SOME INEQUALITIES FOR RELATIVE OPERATOR ENTROPY

S. S. DRAGOMIR^{1,2}

ABSTRACT. In this paper, by the use of some recent refinements and reverses of Young's inequality, we obtain some inequalities for relative operator entropy.

1. Introduction

Kamei and Fujii [6], [7] defined the relative operator entropy S(A|B), for positive invertible operators A and B, by

(1.1)
$$S(A|B) := A^{\frac{1}{2}} \left(\ln A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) A^{\frac{1}{2}}$$

which is a relative version of the operator entropy considered by Nakamura-Umegaki [13].

In general, we can define

$$S(A|B) := s - \lim_{\varepsilon \to 0+} S(A + \varepsilon I|B)$$

if it exists, here I is the identity operator.

For the entropy function $\eta(t) = -t \ln t$, the operator entropy has the following expression:

$$\eta(A) = -A \ln A = S(A|I) \ge 0$$

for positive contraction A. This shows that the relative operator entropy (1.1) is a relative version of the operator entropy.

Following [8, p. 149-p. 155] we recall some important properties of relative operator entropy for A and B positive invertible operators:

(i) We have the equalities

$$S\left(A|B\right) = -A^{1/2} \left(\ln A^{1/2} B^{-1} A^{1/2}\right) A^{1/2} = B^{1/2} \eta \left(B^{-1/2} A B^{-1/2}\right) B^{1/2};$$

(ii) We have the inequalities

$$S(A|B) \le A(\ln \|B\| - \ln A)$$
 and $S(A|B) \le B - A$;

(iii) For any C, D positive invertible operators we have that

$$S(A+B|C+D) \ge S(A|C) + S(B|D)$$
;

(iv) If $B \leq C$ then

$$S(A|B) \leq S(A|C)$$
;

(v) If $B_n \downarrow B$ then

$$S(A|B_n) \downarrow S(A|B)$$
;

 $^{1991\} Mathematics\ Subject\ Classification.\ 47A63,\ 47A30,$

Key words and phrases. Young's inequality, Arithmetic mean-Geometric mean inequality, Relative Operator entropy, Operator entropy.

(vi) For $\alpha > 0$ we have

$$S(\alpha A|\alpha B) = \alpha S(A|B);$$

(vii) For every operator T we have

$$T^*S(A|B)T \leq S(T^*AT|T^*BT)$$
.

The relative operator entropy is jointly concave, namely for any positive invertible operators A, B, C, D we have

$$S(tA + (1-t)B|tC + (1-t)D) \ge tS(A|C) + (1-t)S(B|D)$$

for any $t \in [0, 1]$.

The famous Young inequality for scalars says that if a, b > 0 and $\nu \in [0, 1]$, then

(1.2)
$$a^{1-\nu}b^{\nu} \le (1-\nu) a + \nu b$$

with equality if and only if a = b. The inequality (1.2) is also called ν -weighted arithmetic-geometric mean inequality.

We recall that *Specht's ratio* is defined by [14]

(1.3)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0,1) and increasing on $(1,\infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$(1.4) S\left(\left(\frac{a}{b}\right)^r\right)a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b \le S\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu},$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}.$

The second inequality in (1.4) is due to Tominaga [15] while the first one is due to Furuichi [3].

We consider the Kantorovich's constant defined by

(1.5)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$

The function K is decreasing on (0,1) and increasing on $[1,\infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K(\frac{1}{h})$ for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds

(1.6)
$$K^{r}\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu} \leq (1-\nu)a + \nu b \leq K^{R}\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu}$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$.

The first inequality in (1.6) was obtained by Zou et al. in [17] while the second by Liao et al. [12].

Kittaneh and Manasrah [9], [10] provided a refinement and an additive reverse for Young inequality as follows:

$$(1.7) r\left(\sqrt{a} - \sqrt{b}\right)^2 \le (1 - \nu) a + \nu b - a^{1-\nu} b^{\nu} \le R\left(\sqrt{a} - \sqrt{b}\right)^2$$

where a, b > 0, $\nu \in [0, 1]$, $r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$. The case $\nu = \frac{1}{2}$ reduces (1.7) to an identity.

