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SOME FEJER TYPE INTEGRAL INEQUALITIES FOR
GEOMETRICALLY-ARITHMETICALLY-CONVEX FUNCTIONS
WITH APPLICATIONS

M. A. LATIF, S. S. DRAGOMIR'2, AND E. MOMONIAT

ABSTRACT. In this paper, the notion of geometrically symmetric functions is
introduced. A new identity involving geometrically symmetric functions is
established, and by using the obtained identity, the Holder integral inequality
and the notion of geometrically-arithmetically convexity, some new Fejér type
integral inequalities are presented. Applications of our results to special means
of positive real numbers are given as well.

1. INTRODUCTION

The classical or the usual convexity is defined as follows:
A function f: T — R, § # I C R, is said to be convex on I if inequality

[tz + (1 =t)y) <tf(e)+ 1 —1)f(y)

holds for all z,y € I and ¢ € [0, 1].

A number of papers have been written on inequalities using the classical convex-
ity and one of the most fascinating inequalities in mathematical analysis is stated
as follows:

2 b—a 2 ’

where f : I C R — R be a convex mapping and a,b € I with a < b. Both the
inequalities hold in reversed direction if f is concave. The inequalities stated in
(1.1) are known as Hermite-Hadamard inequalities.

For more results on (1.1) which provide new proofs, noteworthy extensions, gen-
eralizations, refinements, counterparts, new Hermite-Hadamard-type inequalities
and numerous applications, we refer the interested reader to [2, 3, 6, 9, 10, 20, 21]
and the references therein.

The usual notion of convex functions have been generalized in diverse manners.
One of them is the so called GA-convex functions and is stated in the definition
below.

f<a+b>< 1 /abf(x)dx<f(a)+f(b) (1.1)
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Definition 1. [13, 14] A function f : I C R, = (0,00) — R is said to be GA-convex
function on I if

F(2y' ™) < Af(@) + (1= N f(y)
holds for all z, y € T and X\ € [0,1], where 2 y=> and \f(z) + (1 — \)f(y) are

respectively the weighted geometric mean of two positive numbers x and y and the
weighted arithmetic mean of f(x) and f(y).

The definition of GA-convexity is further generalized as GA-s-convexity in the
second sense as follows.

Definition 2. [7] A function f: I C Ry = (0,00) — R is said to be s-GA-convex
function on I if

F(y'™) <X f(@) + (L= A)°f(y)
holds for all x, y € I, A € [0,1] and for some s € (0, 1].

For the properties of GA-convex functions and GA-s-convex functions, we refer
the reader to [5, 7, 13, 14, 23, 24] and the reference there in.

Most recently, a number of findings have been seen on Hermite-Hadamard type
integral inequalities for GA-convex and for GA-s-convex functions.

Zhang et al. in [24] established the following Hermite-Hadamard type integral
inequalities for GA-convex function.

Theorem 1. [24] Let f : I C Ry = (0,00) — R be a differentiable function on
’ /|4

I° and a, b € I° witha < b and f € L([a,b]). If ‘f ‘ is GA-convex on [a,b] for

q > 1, we have the following inequality:

bf (b) — af (a / e (b_a)’;fa’b)] —

@) - | @ + - L@@ |F o'} a2
Theorem 2. [24] Let f : I C Ry = (0,00) — R be a function differentiable

’ )14
function on I° and a, b € I° with a < b and f € L([a,b]). If |f
on [a,b] for ¢ > 1, we have the following inequality:

bf (b) — af (a /f

1_7 ’ q q
< (lnb - Ina) [L (afbf)} { (’f ‘ ‘f (b)‘ )} . (1.3)
Theorem 3. [24] Let f : I C Ry = (0,00) — R be a differentiable function on
’ /|4
I° and a, b € I° with a < b and f € L([a,b]). If ‘f ‘ is GA-convex on [a,b] for
q > 1, we have the following inequality:

bf (b) — af (a /f

X { [L (a®9,b%7) — 0]

