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SOME INEQUALITIES FOR RELATIVE OPERATOR ENTROPY

S. S. DRAGOMIR!:2

ABSTRACT. In this paper, by the use of some recent refinements and reverses
of Young’s inequality, we obtain some inequalities for relative operator entropy.

1. INTRODUCTION

Kamei and Fujii [6], [7] defined the relative operator entropy S (A|B), for positive
invertible operators A and B, by

(1.1) S(A|B) := A3 (mA—%BA—%) A%
which is a relative version of the operator entropy considered by Nakamura-Umegaki

[13].
In general, we can define

S(A|B) :=s— lir(r)1+S(A +¢eI|B)

if it exists, here [ is the identity operator.

For the entropy function 7 (¢t) = —tInt, the operator entropy has the following
expression:

n(A)=—-AlnA=S(A|I)>0

for positive contraction A. This shows that the relative operator entropy (1.1) is a
relative version of the operator entropy.

Following [8, p. 149-p. 155] we recall some important properties of relative
operator entropy for A and B positive invertible operators:
(i) We have the equalities

S(A|B) = _AL/? (lnAl/QBflAl/Z) A2 = Bl/277 (Bfl/zABq/z) BY/2.
(ii) We have the inequalities
S(A|B) < A(In||B|| —InA) and S (A|B) < B — A;
(iii) For any C, D positive invertible operators we have that
S(A+ B|C+ D) > S(A|C)+ S(B|D);
(iv) If B < C then
S(A|B) < S(A[C);
(v) If B,, | B then
S(A|By) | S(A[B);
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(vi) For o > 0 we have
S (aAlaB) = aS(A|B);
(vii) For every operator T we have
T*S(A|B)T < S(T*AT|T*BT).
The relative operator entropy is jointly concave, namely for any positive invertible
operators A, B, C, D we have
StA+(1—-t)BltC+(1—-1t)D)>tS(A|C)+ (1—1t)S(B|D)

for any t € [0,1].

The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.2) a v < (1-v)a+vb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [14]

BT i he (0,1) U (1, o0)
(13) say={ 0

1if h=1.

It is well known that lim,_, S (h) = 1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 0) .

The following inequality provides a refinement and a multiplicative reverse for
Young’s inequality

(1.4) S ((%)T) al T < (1-v)a+wvb< S (%) alTvyY,

where a,b > 0, v € [0,1], r = min {1 — v, v}.

The second inequality in (1.4) is due to Tominaga [15] while the first one is due
to Furuichi [3].

We consider the Kantorovich’s constant defined by

(h+1)?
4h
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (7) for any h > 0.
The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(1.6) K" (%) a7 < (1-v)a+vb< KR (%) a'=vpY

(1.5) K (h) == h> 0.

where a,b >0, v € [0,1], r =min {1 — v,v} and R = max {1 —v,v}.

The first inequality in (1.6) was obtained by Zou et al. in [17] while the second
by Liao et al. [12].

Kittaneh and Manasrah [9], [10] provided a refinement and an additive reverse
for Young inequality as follows:

(1.7) r(\f—\/B)QS(l—V)a—i—ub_al—ubySR(I_\/B)Z
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where a,b > 0, v € [0,1], r = min{l —v,v} and R = max {1l — v,v}. The case
v = % reduces (1.7) to an identity.

In the recent paper [1] we obtained the following reverses of Young’s inequality
as well:

(1.8) 0<(1-v)at+vb—a'""b" <v(l—v)(a—>b)(Ina—Inb)
and
U8 i (s (5) 1)

where a, b > 0, v € [0, 1].
In [2] we obtained the following inequalities that improve the corresponding
results of Furuichi and Minculete from [5]

(1.9) 1<

(1.10) %l/ (1—v)(na —Inb)’min{a,b} < (1 —v)a+vb—a'~b"

< %l/ (1 —v) (Ina — Inb)* max {a, b}
and
1 min {a,b} \* (I-v)a+vwd
(1.11) exp [QV(l —v) <1 - M) ] < ol

1 max {a,b} 2
< - _ _
< exp [21/(1 v) (min{a,b} 1) ]
for any a, b > 0 and v € [0, 1].

In this paper, by making use of the inequalities (1.4), (1.4), (1.9) and (1.11)
we establish some new inequalities for the relative operator entropy S (A|B), for
positive invertible operators A and B that satisfy the condition

(1.12) mA<B<MA

for some m, M with 0 < m < M.