In the recent paper [1] we obtained the following reverses of Young's inequality as well:

$$(1.8) 0 \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu} \le \nu (1 - \nu) (a - b) (\ln a - \ln b)$$

and

$$(1.9) 1 \le \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}} \le \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{a}{b}\right)-1\right)\right],$$

where $a, b > 0, \nu \in [0, 1]$.

In [2] we obtained the following inequalities that improve the corresponding results of Furuichi and Minculete from [5]

$$(1.10) \quad \frac{1}{2}\nu (1-\nu) (\ln a - \ln b)^{2} \min \{a,b\} \leq (1-\nu) a + \nu b - a^{1-\nu} b^{\nu}$$

$$\leq \frac{1}{2}\nu (1-\nu) (\ln a - \ln b)^{2} \max \{a,b\}$$

and

$$(1.11) \quad \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{\min\left\{a,b\right\}}{\max\left\{a,b\right\}}\right)^{2}\right] \leq \frac{(1-\nu)\,a+\nu b}{a^{1-\nu}b^{\nu}}$$

$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\max\left\{a,b\right\}}{\min\left\{a,b\right\}}-1\right)^{2}\right]$$

for any a, b > 0 and $\nu \in [0, 1]$.

In this paper, by making use of the inequalities (1.4), (1.4), (1.9) and (1.11) we establish some new inequalities for the relative operator entropy S(A|B), for positive invertible operators A and B that satisfy the condition

$$(1.12) mA \le B \le MA$$

for some m, M with 0 < m < M.

2. Trapezoid Error Estimates

As shown below, by making use of the geometric mean-arithmetic mean inequality, one can prove that

$$(2.1) \qquad \frac{\ln m}{M-m} \left(MA-B\right) + \frac{\ln M}{M-m} \left(B-mA\right) \le S\left(A|B\right)$$

for positive invertible operators A and B that satisfy the condition (1.12).

Therefore, it is a natural question to ask how far the right term is from the left term in (2.1).

In the following, we provide some upper and positive lower bounds for the difference

$$S(A|B) - \frac{\ln m}{M - m} (MA - B) - \frac{\ln M}{M - m} (B - mA)$$

under the above assumptions.

Theorem 1. Let A, B be two positive invertible operators such that the condition (1.12) is valid, then we have

(2.2)
$$0 \le A^{\frac{1}{2}} \Upsilon_{m,M} \left(A^{-1/2} B A^{-1/2} \right) A^{\frac{1}{2}}$$
$$\le S(A|B) - \frac{\ln m}{M - m} (MA - B) - \frac{\ln M}{M - m} (B - mA) \le \ln S \left(\frac{M}{m} \right) A$$

where

(2.3)
$$\Upsilon_{m,M}\left(x\right) := \ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{M-m}\left|x - \frac{m+M}{2}\right|}\right) \ge 0$$

for $x \in [m, M]$.

Proof. From (1.4) we have

(2.4)
$$S\left(\left(\frac{M}{m}\right)^{\min\{\nu,1-\nu\}}\right) m^{1-\nu} M^{\nu} \le (1-\nu) m + \nu M \le S\left(\frac{M}{m}\right) m^{1-\nu} M^{\nu},$$

for any $\nu \in [0,1]$.