=

is G A-convex

1

=

7 <a>1q + [ - L (a0

Q=

ol oy
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Theorem 4. [24] Let f : I C Ry = (0,00) — R be a differentiable function on
I° and a, b € I° with a < b and f € L([a,b]).
q>1and2q>p>0. Then

bf (b) — af (a /f

AL @) —a) |1 (@) + 7 - L@ )| f (b)‘q}% . (15)

is GA-convex on [a,b] for

lnb—h?a)l @ {L (azqq:f’bzqq:f)]l—é
pa

Applications of the above results to special means are given in [24] as well.
Iscan [7], proved the following result for GA-s-convex functions in the second
sense.

Theorem 5. Suppose that f : I C Ry = (0,00) = R is s-GA-convez in the second
sense and a, b € I with a <b. If f € L([a,b]), then one has the inequalities:

2 1f(\/>)_1nb lna/f - (S)i{() (1.6)

If f in Theorem 5 is GA-convex function, then we get the following inequalities.

f(ﬁ)_lnb—lna/ e (>+f() (1.7)

For more results on GA-convex functions and s-GA-convex functions see e.g. [5],
[7], [11], [13], [22], [23] and [24].

In Section 2, we will introduce a new notion of geometrically symmetric functions
and by using this notion we prove a weighted generalization of (1.7). In Section 2,
we will also establish a new weighted identity to provide more general and better
estimates for the difference between the right most and the middle terms of the
weighted version of (1.7).

2. MAIN RESULTS

Throughout this section we take U () = a(!=/2p(+)/2 and L (t) = a1+/2p(1-)/2,
The Beta function and the integral from of the hypergeometric function are defined
as follows to be used in the sequel of the paper

1
B(a,ﬁ)z/ ot (1—0) " dt,a>0,8>0
0
and
2 F1 (o, B3y 2) =

for |z| < 1,y > B > 0.
The notion of geometrically symmetric functions is given in following definition.

1
73(5,17—6)/0 91 (1 — £ (1 = )

Definition 3. A function g : [a,b] C R4 = (0,00) = R is said to be geometrically
symmetric with respect to v/ ab if the inequality

g (axb> =g ()

holds for all x € [a, b].
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Theorem 6. Let f: I CRy = (0,00) = R be a GA-convex function and a, b € I
with a < b. Let g : [a,b] — [0,00) be continuous positive mapping and geometrically
symmetric to Vab. Then

f(x/%) /abgf)d:c < /ab 7‘78(%)939 () gy < L@+ ) /abg(x)d:c. (2.1)

2 T
Proof. By the GA-convexity of f, we have

f (Vab) /O1 g (a~1h1) dt

1
S A |:;f (atblft) + %f (altbt):| g (alftbt) dt

1

L it 1—tpt ! 1—tpt 1—tp¢
:5/0 f (@) g(a b)dt+§/0 f (a7 g (a0 dt. (2.2)

By geometrical symmetry of g with respect to v ab, we also have

1 1
/ £ (@b ) g (a8 di = / £ (@b g (b dr. (2.3)
0 0

Hence by using (2.3) in (2.2) and by the change of variables z = a'b!™!

a'~tht, we obtain

£ (Vab) [1,

Inb—1Ina T

and y =

T

1

S ;/1 f (atblft) g (atblft) dt + %/ f (alftbt)g (alftbt) dt
0 0
B 1 " f(2)g(2) 1 "f ()9 )
_2(]nb—lna,)/a T dx+2(lnb—lna)/a Yy dy

_ 1 " f(2)g () 1 " f(2)g (=)

N 2(lnb—lna)/a x do =+ 2(lnb—lna)/a x de
1 " f(2)g(x)
B lnbflna/a x de. (2:4)

By the GA-convexity on [a,b] and geometrical symmetry of g with respect to
v ab, we have

