \langle \exp(A)\frac{1}{2}x, x \rangle - \frac{1}{4}(\langle A^2x, x \rangle - 2b < Ax, x > + b^2) \leq \]

\[\leq \lambda < \exp(A)x, x > + (1 - \lambda) \exp(b) - \exp((1 - \lambda)b) < \exp(\lambda A)x, x > - \frac{\lambda(1 - \lambda)}{2} (\langle A^2x, x \rangle - 2b < Ax, x > + b^2) \leq \]

\[\leq (1 - r)[\langle \exp(A)x, x \rangle + \exp(b) - 2 \exp(\frac{b}{2}) \langle \exp(A)\frac{1}{2}x, x \rangle - \frac{1}{4}(\langle A^2x, x \rangle - 2b < Ax, x > + b^2)], \]

for any \(x \in H \) with \(||x|| = 1 \).

If we apply again the property (1) for previous inequality for the variable \(b \), then we have for any \(y \in H \) with \(||y|| = 1 \) that

\[r[\langle \exp(A)x, x \rangle + < \exp(B)y, y > - 2 < \exp(\frac{B}{2})y, y > < \exp(A)\frac{1}{2}x, x \rangle - \frac{1}{4}(\langle A^2x, x \rangle - 2 < Ax, x > < By, y > + B^2y, y >)] \leq \]

\[\leq \lambda < \exp(A)x, x > + (1 - \lambda) < \exp(B)y, y > - < \exp((1 - \lambda)B)y, y > < \exp(\lambda A)x, x > - \frac{\lambda(1 - \lambda)}{2} (\langle A^2x, x \rangle - 2 < Ax, x > < By, y > + B^2y, y >) \leq \]

\[\leq (1 - r)[< \exp(A)x, x > + < \exp(B)y, y > - 2 < \exp(\frac{B}{2})y, y > < \exp(A)\frac{1}{2}x, x > - \frac{1}{4}(\langle A^2x, x \rangle - 2 < Ax, x > < By, y > + B^2y, y >)], \]

If we take now \(x = y \) in the above inequality we will obtained the desired inequality.

A multiple operator version of Proposition 1 takes place also below:

Proposition 2. Assume that \(A_j, j \in \{1, ..., n\} \) are positive operators on the Hilbert space \(H \). If \(0 \leq \nu \leq 1 \) then for each \(x_j \in H, j \in \{1, ..., n\} \) with \(\sum_{j=1}^{n} ||x_j||^2 = 1 \) we have the inequality

\[1 \leq \sum_{j=1}^{n} < A_j^{2(1-\nu)} x_j, x_j > + \sum_{j=1}^{n} < A_j^{2\nu} x_j, x_j > + s_0 \left[\sum_{j=1}^{n} < A_j^2 x_j, x_j > - \left(\sum_{j=1}^{n} < A_j x_j, x_j > \right)^2 \right] \]

where \(s_0 = \max\{\nu, 1 - \nu\} \).
Proof. As in the case of Theorem 2, see [1], we consider

\[
\overline{A} := \begin{pmatrix}
A_1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & A_n
\end{pmatrix} \quad \text{and} \quad \overline{x} := \begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix}
\]

having \(||\overline{x}|| = 1 \), and \(\overline{A} \) is positive definite. Taking into account that

\[
< \overline{A}^{2\nu} \overline{x}, \overline{x} > = \sum_{j=1}^{n} < f_1(A_j)x_j, x_j > = \sum_{j=1}^{n} < A_j^{2\nu}x_j, x_j >,
\]

\[
< \overline{A}^{2(1-\nu)} \overline{x}, \overline{x} > = \sum_{j=1}^{n} < f_2(A_j)x_j, x_j > = \sum_{j=1}^{n} < A_j^{2(1-\nu)}x_j, x_j >,
\]

\[
< \overline{A} \overline{x}, \overline{x} > = \sum_{j=1}^{n} < f_3(A_j)x_j, x_j > = \sum_{j=1}^{n} < A_jx_j, x_j >,
\]

where, \(f_1, f_2, f_3 : (0, \infty) \to \mathbb{R} \) are defined by \(f_1(x) = x^{2\nu} \), \(f_2(x) = x^{2(1-\nu)} \) and \(f_3(x) = x \) respectively, and applying Remark 1 (ii) for \(\overline{A} \) and \(\overline{x} \) we find the desired inequality.

\[\square\]

Proposition 3. Let \(A \) and \(B \) be two positive definite operators on \(H \). If \(\text{Sp}(A) \subseteq [1, \infty) \), and \(\lambda \in (0, 1) \) then we have

\[
r \left(< Ax, x > + < By, y > - 2 < A^{\frac{1}{2}}x, x > < B^{\frac{1}{2}}y, y > \right) +
\]

\[
+ A_1(\lambda) \left[< (\log^2 A)x, x > + < (\log^2 B)y, y > - 2 < (\log A)x, x > \right] \leq
\]

\[
\leq \lambda < Ax, x > + (1 - \lambda) < By, y > - 2 < A^{1-\nu}x, y > \leq
\]

\[
\leq (1 - r) \left(< Ax, x > + < By, y > - 2 < A^{\frac{1}{2}}x, x > < B^{\frac{1}{2}}y, y > \right) +
\]

\[
+ B_1(\lambda) \left[< (\log^2 A)x, x > + < (\log^2 B)y, y > - 2 < (\log A)x, x > \right]
\]

for each \(x, y \in H \) with \(||x|| = ||y|| = 1 \), where \(r = \min\{\lambda, 1 - \lambda\} \), \(A_1(\lambda) = \frac{\lambda(1-\lambda)}{2} - \frac{\nu}{4} \) and \(B_1(\lambda) = \frac{\lambda(1-\lambda)}{2} - \frac{\nu}{4} \).