If we take in (2.4) $\nu = \frac{x-m}{M-m} \in [0,1]$ with $x \in [m,M]$ then we get

$$S\left(\left(\frac{M}{m}\right)^{\min\left\{\frac{x-m}{M-m},\frac{M-x}{M-m}\right\}}\right)m^{\frac{M-x}{M-m}}M^{\frac{x-m}{M-m}} \leq x \leq S\left(\frac{M}{m}\right)m^{\frac{M-x}{M-m}}M^{\frac{x-m}{M-m}},$$

and by taking the logarithm we obtain

(2.5)
$$\ln S\left(\left(\frac{M}{m}\right)^{\min\left\{\frac{x-m}{M-m},\frac{M-x}{M-m}\right\}}\right) \\ \leq \ln x - \frac{M-x}{M-m}\ln m - \frac{x-m}{M-m}\ln M \leq \ln S\left(\frac{M}{m}\right).$$

Since

$$\min\left\{\frac{x-m}{M-m}, \frac{M-x}{M-m}\right\} = \frac{1}{2} - \left|\frac{x-\frac{m+M}{2}}{M-m}\right|$$

for any $x \in [m, M]$, then by (2.5) we get

(2.6)
$$\Upsilon_{m,M}(x) \le \ln x - \frac{M-x}{M-m} \ln m - \frac{x-m}{M-m} \ln M \le \ln S\left(\frac{M}{m}\right)$$

for any $x \in [m, M]$, where $\Upsilon_{m,M}$ is (the continuous function) defined by (2.3). Using the continuous functional calculus we have from (2.6) that

$$(2.7) \ \Upsilon_{m,M}(X) \le \ln X - \frac{\ln m}{M-m} \left(MI - X \right) - \frac{\ln M}{M-m} \left(X - mI \right) \le \ln S \left(\frac{M}{m} \right) I$$

for any selfadjoint operator X with the property that $mI \leq X \leq MI$. Multiplying both sides of (1.12) by $A^{-1/2}$ we get

$$mI \le A^{-1/2}BA^{-1/2} \le MI$$

and by replacing X by $A^{-1/2}BA^{-1/2}$ in (2.7) we get

$$\begin{split} (2.8) \qquad \Upsilon_{m,M} \left(A^{-1/2} B A^{-1/2} \right) \\ & \leq \ln A^{-1/2} B A^{-1/2} \\ & - \frac{\ln m}{M-m} \left(M I - A^{-1/2} B A^{-1/2} \right) - \frac{\ln M}{M-m} \left(A^{-1/2} B A^{-1/2} - m I \right) \\ & \leq \ln S \left(\frac{M}{m} \right) I. \end{split}$$

Multiplying both sides of (2.8) by $A^{1/2}$ we get the desired result (2.2).

Corollary 1. Assume that $pI \leq C \leq PI$ for some p, P with $0 . Then we have for operator entropy <math>\eta(C) = -C \ln C$ that

$$(2.9) 0 \le C\Psi_{p,P}\left(C^{-1}\right) \le \eta\left(C\right) + \frac{P\ln P}{P-p}\left(C-pI\right) + \frac{p\ln p}{P-p}\left(PI-C\right)$$
$$\le \ln S\left(\frac{P}{p}\right)C$$

where

$$\Psi_{p,P}(x) = \ln S\left(\left(\frac{P}{p}\right)^{\frac{1}{2} - \frac{pP}{P-p}\left|x - \frac{p+P}{2pP}\right|}\right)$$

where $x \in \left[\frac{1}{P}, \frac{1}{p}\right]$.

Proof. We have

$$\frac{1}{P}C \le I \le \frac{1}{p}C.$$

If we take $B=I,\,A=C,\,m=\frac{1}{P}$ and $M=\frac{1}{p}$ in Theorem 1, then we get

$$\begin{split} &C^{\frac{1}{2}}\Upsilon_{\frac{1}{P},\frac{1}{p}}\left(C^{-1}\right)C^{\frac{1}{2}}\\ &\leq S\left(C|I\right) - \frac{\ln\frac{1}{P}}{\frac{1}{p}-\frac{1}{P}}\left(\frac{1}{p}C-I\right) - \frac{\ln\frac{1}{p}}{\frac{1}{p}-\frac{1}{P}}\left(I-\frac{1}{P}C\right) \leq \ln S\left(\frac{P}{p}\right)C, \end{split}$$