F(a'70%) g (@' ') < {1 =) f(a) +£f (0)] g (o' ') (2:5)

and
7 (@811 g (a'1) < [(1— 1) £ (5) + tf (@)] g (a) (2.6
Adding (2.5) and (2.6) and integrating with respect to ¢ over [0, 1], we obtain

/ f (aV ) g (a0~ di + / Cf (@) g (o) de
0 0

< [f (@) + £ ()] / g (W) dr. (27)
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By the change of variables x = a'b'~! and y = a!~tb! in (2.7), we get

1 b 1
JRCTIEPRR{CES (0 LFIC VR
Inb—1Ina /, x 2(Inb—1na) J, =z
Combining the inequalities (2.4) and (2.8), we get the required result. O

Now we prove a weighted integral identity which play a key role in establishing
our main results.

Lemma 1. Let f: I C Ry = (0,00) = R be a differentiable function on I° and
a, b € I° with a < b and let g : [a,b] — [0,00) be continuous positive mapping and

/

geometrically symmetric to \ab. If f € L ([a,b]), then the following equality holds

f)+fa) [*g() P f(x)g ()
5 /a - dx—/a - dx

_Inb—Ina [t (Y0 g() , o
== /0 (/L dx) U0 W) - L @) 29

® ¥

. /1 (/U(t) de> Ut) f (U (1) dt
0 L)y ¥

Nt /
12_/0 (/L(t) : dm)L(t)f(L(t))dt.

Since g : [a,b] — [0,00) is geometrically symmetric to v/ab, hence g (U (t)) =
g (L (¢t)) for all ¢t € [0,1]. By this, we have

L= /01 (/L(::) 9;“’%) U) f (U (1)) dt
LU
:lnbflna/o (/L(t) g(x>dx>d[f(U(t))]

__2 () 1
- Inb—1Ina </L(t) x dx) FUw)

b 1
B lnif—(liila/a g;x)dx—Q/O g (U (1) f (U (1)) dt

2f(b)  [*g(x) 1 b g(@) f(2)
7lnb—lna/a . dxlnb—lna/m . dz. (2.10)

Proof. Let

and

Analogously, we have

2/ (a) /bgm PR /mg(w)f(w) .

" Inb—1Ina T  Inb—Ina T

(2.11)

Adding (2.10) and (2.11) and multiplying the result by %, we get the required
identity. This completes the proof of the Lemma. O
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Lemma 2. For u,v > 0, we have

1
a0 — oL (i, ).

0

1
/ w0202 — /L (Vu, V)
0

v—V/OL(VV7T)

1 , UFV
U (u,0) 2 %/ tu1=/2y(140/2 gt — o=l 7
0 %u, U=,
and
4/ L(\/tu,\/v)—4v+v(Inv—Inu
Al ! ( (lng—lnu)z( )7 u 7& v
@@hmzzi/’ﬁuﬂ4vam+wﬂdt:
0 %u7 u=v.
Proof. The proof follows from a straightforward computation. O

We now establish new Fejér type inequalities for GA-convex functions, which
provide weighted generalization of some of the results established in recent literature
concerning GA-convex functions.

Theorem 7. Let f: I CRy = (0,00) = R be a differentiable function on I° and
a, b e I° with a < b and let g : [a,b] — [0,00) be continuous positive mapping and

’ s 14
geometrically symmetric to v/ab such that f € L([a,b]). If ‘f ’ is GA-convez on
[a,b] for g > 1, then the following inequality holds

FO)+f(a) [*g(@) " f@)g(x)
| > /a - d:z:f/a . dx

Inb—Ina)? _
< O gl {1 (0B

< (¥ (@) - @ @b)|f @) + ¥ (b)+ @@ o))
+ 10 0,0 ([0 ,0)+ @ (0, )£ (@)