2. TRAPEZOID ERROR ESTIMATES

As shown below, by making use of the geometric mean-arithmetic mean inequal-
ity, one can prove that

Inm (MA—B) + In M

(2.1) U —m —

(B—mA) <S5 (A|B)

for positive invertible operators A and B that satisfy the condition (1.12).
Therefore, it is a natural question to ask how far the right term is from the left
term in (2.1).
In the following, we provide some upper and positive lower bounds for the dif-

ference

Inm In M
S(A|B)—M (MA—B)—M

(B —mA)

under the above assumptions.
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Theorem 1. Let A, B be two positive invertible operators such that the condition
(1.12) is wvalid, then we have

(22) 0<AT,u (A*I/QBA*I/Q) A3

Inm In M M
< — — — — < —_
< S(A|B) M—m(MA B) M—m(B mA)lnS<m>A
where
M %_Z\lim‘x_w‘
(2.3) Yo (z) :=InS (m) >0

for x € [m, M].

Proof. From (1.4) we have

M min{v,1—v} M
(2.4) S<(> )ml_”Ml’g(l—V)m—l—yMSS()ml_”M",
m m

for any v € [0,1].
If we take in (2.4) v = {77~ € [0, 1] with x € [m, M] then we get

m
M min{ ;1:%’]1&11:5‘} M—z z—m M M—z z—m
S — mM-—m M¥=—m < x < S| — | mM—mM™Mm=—m,
m

m

and by taking the logarithm we obtain

min{ﬁ,ﬁ}
(25) s ((M> )
m

M — — M
glnx—MTZlnm—]\ZTlenMglnS<m>.
Since
. r—m M-z 1 x—w
mn{ —, —— > = - —
M—-—m"M-m 2 M—-m
for any x € [m, M], then by (2.5) we get
M — — M
(2.6) Yo (z) <lnz— M_:;Llnm— ]\i[_n; lnMSlnS<m>

for any « € [m, M|, where T, as is (the continuous function) defined by (2.3).
Using the continuous functional calculus we have from (2.6) that

Inm In M
(2.7) T,n7M(X)§1nX—M (MI—X)—M

—m —m

(X —mI)<InS <M> I

m

for any selfadjoint operator X with the property that mI < X < M 1.
Multiplying both sides of (1.12) by A~/2 we get

ml < A~YV2BA"Y2 < MT
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and by replacing X by A~/2BA~1/2 in (2.7) we get

(28)  Twu (A*I/QBA*/Z)
<InA~'/2BA~Y/?

Inm —1/21 4—1/2 In M -1/2p 4—1/2
_m(MI ATV2BATIR) M_m(A BA ml)
<InS <M> I.
m
Multiplying both sides of (2.8) by A'/? we get the desired result (2.2). O

Corollary 1. Assume that pI < C < PI for some p, P with 0 < p < P. Then we
have for operator entropy n(C) = —C'InC that

PlnP
(29)  0<C¥p (C7) <7(C) + 55—
- D

<InS (P) C
p

plnp
C—pl)+ ——(PI-C
(€= pD) + 5=t (PT=C)

where

11
where T € [F’ 5} .

Proof. We have

1 1
—C<I<-C.
PC_ _pC
If we take B=1, A=C, m= % and M = % in Theorem 1, then we get
C%T;;(Cfl)cé
Pp
L /1 In 1 P
SS(C|I)—1nPl<C—I)—1”1<I—C>§1n5<>0,
p TP \P i AN P
namely
3w, p(C7Y)C3
:C\I/p7p(071)
PlnP plnp (P)
< S+ C—pl)+ PI-C)<InS|—)C,
©ln+ 222 - pn) + ZEL (p1 - 0) -
where
P %7;fp‘mig:1§|
T%é(:c)zlllp,p(x):lns <p) ,
with z € [%,ﬂ. O

We also have:
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Theorem 2. With the assumptions of Theorem 1 we have

1 1 m+ M M
. c(ta_ 1 qr2|4-12 _mr M —1/2| 41/2 M
2100 0= (S oyl e (M) gl ) ()
Inm In M
< _ _ _ _
< S(A|B) M—m(MA B) M—m(B mA)
< 1A+;A1/2 a2 (o mEM N el g2 i (M)
—\2 M —m 2 m
Proof. Using the inequality (1.6) we have
min{v,1—v} M 1—v v
(2.11) K : — )m "M <(1-v)m+vM
m
< Kmax{u,lfu} <M> mlfl/MV
m

for any v € [0,1].
If we take in (2.11) v = L= € [0,1] with x € [m, M] then we get

M—-—m
min{ z—m M—=a H M—x r—m
K M—m>M—m — | mM=—m N M=m
m
T —1 M—=zx ‘/1 M—=zx x—m
max{l,m sM—m M—m [ M-
S x S K M—m>’M—m E m M—m M m

which is equivalent to

r—m M-z M
< 1 - —
(O)mln{ —— }K( )

- T —m

Inm —

< ma z—m M-z K M
xd -0 = -
- M—-—m M-—m m

09 (3 gl 22 (2)

—x T —m
Inm —
-m -m

1 1 m+ M M
<[z - — .
< (sl ") (%)