namely

$$\begin{split} &C^{\frac{1}{2}}\Psi_{p,P}\left(C^{-1}\right)C^{\frac{1}{2}} \\ &= C\Psi_{p,P}\left(C^{-1}\right) \\ &\leq S\left(C|I\right) + \frac{P\ln P}{P-p}\left(C-pI\right) + \frac{p\ln p}{P-p}\left(PI-C\right) \leq \ln S\left(\frac{P}{p}\right)C, \end{split}$$

where

$$\Upsilon_{\frac{1}{P},\frac{1}{p}}\left(x\right) = \Psi_{p,P}\left(x\right) = \ln S\left(\left(\frac{P}{p}\right)^{\frac{1}{2} - \frac{PP}{P-p}\left|x - \frac{p+P}{2pP}\right|}\right),$$

with
$$x \in \left[\frac{1}{P}, \frac{1}{p}\right]$$
.

We also have:

Theorem 2. With the assumptions of Theorem 1 we have

$$(2.10) \quad 0 \le \left(\frac{1}{2}A - \frac{1}{M-m}A^{1/2} \left| A^{-1/2} \left(B - \frac{m+M}{2}A \right) A^{-1/2} \right| A^{1/2} \right) K\left(\frac{M}{m}\right)$$

$$\le S\left(A|B\right) - \frac{\ln m}{M-m} \left(MA - B\right) - \frac{\ln M}{M-m} \left(B - mA\right)$$

$$\le \left(\frac{1}{2}A + \frac{1}{M-m}A^{1/2} \left| A^{-1/2} \left(B - \frac{m+M}{2}A \right) A^{-1/2} \right| A^{1/2} \right) K\left(\frac{M}{m}\right).$$

Proof. Using the inequality (1.6) we have

(2.11)
$$K^{\min\{\nu,1-\nu\}} \left(\frac{M}{m}\right) m^{1-\nu} M^{\nu} \leq (1-\nu) m + \nu M$$
$$\leq K^{\max\{\nu,1-\nu\}} \left(\frac{M}{m}\right) m^{1-\nu} M^{\nu}$$

for any $\nu \in [0,1]$.

If we take in (2.11) $\nu = \frac{x-m}{M-m} \in [0,1]$ with $x \in [m,M]$ then we get

$$K^{\min\left\{\frac{x-m}{M-m}, \frac{M-x}{M-m}\right\}} \left(\frac{M}{m}\right) m^{\frac{M-x}{M-m}} M^{\frac{x-m}{M-m}}$$

$$\leq x \leq K^{\max\left\{\frac{x-m}{M-m}, \frac{M-x}{M-m}\right\}} \left(\frac{M}{m}\right) m^{\frac{M-x}{M-m}} M^{\frac{x-m}{M-m}}.$$

which is equivalent to

$$(0 \le) \min \left\{ \frac{x - m}{M - m}, \frac{M - x}{M - m} \right\} K \left(\frac{M}{m} \right)$$

$$\le \ln x - \frac{M - x}{M - m} \ln m - \frac{x - m}{M - m} \ln M$$

$$\le \max \left\{ \frac{x - m}{M - m}, \frac{M - x}{M - m} \right\} K \left(\frac{M}{m} \right)$$

or to

$$(0 \le) \left(\frac{1}{2} - \frac{1}{M - m} \left| x - \frac{m + M}{2} \right| \right) K\left(\frac{M}{m}\right)$$

$$\le \ln x - \frac{M - x}{M - m} \ln m - \frac{x - m}{M - m} \ln M$$

$$\le \left(\frac{1}{2} + \frac{1}{M - m} \left| x - \frac{m + M}{2} \right| \right) K\left(\frac{M}{m}\right).$$

By making use of a similar argument to the one in the proof of Theorem 1 we get the desired result (2.10). \Box