1/q

+ [V (b,a) — @ (b,a)]

f ()

q)l/q} . (2.12)

where [|glloo = Supyefa 9 () < o0
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Proof. From Lemma 1 and Holder’s inequality , we have

|f(b) ()/ (xdx_/ f@)g@)
<E lna/()l(/LU(t = )[ @] +rwlr @] a
(Inb—Ina)” 1na)2 l9ll o /[ (t)’f/(U(t))‘+tL(t)f'(L(t))}dt
SMH oo {(/OltU(t)>1_1/q (/OltU(t)’f/(U(t)) q>1/q
+([fu4w)bvq(AULuwf%L@»ffm}. (213

/14
By the GA-convexity of ’ f ’ on [a,b] for ¢ > 1 and by using Lemma 2, we have

/tUU

I /\

@)’

1
( > (1—t)/2b(1+t)/2dt+‘f/ (b)‘q/ ; (1 +t> a(1=0/2p(14)/2 g4
0

U (a,b) — @ (a,b)] /(a)‘q—i—[\ll(ab)—i—cb 0| o ‘ (2.14)

and

1
[l o

0
1 X )
)‘q/o t (12H> a(1+t)/2b(1—t)/2dt—|—‘f’ (b)‘q/o t (12t> Q1D /2p(1=1)/2 gy

— w0+ el @ +wea -2l o @)

q

<|f (a

Using (2.14) and (2.15) in (2.13), we get the required result. This completes the
proof of the theorem. O

Corollary 1. Suppose the assumptions of Theorem 7 are satisfied. If ¢ = 1, then
the following inequality holds

‘ﬂ);ﬂ)/ /f

< Wbl oy {0 ) + 060 - @ () + 0 00 |1 @)

W (a,b) + W (b,a) + @ (a,b) = @ (b,a)] |1 ()]} (216)

where [|g]loo = SUPefay g () < o0
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Corollary 2. If g(z) = 521, for all x € [a,b] in Theorem 7, then

f(b) +f(a) 1 " f (@)
‘ 2 _lnb—lna/a x de

Inb—1Ina _
S( 21+1/q ){[\I/ (avb)]l 1a

% (19 (,0) = @ (a,0)] | (@)] +[¥ (a,8) + @ (a,b)

+ (¥ (0] (9 (5ya) + @ (5, ) | ()

Q) 1/q
q)l/q} . (2.17)

Corollary 3. If g =1 in Corollary 2, then we get the following inequality

£ ()

q

’

+[V (b,a) =@ (b,a)] |f ()

T

f(b) + f(a) L /”f(fc)d

2 " Inb—Ina T

< W{[q}(a,bwwb,awwb,a)—‘P(avbﬂ ‘f' (a)‘

W (b,a) + ¥ (a,0) + D (a,0) = @ (b)) £ B)]}. (218)

Theorem 8. Let f: I CR; = (0,00) = R be a differentiable function on I° and

a, b € I° with a < b and let g : [a,b] = [0,00) be continuous positive mapping and
’ /14

geometrically symmetric to \/ab such that f € L ([a,b]). If ’f ) is GA-convez on

[a,b] for ¢ > 1, then the following inequality holds

fO)+f(a) [*g() " f(x)g (@)
‘ > /a - da:—/a . dx

’ q

f (a)

< (Inb — 12(.12;/;/11 191l o (Qqq_—ll)l—i {51/2 ({L (aq/Q,bq/2> _aq/z}
29/2 — q1/2 — [ (q9/2 972 ]| | (b)‘q 1/q
+ [ a (a )} ) q

+al/? ([L (aq/Q, bq/2) +p9/2 — Qaq/ﬂ ‘f/ (a)

n [bq/z I (aq/Z’bq/2)} I3 (b)‘q)l/q}. (2.19)
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Proof. From Lemma 1 and Holder’s inequality , we have

|f(b) <>/ <l‘dx_/ J@g(@)

lnb lna ! U(t x

s (L )[ ool wo s
nb=lne)’ oy / s w |+ @) a

< (Ind — lna) lg || (/1tq/(q—1)dt>l_l/q

0
1 ) q 1/q 1 ol q 1/q

{(/ world wel'a) ([ worls col ) } (2.20)