By making use of a similar argument to the one in the proof of Theorem 1 we get
the desired result (2.10). O

<lnzx-— In M

or to

In M

<lnzx -

Remark 1. If A and B commute, then

A_1/2<B_m‘|2'MA>A_1/2 m+M

2

A1/2

AY? = ‘B— A’,

S(AB)=A(InB—1nA)
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and by (2.10) we have

1 1 m+ M M
1 <[=A4- — —
(2.12) O(2A L |p- 2 A)K(m)

Inm In M
<A(InB—-InA) - MA - B) — B —mA
< AnB -l A)— " (MA = B) = <1 (B - mA)

1 1 m+ M M
<=4 B - A VK[ — ).
_<2 +M—m 2 ) (m)
Corollary 2. With the assumptions of Corollary 1 we have
1 pP p+ P P
2.1 -C - I- K| —
(213) <2C P—p 2PCD (p)
PlnP

<n(C)+ 5 (- ph)+ B2 (- C)

pP p+ P P
I— K{—].
( C+P— ‘ 2pP CD (p)

Proof. Follows by Theorem 2 on choosing B=1, A=C, m = F and M = 5 and
taking into account that, by the continuous functional calculus for C, we have

_ +P _ p+ P
c2lc 2 (- o) el cvr = 1 -2l
2pP 2pP
O
Theorem 3. With the assumptions of Theorem 1 we have
1 In M
(2.14) 0<)S (A\B) nmm (MA - B) — ——— (B —mA)

| /\

M
s <K(M> 1) (B ma) 47 (A - )

()

Proof. From the inequality (1.9) we have

1) a<gizumErM o [41/ (1-v) <K (M) _ 1)] ,

mi-vMv m

for any v € [0,1].

If we take in (2.15) v = §7="= € [0, 1] with = € [m, M] then we get

(2.16) (1<) W < exp [4(”3 &sz %2_ 2) (K (%) - 1)] .

Taking the logarithm in (2.16) we get

(OS)lnx—]]\\j_xlnm—]@_m < 2@ =m) (M = 2) <K(M> —1>

-m -m - (M —m)? m

for any x € [m, M].
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Making use of a similar argument to the one from the proof of Theorem 1 we get

Inm In M

S(AIB) = 37— (MA—B) - --—

<G (< () )

% AL/2 (A—l/zBA—l/z _ m) (M _ A—1/2BA—1/2) AL/2

(B —mA)

and since
AL/2 (A—l/zBA—1/2 _ m) (M _ A—l/zBA—l/z) AL/2

= A2 (AT (B = mA) A7) (A7 (MA - B) ATV2) A2
=(B-mA)A™" (MA - B),

we obtain the first part of (2.14).
The second part follows by the inequality

4(x—m) (M — x)
(M —m)?
for any = € [m, M]. O

<1

Corollary 3. With the assumptions of Corollary 1 we have
PlnP plnp

(2.17) (0<)(C) + = (C=pl) + 5=t (PL=C)
WP (PN N ap_oroo
< 0 (k(D) ) ar-crete

< <K <P> - 1> c.
p
Finally, we have:

Theorem 4. With the assumptions of Theorem 1 we have

Inm In M
2.1 < A|B) — MA - B) — B—-mA
(218)  (0<)S(AIB)~ 1 (MA-B)— 20 (B ma)
1
<~ (B- -1 -
<5 (B—mA)A=" (MA - B)
Proof. From the inequality (1.11) we have
(1—v)ym+vM 1 M 2
, RS Bl “v(1l—-v) (= =
(2.19) Ry <exp 21/(1 v) - 1

for any v € [0,1].
If we take in (2.15) v = 7= € [0, 1] with = € [m, M] then we get

M—
1(x— M — M 2
%Sexp 1(@—m)( 255)(_1)
m A M 2 (M —m) m
that is equivalent to
e <exp [Wm)(QMm] |
m M M 2 m
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On taking the logarithm, we get

— T ETm lnMS}(:c—m)(Mfz)
—-m —-m 2 m?

)

M
2.20 1 —
( ) nx %

for any x € [m, M].
Making use of a similar argument to the one from the proofs of Theorem 1 and

Theorem 3 we get the desired result (2.18). ]
Corollary 4. With the assumptions of Corollary 1 we have
PlnP plnp
2.21 0<)n(C C—pl pPI-C
(221) (0)7(C) + F (C—pD) + 5L (PT=C)

1P
<-—({IP-C)CH(C ~1Ip).
2p
3. INEQUALITIES VIA UHLMANN’S REPRESENTATION

n [16], A. Uhlmann has shown that the relative operator entropy S (A|B) can
be represented as the strong limit
A B— A
(3.1) S(A|B) =s— }in(l) AnB -4

where .
At B = AV/? (A*1/2BA*1/2) AV2 e [0,1]

is the weighted geometric mean of positive invertible operators A and B. For v = %
we denote AfB.
We have:

Theorem 5. Let A, B be two positive invertible operators, then we have
(3.2) S(A|B) <2(AfB—-A) < B- A.
Proof. From the inequality (1.7) for v € (O, %) and a, b > 0 we have
2
V(f—\/l;) <(1-v)a+vb—a "W
that is equivalent to

a72\/%+b§bfa+%(afa1*”b”)

and to
1 1—-vyv
(3.3) —(a""b —a)ﬁ?(\/ab—a).
v
If we take in (3.3) a = 1 then we get
1
. - vo_ < 1/2 _
(3.4) (b 1)72(b 1),

for any v € (O7 %) and a, b > 0.
If we use the continuous functional calculus, then we have for any positive oper-
ator X that

(3.5) % (X¥-1)<2 (X1/2 - 1) ,

for any v € (07 %)
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If we take in (3.5) X = A~/2BA~1/2 then we get
1 —1/2 5 4-1/2\" C12p g—1/2)\ 2
(3.6) ;((A BA ) —1)§2 (A BA ) 1),

for any v € (O7 %)

Multiplying both sides of (3.6) by A'/? we get
1 <A1/2 (A—1/2BA—1/2)” A2 _ A)

v

<2 <A1/2 (A*l/?BA*/?)l/2 AM? — A) ,

(3.7)

for any v € (O7 %)

By taking the strong limit over ¥ — 0+ in (3.7) and by using the representation
(3.1) we obtain the first inequality in (3.2).

By the operator geometric mean - arithmetic mean inequality AfB < % (A+ B)
we deduce the second part of (3.2). O

Remark 2. The inequality (3.2) is an improvement of the result from (ii) in the
introduction.

Corollary 5. For any positive invertible operator C' we have
n(C)<2(c?-c)<1-c.

Theorem 6. Let A, B be two positive invertible operators, then we have

>A1/2
<B—A—S(AB)

1A1/2 (mA—l/Z‘BA—l/Z‘)2 (1I+ ‘A‘l/QBA‘l/Z - IID AL/,
2 2

2
(38)  (0<) 34 (mA~2BA) (;1_ ALy

<

2
Proof. From (1.8) we have
¥ (1—v)(na—Inb)’min{a,b} < (1 —v)a+vb—a'~"b"

< Zv(1—v)(Ina — Inb)® max {a, b}

1
2
for any for v € (0,1) and a, b > 0.

This is equivalent to

1 1
(3.9 3 (1—v)(na—Inb)* min{a,b} <b—a+ - (a—a'""b")

L (1 —v) (Ina — Inb)* max {a, b}

< Z
-2

for any for v € (0,1) and a, b > 0.
If we replace in (3.9) a = 1 and b = z, then we get

(0 S)%(l—u) (Inz)® min {1, 2} S:E—l—i—%(l—x”)

1
< 3 (1-v) (lnaz)2 max {1,z}
for any for v € (0,1) and = > 0.
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If we use the continuous functional calculus, then we have for any positive oper-
ator X that

(3.10) %(1 —v)(InX)? (;1— ‘X —~ ;ID <X -1+ % (1—-X")

<-(1-v)(InX)? <;I+ X - ;ID

N |

for any for v € (0,1).
If we take in (3.10) X = A~/2BA~1/2 then we get

A—I/QBA—I/Q _ %I >

1,_ “12p4-12\° (1)
(3.11) = u)(lnA BA ) 5!

<ATPBATYE 14 % (1 _ (A—1/2BA—1/2)”)

1 271 1
<t —1/23 4—1/2 1 —1/2pp-1/2 _ 1
2(1 v) (lnA BA ) (21+‘A BA 2[

for any for v € (0,1).
Multiplying both sides of (3.11) by A'/? we get

2
(3.12) % (1-v)AY? (mA—l/?BA—l/?) (;1 - 'A—1/2BA—1/2 - ;ID A2

<B-A+ %A1/2 (I— (A71/2BA71/2)”> AL/2

1

2
<5 (1-v)As (1nA—1/2BA—1/2) (;1 + ’,4—1/23,4—1/2 - ;ID AL/?

for any for v € (0,1).
This is an inequality of interest in itself.
Now, if we let v — 0+ in (3.12), then we get

(0<) A2 (1n A—l/ZBA—W)2 (11 - ‘14—1/2314—1/2 - 1[‘) A2
2 2 2
<B-A-S(AB)
< 1Al/2 (11114_1/2314_1/2)2 1I +[A7Y2BATY? 1I Al/?
-2 2 2 ’
which proves the desired result (3.8). (|

Corollary 6. For any positive invertible operator C' we have
)

(3.13) (0<) % (InC)? (1 _le-tr
<I-C-7(C)< %(mcf (;14— ’c- ;ID .

2

2
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