Remark 1. If A and B commute, then

$$A^{1/2} \left| A^{-1/2} \left(B - \frac{m+M}{2} A \right) A^{-1/2} \right| A^{1/2} = \left| B - \frac{m+M}{2} A \right|,$$
$$S(A|B) = A \left(\ln B - \ln A \right)$$

and by (2.10) we have

$$(2.12) 0 \le \left(\frac{1}{2}A - \frac{1}{M-m} \left| B - \frac{m+M}{2}A \right| \right) K\left(\frac{M}{m}\right)$$

$$\le A \left(\ln B - \ln A\right) - \frac{\ln m}{M-m} \left(MA - B\right) - \frac{\ln M}{M-m} \left(B - mA\right)$$

$$\le \left(\frac{1}{2}A + \frac{1}{M-m} \left| B - \frac{m+M}{2}A \right| \right) K\left(\frac{M}{m}\right).$$

Corollary 2. With the assumptions of Corollary 1 we have

(2.13)
$$\left(\frac{1}{2}C - \frac{pP}{P-p}\left|I - \frac{p+P}{2pP}C\right|\right)K\left(\frac{P}{p}\right)$$

$$\leq \eta(C) + \frac{P\ln P}{P-p}\left(C - pI\right) + \frac{p\ln p}{P-p}\left(PI - C\right)$$

$$\leq \left(\frac{1}{2}C + \frac{pP}{P-p}\left|I - \frac{p+P}{2pP}C\right|\right)K\left(\frac{P}{p}\right).$$

Proof. Follows by Theorem 2 on choosing $B=I,\,A=C,\,m=\frac{1}{P}$ and $M=\frac{1}{p}$ and taking into account that, by the continuous functional calculus for C, we have

$$C^{1/2} \left| C^{-1/2} \left(I - \frac{p+P}{2pP} C \right) C^{-1/2} \right| C^{1/2} = \left| I - \frac{p+P}{2pP} C \right|.$$

Theorem 3. With the assumptions of Theorem 1 we have

$$(2.14) \qquad (0 \le) S(A|B) - \frac{\ln m}{M - m} (MA - B) - \frac{\ln M}{M - m} (B - mA)$$

$$\le \frac{4}{(M - m)^2} \left(K\left(\frac{M}{m}\right) - 1 \right) (B - mA) A^{-1} (MA - B)$$

$$\le \left(K\left(\frac{M}{m}\right) - 1 \right) A.$$

Proof. From the inequality (1.9) we have

$$(2.15) \qquad (1 \le) \frac{\left(1 - \nu\right)m + \nu M}{m^{1 - \nu} M^{\nu}} \le \exp\left[4\nu \left(1 - \nu\right) \left(K\left(\frac{M}{m}\right) - 1\right)\right],$$

for any $\nu \in [0,1]$.

If we take in (2.15) $\nu = \frac{x-m}{M-m} \in [0,1]$ with $x \in [m,M]$ then we get

$$(2.16) \qquad (1 \le) \frac{x}{m^{\frac{M-x}{M-m}} M^{\frac{x-m}{M-m}}} \le \exp\left[\frac{4(x-m)(M-x)}{(M-m)^2} \left(K\left(\frac{M}{m}\right) - 1\right)\right].$$

Taking the logarithm in (2.16) we get

$$(0 \le) \ln x - \frac{M-x}{M-m} \ln m - \frac{x-m}{M-m} \ln M \le \frac{4(x-m)(M-x)}{(M-m)^2} \left(K\left(\frac{M}{m}\right) - 1 \right)$$

for any $x \in [m, M]$.

Making use of a similar argument to the one from the proof of Theorem 1 we get

$$S(A|B) - \frac{\ln m}{M - m} (MA - B) - \frac{\ln M}{M - m} (B - mA)$$

$$\leq \frac{4}{(M - m)^2} \left(K \left(\frac{M}{m} \right) - 1 \right)$$

$$\times A^{1/2} \left(A^{-1/2} B A^{-1/2} - m \right) \left(M - A^{-1/2} B A^{-1/2} \right) A^{1/2}$$

and since

$$\begin{split} &A^{1/2} \left(A^{-1/2} B A^{-1/2} - m\right) \left(M - A^{-1/2} B A^{-1/2}\right) A^{1/2} \\ &= A^{1/2} \left(A^{-1/2} \left(B - m A\right) A^{-1/2}\right) \left(A^{-1/2} \left(M A - B\right) A^{-1/2}\right) A^{1/2} \\ &= \left(B - m A\right) A^{-1} \left(M A - B\right), \end{split}$$

we obtain the first part of (2.14).