I /\

p 1
:/ qa(1=0)/2pa(1+1) /Q‘f ( (1-t)/2p( 1+t)/2)‘

‘/ ( ) a(1=0)/2a(1+0) /2 gy
)’ / (1”> qa(1=0)/2pa(146)/2 g
2
0

b1/2 [L (a2, p9/2) — q9/2] |
L @2 0) —a] |
q(Inb—1Ina)
pa/2 [qu/2 —ad/2 _ ] (aQ/Q,bQ/2)]
_|_
g(Inb—1na)

+|f (b

q

’

rof e

’ _/ a1+ /2pa(1— t/2‘f ( (1+)/2p(1— t)/2)‘

Yr1—t
20 a0/ 2a(1=)/2 gy
0 2

ad/? [L (aq/Q,b‘Iﬂ) 4 pa/2 — Qaq/ﬂ ’f' (@
qg(lnb—1na)
ad/? [bq/Q - L (CLQ/Q’()Q/Q)]
¢ (lnb—1Ina)

(124't> aq(1+t)/2bq(1—t)/2dt+’f/ (b) '

0

’ q

q

/

f ()

(2.22)

The inequality (2.19) is proved by applying (2.21) and (2.22) in (2.20). O
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Corollary 4. If the assumptions of Theorem 8 are satisfied and if g (x) = m
for all x € [a,b], then the following inequality holds

f )+ f(a) 1 b (=)
‘ 2 _lnb—lna/ T du

< (Inb ;_121621_1/(1 (2qq_—11> {b1/2 ([ (aq/Q,b‘I/Q) _ aq/Q] ’f/ (@) q
+ {2()‘1/2 —a??_ [ (GQ/27bq/2>} f/ (b)‘(1> 1/q

+al/? ([L (aq/2, bq/2) +p9/2 — Qaq/ﬂ ‘f/ (a) !

n [bq/z I (aq/27bq/2)} I3 (b)‘q)l/q}. (2.23)

Theorem 9. Let f: I CR, = (0,00) = R be a differentiable function on I° and
a, b e I° with a < b and let g : [a,b] — [0,00) be continuous positive mapping and

’ /14
geometrically symmetric to v/ab such that f € L ([a,b]). If ’f ) is GA-convex on
[a,b] for g > 1, then the following inequality holds

Fb)+fa) [*g() " fx)g ()
‘ 5 /a - d:vf/a . dx

_ (b—na)”" ||, <2q -1
N 2 (4g)"/ q—1

)1‘1’ (LG8~ at]|f (a)

’ q

1/

[ — L(a%, 50| f (b)‘q} T (224)

Proof. From Lemma 1 and Holder’s inequality , we have

‘f(b) <>/ (wdx_/f
Slnb lna/()l(/::)t) ;: >[ ‘f ‘—i—L ‘f )Hdt

(Inb 4lna)2 lgll /O [tU()’f (U(t))‘ﬂL(t)f' (L(t))} dt

< M gl (/01 tq/(q—l)dt>11/q
. {( [ worls wol ) " ([ wwr)s <L<t>>|th)l/q} - (22)

I /\



FEJER TYPE INTEGRAL INEQUALITIES FOR GA-CONVEX FUNCTIONS 11

By the power-mean inequality (a” +b" < 2" (a +b)" for a > 0,b > 0 and r < 1),
we have

(AWU@HQf<U@»Fw)U3+<Alwunq
< ol-1/a (/01 [U (t)]*

/4
Since ‘f ‘ is GA-convex on [a,b] for ¢ > 1

1 q 1
A[U@P way a+ [
1 1
q [/ (1 )aq(l t>/2bq(1+t)dt+/ <1+t) aq“”)/?bq“_t)dt}
0 2 0 2
1 1
q U (1;”5) q1(1- t>/2bq<1+t>dt+/ (1;t) aq(“t)/?bq(l—t)dt]
0