Proof. We consider the continuous functions \(f(a) = \lambda a + (1 - \lambda)b - a^\lambda b^{1-\lambda} - r(a + b - 2a^\frac{1}{2}b^{\frac{1}{2}} - A_1(\lambda))|\log^2 a + \log^2 b - 2\log a \log b| \) and \(g(a) = (1 - r)(a + b - 2a^\frac{1}{2}b^{\frac{1}{2}}) + B_1(\lambda)|\log^2 a + \log^2 b - 2\log a \log b| - \lambda a - (1 - \lambda)b + a^\lambda b^{1-\lambda} \) which are positive for \(a \geq 1 \) and we fix \(b \geq 1 \) and then by the property (1) for each \(x \in H \) with \(||x|| = 1 \) we have that

\[
r \left(< Ax, x > + b - 2b^\frac{1}{2} < A^{\frac{1}{2}}x, x > \right) +
\]

\[
+ A_1(\lambda) \left[< (\log^2 A)x, x > + \log^2 b - 2\log b < (\log A)x, x > \right] \leq
\]

\[
\leq \lambda < Ax, x > + (1 - \lambda)b - b^{1-\lambda} < A^{\frac{1}{2}}x, x > \leq
\]

\[
\leq (1 - r) \left(< Ax, x > + b - 2b^\frac{1}{2} < A^{\frac{1}{2}}x, x > \right) +
\]

\[
+ B_1(\lambda) \left[< (\log^2 A)x, x > + \log^2 b - 2\log b < (\log A)x, x > \right]
\]

for each \(b > 1 \).
If we apply again the property (1) for last inequality, then for any $y \in H$ with $||y|| = 1$ we get

$$r \left(<Ax, x> + <By, y> - 2 <B^\frac{1}{2}y, y> <A^\frac{1}{2}x, x> \right) +$$

$$A_1(\lambda) \left[<(\log^2 A)x, x> + <(\log^2 B)y, y> - 2 <(\log B)y, y> <(\log A)x, x> \right] \leq$$

$$\leq \lambda <Ax, x> + (1 - \lambda) <By, y> - <B^{1-\lambda}y, y> <A^\lambda x, x> \leq$$

$$\leq (1 - r) \left(<Ax, x> + <By, y> - 2 <B^\frac{1}{2}y, y> <A^\frac{1}{2}x, x> \right) +$$

$$B_1(\lambda) \left[<(\log^2 A)x, x> + <(\log^2 B)y, y> - 2 <(\log B)y, y> <(\log A)x, x> \right]$$

for each $x, y \in H$ with $||x|| = ||y|| = 1$.

Next particular case of Proposition 3 may be of interest as well:

Remark 2. Under previous conditions, if we consider $y = x$ and $A = B$ then the above inequality becomes:

$$2r \left[<Ax, x> - \left(<A^\frac{1}{2}x, x> \right)^2 \right] + 2A_1(\lambda) \left[<(\log^2 A)x, x> - <(\log A)x, x> \right]^2 \leq$$

$$\leq 1 - <A^{1-\lambda}x, x> <A^\lambda x, x> \leq$$

$$2(1 - r) \left[<Ax, x> - \left(<A^\frac{1}{2}x, x> \right)^2 \right] + 2B_1(\lambda) \left[<(\log^2 A)x, x> - <(\log A)x, x> \right]^2 \right].$$

Remark 3. Assume that $A_j, j \in \{1, \ldots, n\}$ are positive operators on the Hilbert space H. If $0 \leq \lambda \leq 1$ then for each $x_j \in H, j \in \{1, \ldots, n\}$ with $\sum_{j=1}^n ||x_j||^2 = 1$ we have the inequality

$$r[2 \sum_{j=1}^n <\exp (A_j)x_j, x_j> - 2 \sum_{j=1}^n <\exp (\frac{A_j}{2})x_j, x_j> +$$

$$- \frac{1}{2} (\sum_{j=1}^n <A_j^2x_j, x_j> - (\sum_{j=1}^n <A_jx_j, x_j>)^2)] \leq$$

$$\leq 1 - \sum_{j=1}^n <\exp (\lambda A_j)x_j, x_j> \sum_{j=1}^n <\exp ((1 - \lambda)A_j)x_j, x_j> -$$

$$- \lambda (1 - \lambda) \left[\sum_{j=1}^n <A_j^2x_j, x_j> - (\sum_{j=1}^n <A_jx_j, x_j>)^2 \right] \leq$$

$$\leq (1 - r)[2 \sum_{j=1}^n <\exp (A_j)x_j, x_j> - 2 \sum_{j=1}^n <\exp (\frac{A_j}{2})x_j, x_j> +$$

$$- \frac{1}{2} (\sum_{j=1}^n <A_j^2x_j, x_j> - (\sum_{j=1}^n <A_jx_j, x_j>)^2)].$$

where $r = \min\{\lambda, 1 - \lambda\}.$
Proof. The proof will be as in Proposition 2 if we consider the following functions \(f_1, f_2, f_3, f_4, f_5 : (0, \infty) \to \mathbb{R} \) defined by
\[
 f_1(x) = x^2, \quad f_2(x) = x, \quad f_3(x) = \exp((1 - \lambda)x), \quad f_4(x) = \exp(\lambda x) \quad \text{and} \quad f_5(x) = \exp\left(\frac{x^2}{2}\right)
\]
respectively.

References

[1] S. S. Dragomir, Cebyshev’s type inequalities for functions on selfadjoint operators in Hilbert spaces,

Loredana Ciurdariu: Department of Mathematics, "Politehnica" University of Timisoara, P-ta. Victoriei, No. 2, 300006-Timisoara