The second part follows by the inequality

$$\frac{4(x-m)(M-x)}{(M-m)^2} \le 1$$

for any $x \in [m, M]$.

Corollary 3. With the assumptions of Corollary 1 we have

$$(2.17) \qquad (0 \leq) \eta(C) + \frac{P \ln P}{P - p} (C - pI) + \frac{p \ln p}{P - p} (PI - C)$$

$$\leq \frac{4pP}{(P - p)^2} \left(K \left(\frac{P}{p} \right) - 1 \right) (IP - C) C^{-1} (C - Ip)$$

$$\leq \left(K \left(\frac{P}{p} \right) - 1 \right) C.$$

Finally, we have:

Theorem 4. With the assumptions of Theorem 1 we have

(2.18)
$$(0 \le) S(A|B) - \frac{\ln m}{M - m} (MA - B) - \frac{\ln M}{M - m} (B - mA)$$
$$\le \frac{1}{2m^2} (B - mA) A^{-1} (MA - B)$$

Proof. From the inequality (1.11) we have

(2.19)
$$\frac{(1-\nu)\,m+\nu M}{m^{1-\nu}M^{\nu}} \le \exp\left[\frac{1}{2}\nu\,(1-\nu)\left(\frac{M}{m}-1\right)^2\right]$$

for any $\nu \in [0,1]$.

If we take in (2.15) $\nu = \frac{x-m}{M-m} \in [0,1]$ with $x \in [m,M]$ then we get

$$\frac{x}{m^{\frac{M-x}{M-m}}M^{\frac{x-m}{M-m}}} \le \exp\left[\frac{1}{2}\frac{(x-m)(M-x)}{(M-m)^2}\left(\frac{M}{m}-1\right)^2\right]$$

that is equivalent to

$$\frac{x}{m^{\frac{M-x}{M-m}}M^{\frac{x-m}{M-m}}} \leq \exp\left[\frac{1}{2}\frac{(x-m)(M-x)}{m^2}\right].$$

On taking the logarithm, we get

$$(2.20) \ln x - \frac{M-x}{M-m} \ln m - \frac{x-m}{M-m} \ln M \le \frac{1}{2} \frac{(x-m)(M-x)}{m^2},$$

for any $x \in [m, M]$.

Making use of a similar argument to the one from the proofs of Theorem 1 and Theorem 3 we get the desired result (2.18).

Corollary 4. With the assumptions of Corollary 1 we have

(2.21)
$$(0 \le) \eta(C) + \frac{P \ln P}{P - p} (C - pI) + \frac{p \ln p}{P - p} (PI - C)$$
$$\le \frac{1}{2} \frac{P}{p} (IP - C) C^{-1} (C - Ip).$$

3. Inequalities Via Uhlmann's Representation

In [16], A. Uhlmann has shown that the relative operator entropy S(A|B) can be represented as the strong limit

(3.1)
$$S(A|B) = s - \lim_{t \to 0} \frac{A\sharp_t B - A}{t}$$

where

$$A\sharp_{\nu}B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\nu} A^{1/2}, \ \nu \in [0, 1]$$

is the weighted geometric mean of positive invertible operators A and B. For $\nu = \frac{1}{2}$ we denote $A \sharp B$.