0

21 (af,b7) — 2 g [2b9 — 2L (a9, b9)
[ (Inb—1na) }‘f ’ { q¢(Inb—1Ina) ]‘f ‘ (2.27)

7

fuwm%ﬁw

/ ’

f

wolas [ wor)s

(L (t))‘th>1/q. (2.26)

’

f

Using (2.26) in (2.27), we get

</01 o ‘f/ (U(t))‘thy/q - </01 L) |f (L (t)>‘th)1/q

Applying (2.28) in (2.25), we obtain the required inequality (2.24).

Corollary 5. If the assumptions of Theorem 9 are satisfied and if g (x) = m
for all x € [a,b], then the following inequality holds

f(b)+f(a) 1 " f (@)
| 2 _lnb—lna/a x

nb—Ina) "4 f2g—1\ "7
< ( . )1)/q (q—l) {[L(aq,bq)—aq]
q

+[b? — L (a?,b7)]

q

()

f (b)‘q}l/q. (2.29)

Theorem 10. Let f : I CR; = (0,00) — R be a differentiable function on I° and
a, b € I° with a < b and let g : [a,b] — [0,00) be continuous positive mapping and

geometrically symmetric to \/ab such that f/ € L([a,b]). If ‘f/’ is GA-convex on
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[a,b], then the following inequality holds for ¢ > 1

O+ (@) [*g(2) " f(2)g(z)
10 o0, [t

b —Ina)? [L (g9/2(a=D] pa/2a-1)])] /9
_(nb-1na) , gl
- 8

1 1/‘1
X{<bl/2 [B(g+1,q+1)]"" +a'/? {2F1 (q,q+1;q+2;1)'q+J >

1 1/‘1
+ <a1/2 [B(g+1,q+1)]"" 4 '/ {zFl(—q,q+1;q+2;—1)~q+J )

Proof. From Lemma 1 and the GA-convexity of ‘ f/‘ on [a,b], we have

‘f(b) <>/a gjd%/ f(@)g(x)
A )[ IF w2l oo
s(lnb ~ 129 ., /[tU )|F W o) i) ()] a

S(1nb Ina)® gl {/ (1-t)/2p(1+1)/2 [t(?)
+t (1+t>‘f H dt+/ a1+0/2p(1=8)/2 [t(l;rt) ’
’ 1-—-t '
()

Using Holder integral inequality, we have

/01 q(1=0)/2p(1+1)/2 [t (12—75) ‘fl (a)‘ iy (1 —i—t) ‘f H

1 1-1/q
< < / aq<1t>/[2<q1>1bq<1+t>/[2<q1)1dt>
0

9 {[/Ot (j)thr/q ][ o (T)thr/q f’ (b)\}

[bq/ 2=l (aq/P(q DI pa/(2(a= ”])}H/q{[B(q+1,q+1)]1/q‘f/ (a)‘

1
T2

1 1/‘1 ,
+[2F1(Q7Q+1;(J+2;1)'q_i_1] f (b)’} (2.32)
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Similarly, we one have

! L+t\ | 1—t
/ Q0 /2p(11)/2 {t <;r) ! (a)‘+t<2)
0

1 1-1/q
- ( / aq<1+t>/[2(q—1>1bq<1—t)/[2<q—1>1dt>
0

7 (b)” dt

AL 5] ol o (o] ol

1 1-1/q ,
_ 1 [ a/[2(a-1)] a/[2(¢=1)] pa/[2(g—1)] 1/q ‘ ‘
> [a L(a b ) B+ a1 o)
1 1/q
+ [2F1 (—q,q+L;g+2;-1)- ]

qg+1
Using (2.32) and (2.33) in (2.31), we obtain the required inequality (2.30). O

Corollary 6. Under the assumptions of Theorem 10, if g(x) = m for all
x € |a,b], then the following inequality holds

f )+ f(a) 1 " (=)
2 _lnb—lna/a P

< (Inb—Ina) [L (GQ/[2(<12—1)]7bq/[2(q—1)])] 1-1/q

1 Ve,
X{<b1/2 [B(Q+1,Q+1)]1/q+al/2 {ZFl (QaQ+1;Q+2;1)'q+J > f (a)‘
: NN
+ a2 [B(g+1,q+ 1) + /2 {zFl(—q,q+1;q+2;—1)'q+J f (b)‘
(2.34)

3. APPLICATIONS TO SPECIAL MEANS

In this section we apply some of the above established inequalities of Hermite-
Hadamard type involving the product of a geometrically-arithmetically convex
function and a geometrically symmetric function to construct inequalities for

special means.
For positive numbers @ > 0 and b > 0 with a # b

— 2
A(a,b):aTM7L(a,b) DTG (a,b) = Vab, H (a,b) = 22

a+b

“Inb—Ina’
and )
pPtl_grt1 ] P
|Gries) - p# 10
L, (a,b) = L(a,b), p=—1
1
L&) =0

are the arithmetic mean, the logarithmic mean, geometric mean, harmonic mean
and the generalized logarithmic mean of order p € R respectively. For further
information on means, we refer the readers to [17, 18, 19] and the references therein.
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Now let f(x) =" for > 0, r € R with r # 0. Then

‘f/ (aj)\yl—k)‘q = |r]? [xq(r—nr {yq(r—n}

< I A=) 4 1= X))

1-X

’ q
for A € [0,1], x, y > 0 and ¢ > 1. That is ’f (JC)’ = |r|? 2901 is geometrically-

arithmetically convex on [a,b] for ¢ > 1 and r # 1, where a, b > 0.
Let g : [a,b] — Rg be defined as

It is obvious that

2
for all « € [a,b]. Hence g (z) = (i - @) , T € [a,b] is geometrically symmetric

Vab z
with respect to x = v ab.
Now applications of our results are given in the following theorems to come.

Theorem 11. Let 0 < a <b, r € R\ {-2,0,1,2} and ¢ > 1. Then
24 (a",b") L (a?,b%) — L (a™*2,b7"2)
(G (a,b))*
—[G (a, b)) L (a"=2,6"2) + 2L (a",b") — 2A (a”, ")

r| (b —a)”
— 2141/4@G (a,b) L (a,b)

X [2\1’ (a,b) A (aQ(T'_l),bQ(T_l)) + @ (a,b) (b‘Z(T'_l) - aQ("_l))} Vi + [P (b, a)]lfl/q

{1 (@,p) e

w04 (w100 0000) @ ) (w0 o)) o

where U (-,-) and @ (-,-) are defined as in Lemma 2.
Proof. Applying Theorem 7 to the functions
flz)=2a" for x >0, r e R\ {-2,0,1,2}

and

we get the desired result. O
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Corollary 7. Suppose the assumptions of Theorem 11 are satisfied and if r = —1,
the the following inequality holds

2L (a2,0%) [H (a,b)] " + L (a,b)

—[G(a,b))*L(a3b73) —2[H (a,b)] "
G (@) G (a,0)]" L ( ) —2[H (a,b)]

(b* a)2 1_1/q
= SU/aG (a.b) L (a,b) {[‘I’ (a,0)]

x [20 (a,b) A (a720,5720) + @ (a,b) (720 — a=20)]
W (b,a)] Y [20 (b,a) A (a729,6729) + B (b,a) (a2 — b27)]"/ ’1} . (32)

where U (-,-) and ® (-,-) are defined as in Lemma 2.