We have:

Theorem 5. Let A, B be two positive invertible operators, then we have

(3.2)
$$S(A|B) < 2(A \sharp B - A) < B - A$$

Proof. From the inequality (1.7) for $\nu \in (0, \frac{1}{2})$ and a, b > 0 we have

$$\nu \left(\sqrt{a} - \sqrt{b}\right)^2 \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu}$$

that is equivalent to

$$a - 2\sqrt{ab} + b \le b - a + \frac{1}{\nu} \left(a - a^{1-\nu} b^{\nu} \right)$$

and to

$$(3.3) \qquad \frac{1}{\nu} \left(a^{1-\nu} b^{\nu} - a \right) \le 2 \left(\sqrt{ab} - a \right).$$

If we take in (3.3) a = 1 then we get

(3.4)
$$\frac{1}{\nu} (b^{\nu} - 1) \le 2 \left(b^{1/2} - 1 \right),$$

for any $\nu \in (0, \frac{1}{2})$ and a, b > 0.

If we use the continuous functional calculus, then we have for any positive operator X that

(3.5)
$$\frac{1}{\nu} (X^{\nu} - 1) \le 2 \left(X^{1/2} - 1 \right),$$

for any $\nu \in (0, \frac{1}{2})$.

If we take in (3.5) $X = A^{-1/2}BA^{-1/2}$ then we get

$$(3.6) \qquad \frac{1}{\nu} \left(\left(A^{-1/2} B A^{-1/2} \right)^{\nu} - 1 \right) \le 2 \left(\left(A^{-1/2} B A^{-1/2} \right)^{1/2} - 1 \right),$$

for any $\nu \in (0, \frac{1}{2})$.

Multiplying both sides of (3.6) by $A^{1/2}$ we get

(3.7)
$$\frac{1}{\nu} \left(A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\nu} A^{1/2} - A \right) \\ \leq 2 \left(A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{1/2} A^{1/2} - A \right),$$

for any $\nu \in (0, \frac{1}{2})$.

By taking the strong limit over $\nu \to 0+$ in (3.7) and by using the representation (3.1) we obtain the first inequality in (3.2).

By the operator geometric mean - arithmetic mean inequality $A\sharp B \leq \frac{1}{2}\left(A+B\right)$ we deduce the second part of (3.2).

Remark 2. The inequality (3.2) is an improvement of the result from (ii) in the introduction.

Corollary 5. For any positive invertible operator C we have

$$\eta\left(C\right) \le 2\left(C^{1/2} - C\right) \le I - C.$$

Theorem 6. Let A, B be two positive invertible operators, then we have

$$(3.8) \qquad (0 \le) \frac{1}{2} A^{1/2} \left(\ln A^{-1/2} B A^{-1/2} \right)^2 \left(\frac{1}{2} I - \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right) A^{1/2}$$

$$\le B - A - S \left(A | B \right)$$

$$\le \frac{1}{2} A^{1/2} \left(\ln A^{-1/2} B A^{-1/2} \right)^2 \left(\frac{1}{2} I + \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right) A^{1/2}.$$

Proof. From (1.8) we have

$$\frac{1}{2}\nu (1 - \nu) (\ln a - \ln b)^{2} \min \{a, b\} \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu}
\le \frac{1}{2}\nu (1 - \nu) (\ln a - \ln b)^{2} \max \{a, b\}$$

for any for $\nu \in (0,1)$ and a, b > 0.

This is equivalent to

(3.9)
$$\frac{1}{2} (1 - \nu) (\ln a - \ln b)^2 \min \{a, b\} \le b - a + \frac{1}{\nu} (a - a^{1 - \nu} b^{\nu})$$
$$\le \frac{1}{2} (1 - \nu) (\ln a - \ln b)^2 \max \{a, b\}$$

for any for $\nu \in (0,1)$ and a, b > 0.

If we replace in (3.9) a = 1 and b = x, then we get

$$(0 \le) \frac{1}{2} (1 - \nu) (\ln x)^2 \min\{1, x\} \le x - 1 + \frac{1}{\nu} (1 - x^{\nu})$$
$$\le \frac{1}{2} (1 - \nu) (\ln x)^2 \max\{1, x\}$$

for any for $\nu \in (0,1)$ and x > 0.