Corollary 8. Under the assumptions of Theorem 11, the following inequality holds
true for ¢ =1

2A (aT7 bT) L (a2’ b2) . (ar+2, br+2)
(G (a,b))?
—[G (@) L (a72,6""2) + 2L (a",b") — 24 (a",b")

< | (b—a)2 {L (\/a \/E) A(arfl brfl)
~ 4G (a,b) L (a,b) ’ ’

X {QA (\/a,\/zé) —L(\/E,\/l;ﬂ F2(r—1) (L (\/&,\/5)
x {L (ﬁ, \/B) —24 (\/5, \/5)} +A(a,b)) L (ar—l,br—l)}. (3.3)

Corollary 9. If we take r = —1 in Corollary 8, then the following inequality holds
valid

2L (a®,b%) [H (a,b)] " + L (a,b)
(G (a,b)]?
< o ran (* (V5 V) 46
x [QA (\/&, \/B) ) (\/a, \/B)} 4 (L (\/a, \/B)

x [2A (\/a, \/5) ) (ﬁz, \/B)} — Ala, b)) L(a2, b-2)} . (34)

—[G(a,0)]* L (a=%,b73) — 2[H (a,b)] "
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Theorem 12. Let 0 < a <b, r € R\ {-2,0,1,2} and ¢ > 1. Then

24 (a7, ") L (a2,07) — L (a2, b+?)

G (a,b))?
—[G (a,0)]> L (a""2,0"2) + 2L (a",b") — 24 (a",b")
2—-1/
< (b—a)” /1| _ <2q - 1) b1/2 (aq/Q’bq/2> B aq/2:| 2d(r=1)
4. q1/aG (a,b) [L (a,0)] /7 \ g —1

+ [qu/2 a?/? aq/27bq/2)} bQ(T'—1)>1/q

vt ([o (a2 bmg 2 2qf2] e
+ [bqﬂ L (aq/2, bqﬂﬂ bq(T—l))l/q} . (3.5)
Proof. Applying Theorem 8 to the functions
f(z) =" for x > 0,r € R\ {-2,0,1,2}

and

we get the desired result. O

Corollary 10. Suppose the assumptions of Theorem 12 are fulfilled and if r = —
the following inequality holds true

2[H (a,b)] " L (a2,0%) + L (a,b)
G (a,b))?

— G (a,b)2 L (a3 673) — 2[H (a, b)]_l‘

TV it
: 4. ql/qGEIza,bc;)[L (a:zb)]ll/q <2qq 11> ' {b1/2 ([L (aq/27bq/2) _ aq/Q} 024
+ {251/2 —ai? - L (aq/2’ bq/2)} b72q> a

+al/? ([L (aq/Q, bq/2> + 072 — 2aq/2] a2

+ [bq/2 ) (aq/{ bqﬂ)] b2q>1/q} . (36)
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Theorem 13. Let 0 < a <b, r € R\ {-2,0,1,2} and ¢ > 1. Then

2A (a",b7) L (a®,0%) — L (a"+2,b7+2)

(G (a,b)]”
—[G (a,0)]> L (a""2,0"2) + 2L (a",b") — 2A (a",b")

7| (b= a)® (2q—1>1—3

~ 22/4t1G (a,b) L (a,b) \ ¢ —1
1/

% [rL (@™, bm) = (r = 1) L (a1, 510D ) 1 (a1,07)| BRNCRs

Proof. Applying Theorem 9 to the functions
f(z) =" for x > 0,r € R\ {-2,0,1,2}
and )
(x) = i—@ x € [a,b]
g \/(E T ) )

we get the desired result. O

Corollary 11. Suppose the assumptions of Theorem 13 are satisfied and if r = —1,

the

the following inequality holds valid
2[H (a,b)] "' L (a2,b%) + L (a,b)

[1]
2]
3]

[4]

(a0
~ (G a0 L (a72,67%) = 2[H (a,)) |

< (b—a)® 2 —1\""®
~ 22/4t1@G (a,b) L (a,b) \ ¢ —1
x 20 (a™20,6729) L (o™, b7") — L (a=%,679)] 7. (3.8)
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