If we use the continuous functional calculus, then we have for any positive operator X that

$$(3.10) \frac{1}{2} (1 - \nu) (\ln X)^{2} \left(\frac{1}{2} I - \left| X - \frac{1}{2} I \right| \right) \leq X - 1 + \frac{1}{\nu} (1 - X^{\nu})$$

$$\leq \frac{1}{2} (1 - \nu) (\ln X)^{2} \left(\frac{1}{2} I + \left| X - \frac{1}{2} I \right| \right)$$

for any for $\nu \in (0,1)$.

If we take in (3.10) $X = A^{-1/2}BA^{-1/2}$ then we get

$$(3.11) \qquad \frac{1}{2} (1 - \nu) \left(\ln A^{-1/2} B A^{-1/2} \right)^{2} \left(\frac{1}{2} I - \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right)$$

$$\leq A^{-1/2} B A^{-1/2} - 1 + \frac{1}{\nu} \left(1 - \left(A^{-1/2} B A^{-1/2} \right)^{\nu} \right)$$

$$\leq \frac{1}{2} (1 - \nu) \left(\ln A^{-1/2} B A^{-1/2} \right)^{2} \left(\frac{1}{2} I + \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right)$$

for any for $\nu \in (0,1)$.

Multiplying both sides of (3.11) by $A^{1/2}$ we get

$$(3.12) \quad \frac{1}{2} \left(1 - \nu \right) A^{1/2} \left(\ln A^{-1/2} B A^{-1/2} \right)^{2} \left(\frac{1}{2} I - \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right) A^{1/2}$$

$$\leq B - A + \frac{1}{\nu} A^{1/2} \left(I - \left(A^{-1/2} B A^{-1/2} \right)^{\nu} \right) A^{1/2}$$

$$\leq \frac{1}{2} \left(1 - \nu \right) A^{1/2} \left(\ln A^{-1/2} B A^{-1/2} \right)^{2} \left(\frac{1}{2} I + \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right) A^{1/2}$$

for any for $\nu \in (0,1)$.

This is an inequality of interest in itself.

Now, if we let $\nu \to 0+$ in (3.12), then we get

$$(0 \le) \frac{1}{2} A^{1/2} \left(\ln A^{-1/2} B A^{-1/2} \right)^2 \left(\frac{1}{2} I - \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right) A^{1/2}$$

$$\le B - A - S \left(A | B \right)$$

$$\le \frac{1}{2} A^{1/2} \left(\ln A^{-1/2} B A^{-1/2} \right)^2 \left(\frac{1}{2} I + \left| A^{-1/2} B A^{-1/2} - \frac{1}{2} I \right| \right) A^{1/2},$$

which proves the desired result (3.8).

Corollary 6. For any positive invertible operator C we have

(3.13)
$$(0 \le) \frac{1}{2} (\ln C)^2 \left(\frac{1}{2} I - \left| C - \frac{1}{2} I \right| \right)$$

$$\le I - C - \eta (C) \le \frac{1}{2} (\ln C)^2 \left(\frac{1}{2} I + \left| C - \frac{1}{2} I \right| \right).$$

References

- S. S. Dragomir, A note on Young's inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [2] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
- [3] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.

- [4] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
- [5] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595–600.
- [6] J. I. Fujii and E. Kamei, Uhlmann's interpolational method for operator means. Math. Japon. 34 (1989), no. 4, 541–547.
- [7] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory. Math. Japon. 34 (1989), no. 3, 341–348.
- [8] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space. Monographs in Inequalities,
 1. Element, Zagreb, 2005. xiv+262 pp.+loose errata. ISBN: 953-197-572-8
- [9] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [10] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, 59 (2011), 1031-1037.
- [11] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205-224.
- [12] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [13] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras. Proc. Japan Acad. 37 (1961) 149–154.
- [14] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [15] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
- [16] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. Phys. Volume 54, Number 1 (1977), 21-32.
- [17] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

²School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa