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1 Introduction and Preliminaries

The elegance in shape and property of convex functions makes it attractive to
study this branch of mathematical analysis. It should be noticed that in new
problems related to convexity, generalized notions about convex functions are
required to obtain applicable results. During recently years many efforts have
gone on generalization of notion of convex functions. Most important general-
izations can be found in works that change the definition of convex functions
to a generalized form such as quasi-convex [1], pseudo-convex [7], strongly con-
vex [10], logarithmically convex [9], approximately convex [4], midconvex [5]
functions etc.

On the other hand Hermite-Hadamard-Fejer inequality an interesting result
related to convex functions has been proved in [3] as the following:

Theorem 1 Let f : [a, b]→ R be a convex function. Then

f
(a+ b

2

)∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx, (1)

where g : [a, b]→ R+ = [0,+∞) is integrable and symmetric about x = a+b
2 .

If in (1) we consider g ≡ 1 then we obtain Hermite-Hadamard inequality as the
following:

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (2)

An interesting question in (2) was estimating the difference between left and
middle terms and between right and middle terms. In [2] and [8] we can find
some results about difference between right and middle terms in (2). Also in
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[6], the difference between the middle and left terms in (2) has been estimated
as the following:

Theorem 2 Consider I∗ as the interior of interval I ⊂ R. Let f : I∗ → R be
a differentiable mapping on I∗, a, b ∈ I∗ with a < b. If |f ′| is convex on [a, b],
then we have∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(a+ b

2

)∣∣∣ ≤ b− a
8

(
|f ′(a)|+ |f ′(b)|

)
(3)

Motivated by these works we introduce the notion of η-convex functions
as generalization of convex functions and estimate the difference between the
middle and left terms in (1) when |f ′| is an η-convex function. Also as an
application we give an error estimate for midpoint formula.

Definition 3 Let I be an interval in real line R. A function f : I → R is called
convex with respect to bifunction η : R× R→ R (briefly η-convex), if

f(tx+ (1− t)y) ≤ f(y) + tη
(
f(x), f(y)

)
(4)

for all x, y ∈ I and t ∈ [0, 1].

In fact above definition geometrically says that if a function is η-convex on
I, then it’s graph between any x, y ∈ I is on or under the path starting from(
y, f(y)

)
and ending at

(
x, f(y) + η(f(x), f(y))

)
. If f(x) should be the end

point of the path for every x, y ∈ I, then we have η(x, y) = x − y and the
function reduces to a convex one. Note that by taking x = y in (4) we get
tη(f(x), f(x)) ≥ 0 for any x ∈ I and t ∈ [0, 1] which implies that

η
(
f(x), f(x)

)
≥ 0

for any x ∈ I. Also if we take t = 1 in (4) we get

f(x)− f(y) ≤ η
(
f(x), f(y)

)
for any x, y ∈ I. If f : I → R is a convex function and η : I × I → R is an
arbitrary bifunction that satisfies

η(x, y) ≥ x− y

for any x, y ∈ I, then

f(tx+ (1− t)y) ≤ f(y) + t[f(x)− f(y)] ≤ f(y) + tη
(
f(x), f(y)

)
showing that f is η-convex.

There are simple examples about η-convexity of a function.
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Example 4 (1) For a convex function f , we may find another function η other
than the function η(x, y) = x− y such that f is η-convex. Consider f(x) = x2

and η(x, y) = 2x+ y. Then we have

f
(
λx+ (1− λ)y

)
=
(
λx+ (1− λ)y

)2 ≤
y2 + λx2 + λ(1− λ)2xy ≤ y2 + λx2 + λ(1− λ)(x2 + y2) ≤

y2 + λ(x2 + x2 + y2) = y2 + λ(2x2 + y2) = f(y) + λη
(
f(x), f(y)

)
for all x, y ∈ R and λ ∈ (0, 1). Also the facts x2 ≤ y2+(2x2+y2) and y2 ≤ y2, for
all x, y ∈ R show the correctness of inequality for λ = 1 and λ = 0 respectively
which means that f is η-convex. Note that the function f(x) = x2 is η-convex
w.r.t all η(x, y) = ax+ by with a ≥ 1, b ≥ −1 and x, y ∈ R.

(2) Consider a function f : R→ R defined as

f(x) =

{
−x, x ≥ 0;
x, x < 0.

and define a bifunction η as η(x, y) = −x − y, for all x, y ∈ R− = (−∞, 0].
It is not hard to check that f is a η-convex function but not a convex one.

(3) Define the function f : R+ = [0,+∞)→ R+ as f(x) =

{
x, 0 ≤ x ≤ 1;
1, x > 1.

and a bifunction η : R+ × R+ → R+ as η(x, y) =

{
x+ y, x ≤ y;
2(x+ y), x > y.

Then f is η-convex but is not convex.

As a basic result we investigate that when an η-convex function can be
continuous. We need two definitions.

Definition 5 [11] A function f : [a, b] → R is absolutely continuous on [a, b]
if corresponding to any ε > 0 there exists a δ > 0 such that for any collection
{ai, bi}n1 of disjoint open intervals of [a, b] with

∑n
1 (bi−ai) < δ,

∑n
1 |f(bi)− f(ai)| <

ε.

Definition 6 [11] A function f : [a, b] → R is said to satisfy Lipschitz condi-
tion on [a, b] if there is a constant K so that for any two points x, y ∈ [a, b],
|f(x)− f(y)| ≤ K|x− y|.

Lemma 7 Suppose that f : I → R is an η-convex function and η is bounded
from above on f(I)× f(I). Then f satisfies a Lipschitz condition on any closed
interval [a, b] contained in the interior I◦ of I. Hence, f is absolutely continuous
on [a, b] and continuous on I◦.

Proof. Let Mη be the upper bound of η on f(I) × f(I). Consider closed
interval [a, b] in I◦ and choose ε > 0 such that [a−ε, b+ε] belongs to I. Suppose

3



that x, y are distinct points of [a, b]. Set z = y + ε
|y−x| (y − x) and t = |y−x|

ε+|y−x| .

So it is not hard to see that z ∈ [a− ε, b+ ε] and y = tz + (1− t)x. Then

f(y) ≤ f(x) + t η
(
f(z), f(x)

)
≤ f(x) + tMη. (5)

This implies that

f(y)− f(x) ≤ tMη =
|y − x|

ε+ |y − x|
Mη ≤

|y − x|
ε

Mη = K |y − x| , (6)

where K =
Mη

ε .
Also if we change the place of x, y in above argument we have f(x)− f(y) ≤

K |y − x|. Therefore | f(y)− f(x) |≤ K |y − x|.
It follows that if we choose δ < ε/K, then f is absolutely continuous. Finally

since [a, b] is arbitrary on I◦, then f is continuous on I◦.

As a consequence of Lemma7, an η-convex function f : [a, b] → R where η
is bounded from above on f

(
[a, b]

)
× f

(
[a, b]

)
is integrable.

2 Main Result

The following lemma is generalization of Lemma 2.1 in [6].

Lemma 8 Suppose that f : [a, b] → R is a differentiable mapping, g : [a, b] →
R+ is a continuous mapping and f ′ is integrable on [a, b]. Then

1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a
f
(a+ b

2

)∫ b

a

g(x)dx =

(b− a)

[ ∫ 1/2

0

M(t)f ′
(
ta+ (1− t)b

)
dt+

∫ 1

1/2

N(t)f ′
(
ta+ (1− t)b

)
dt

]
,

where

M(t) =

∫ t

0

g
(
ua+ (1− u)b

)
du and N(t) = −

∫ 1

t

g
(
ua+ (1− u)b

)
du.

Proof. Using the change of variable x = ta+ (1− t)b,

I1 =
1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a
f
(a+ b

2

)∫ b

a

g(x)dx =∫ 1

0

f
(
ta+ (1− t)b

)
g
(
ta+ (1− t)b

)
dt− f

(a+ b

2

)∫ 1

0

g
(
ta+ (1− t)b

)
dt = I2.

It follows that

I2 =

∫ 1/2

0

f
(
ta+ (1− t)b

)
g
(
ta+ (1− t)b

)
dt− f

(a+ b

2

)∫ 1/2

0

g
(
ta+ (1− t)b

)
dt+∫ 1

1/2

f
(
ta+ (1− t)b

)
g
(
ta+ (1− t)b

)
dt− f

(a+ b

2

)∫ 1

1/2

g
(
ta+ (1− t)b

)
dt.
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The Leibniz integral rule gives

g
(
ta+ (1− t)b

)
=
(∫ t

0

g
(
ua+ (1− u)b

)
du
)′

=
(
−
∫ 1

t

g
(
ua+ (1− u)b

)
du
)′
.

So

I2 =

∫ 1/2

0

f
(
ta+ (1− t)b

)( ∫ t

0

g
(
ua+ (1− u)b

)
du
)′
dt− f

(a+ b

2

)∫ 1/2

0

g
(
ta+ (1− t)b

)
dt

+

∫ 1

1/2

f
(
ta+ (1− t)b

)(
−
∫ 1

t

g
(
ua+ (1− u)b

)
du
)′
dt− f

(a+ b

2

)∫ 1

1/2

g
(
ta+ (1− t)b

)
dt.

Using integration by parts in last I2 we have

I2 =
( ∫ t

0
g
(
ua+ (1− u)b

)
du
)
.f
(
ta+ (1− t)b

)∣∣∣∣∣
1/2

0

−
∫ 1/2

0

( ∫ t
0
g
(
ua+ (1− u)b

)
du
)
f ′
(
ta+ (1− t)b

)
(a− b)dt

−f
(
a+b
2

) ∫ 1/2

0
g
(
ta+ (1− t)b

)
dt+

(
−
∫ 1

t
g
(
ua+ (1− u)b

)
du
)
.f
(
ta+ (1− t)b

)∣∣∣∣∣
1

1/2

+
∫ 1

1/2

( ∫ 1

t
g
(
ua+ (1− u)b

)
du
)
f ′
(
ta+ (1− t)b

)
(a− b)dt− f

(
a+b
2

) ∫ 1

1/2
g
(
ta+ (1− t)b

)
dt.

If we apply the limits we have

I2 = (b− a)

[ ∫ 1/2

0

(∫ t

0

g
(
ua+ (1− u)b

)
du
)
f ′
(
ta+ (1− t)b

)
dt

+

∫ 1

1/2

(
−
∫ 1

t

g
(
ua+ (1− u)b

)
du
)
f ′
(
ta+ (1− t)b

)
dt

]
.

Since I1 = I2, the result is obtained.

Remark 9 In Lemma 8, if we use the change of variable x = tb+(1− t)a, then

1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a
f
(a+ b

2

)∫ b

a

g(x)dx

= (b− a)

[ ∫ 1/2

0

M(t)f ′
(
tb+ (1− t)a

)
dt+

∫ 1

1/2

N(t)f ′
(
tb+ (1− t)a

)
dt

]
,

where

M(t) = −
∫ t

0

g
(
ub+ (1− u)a

)
du and N(t) =

∫ 1

t

g
(
ub+ (1− u)a

)
du.

Using Lemma 8, we can prove the following theorem to estimate the differ-
ence between the middle and left terms in (1).
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Theorem 10 Suppose that f : [a, b]→ R is an integrable mapping, g : [a, b]→
R+ is a continuous mapping symmetric with respect to a+b

2 and |f ′| is an η-
convex mapping on [a, b] with a bounded η from above. Then∣∣∣∣∣

∫ b

a

f(x)g(x)dx− f
(a+ b

2

)∫ b

a

g(x)dx

∣∣∣∣∣
≤ 1

(b− a)

∫ b

a+b
2

[
(x− a)2 − (b− x)2

]
g(x)Kdx,

where

K = min
{∣∣f ′(b)∣∣+

∣∣η(f ′(a), f ′(b)
)∣∣

2
,
∣∣f ′(a)

∣∣+

∣∣η(f ′(b), f ′(a)
)∣∣

2

}
Proof. From Lemma 7, Lemma 8 and η-convexity of |f ′| it follows that∣∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a
f
(a+ b

2

)∫ b

a

g(x)dx

∣∣∣∣∣ ≤
(b− a)

{∫ 1/2

0

(∫ t

0

g
(
ua+ (1− u)b

)
du
)(∣∣f ′(b)∣∣+ t

∣∣η(f ′(a), f ′(b))
∣∣)dt+∫ 1

1/2

(∫ 1

t

g
(
ua+ (1− u)b

)
du
)(∣∣f ′(b)∣∣+ t

∣∣η(f ′(a), f ′(b))
∣∣)dt} = J1

Changing the order of integrals and calculation of internal integrals in J1 imply
that

J1 = (b− a)

{∫ 1/2

0

∫ 1/2

u

g
(
ua+ (1− u)b

)(∣∣f ′(b)∣∣+ t
∣∣η(f ′(a), f ′(b)

)∣∣)dtdu+∫ 1

1/2

∫ u

1/2

g
(
ua+ (1− u)b

)(∣∣f ′(b)∣∣+ t
∣∣η(f ′(a), f ′(b)

)∣∣)dtdu} =

(b− a)

{∫ 1/2

0

(
t
∣∣f ′(b)∣∣+

1

2
t2
∣∣η(f ′(a), f ′(b)

)∣∣∣∣∣∣1/2
u

)
g
(
ua+ (1− u)b

)
du+∫ 1

1/2

(
t
∣∣f ′(b)∣∣+

1

2
t2
∣∣η(f ′(a), f ′(b)

)∣∣∣∣∣∣u
1/2

)
g
(
ua+ (1− u)b

)
du

}
=

(b− a)

{∫ 1/2

0

(
1

2
− u)

∣∣f ′(b)∣∣+ (
1

8
− 1

2
u2)
∣∣η(f ′(a), f ′(b)

)∣∣g(ua+ (1− u)b
)
du+∫ 1

1/2

(u− 1

2
)
∣∣f ′(b)∣∣+ (

1

2
u2 − 1

8
)
∣∣η(f ′(a), f ′(b)

)∣∣g(ua+ (1− u)b
)
du

}
= J2.

Changing the variable by x = ua+ (1− u)b in J2 implies that

J2 =

∫ b

a+b
2

(1

2
− x− b
a− b

)∣∣f ′(b)∣∣+
(1

8
− 1

2
(
x− b
a− b

)2
)∣∣η(f ′(a), f ′(b)

)∣∣g(x)dx+
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∫ a+b
2

a

(x− b
a− b

− 1

2

)∣∣f ′(b)∣∣+
(1

2
(
x− b
a− b

)2 − 1

8

)∣∣η(f ′(a), f ′(b)
)∣∣g(x)dx =∫ b

a+b
2

(a+ b− 2x

2(a− b)

)∣∣f ′(b)∣∣+
( (a− b)2 − 4(x− b)2

8(a− b)2
)∣∣η(f ′(a), f ′(b)

)∣∣g(x)dx+

∫ a+b
2

a

(2x− (a+ b)

2(a− b)

)∣∣f ′(b)∣∣+
(4(x− b)2 − (a− b)2

8(a− b)2
)∣∣η(f ′(a), f ′(b)

)∣∣g(x)dx = J3.

Since for any x ∈ [a, b] we have g(x) = g(a+ b− x), then

J3 =

∫ b

a+b
2

(a+ b− 2x

2(a− b)

)∣∣f ′(b)∣∣+
( (a− b)2 − 4(x− b)2

8(a− b)2
)∣∣η(f ′(a), f ′(b)

)∣∣g(x)dx+∫ b

a+b
2

(a+ b− 2x

2(a− b)

)∣∣f ′(b)∣∣+
(4(x− a)2 − (a− b)2

8(a− b)2
)∣∣η(f ′(a), f ′(b)

)∣∣g(x)dx =∫ b

a+b
2

(a+ b− 2x

(a− b)

)∣∣f ′(b)∣∣+
(4(x− a)2 − 4(x− b)2

8(a− b)2
)∣∣η(f ′(a), f ′(b)

)∣∣g(x)dx =

1

(a− b)2

∫ b

a+b
2

(
(a− b)(a+ b− 2x)

)∣∣f ′(b)∣∣+
(

(x− a)2 − (x− b)2)
)∣∣η(f ′(a), f ′(b)

)∣∣
2

g(x)dx =

1

(b− a)2

∫ b

a+b
2

(
(x− a)2 − (b− x)2

)(∣∣f ′(b)∣∣+

∣∣η(f ′(a), f ′(b)
)∣∣

2

)
g(x)dx = J4.

On the other hand according to Remark 9, if we use the change of variable
x = ub+ (1− u)a then∣∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a
f
(a+ b

2

)∫ b

a

g(x)dx

∣∣∣∣∣ ≤
1

(b− a)2

∫ b

a+b
2

(
(x− a)2 − (b− x)2

)(∣∣f ′(a)
∣∣+

∣∣η(f ′(b), f ′(a)
)∣∣

2

)
g(x)dx = J5.

We can deduce the result from∣∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a
f
(a+ b

2

)∫ b

a

g(x)dx

∣∣∣∣∣ ≤ min{J4, J5}.

Remark 11 Theorem 10 reduces to Theorem 2, if we set η(x, y) = x − y and
g ≡ 1.

Finally as an application of Theorem 10, we give an error estimate for mid-
point formula that is generalization of Proposition 4.1 in [6].

Suppose that d is a partition a = x0 < x1 < · · · < xn−1 < xn = b of interval
[a, b] and consider formula∫ b

a

f(x)g(x)dx = T (f, g, d) + E(f, g, d),
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where

T (f, g, d) =

n−1∑
i=0

f
(xi + xi+1

2

)∫ xi+1

xi

g(x)dx

and E(f, g, d) is the approximation error.

Theorem 12 Suppose that f : [a, b]→ R is an integrable mapping, g : [a, b]→
R+ is a continuous mapping symmetric with respect to a+b

2 and |f ′| is an η-
convex mapping on [a, b] with a bounded η from above. Then

∣∣∣E(f, g, d)
∣∣∣ ≤ n−1∑

i=0

1

(xi+1 − xi)

∫ xi+1

xi+xi+1
2

[
(x− xi)2 − (xi+1 − x)2

]
g(x)Kidx,

where

Ki = min

{[∣∣f ′(xi+1)
∣∣+ ∣∣η(f ′(xi), f ′(xi+1)

)∣∣
2

]
,
[∣∣f ′(xi)∣∣+ ∣∣η(f ′(xi+1), f ′(xi)

)∣∣
2

]}
,

for i = 0, 1, · · · , n− 1.

Proof. It is enough to apply Theorem 10 on the subinterval [xi, xi+1] (i =
0, 1, · · · , n − 1) of the partition d for interval [a, b], and to sum all achieved
inequalities over i and then using triangle inequality.

References

[1] B. Definetti, Sulla stratificazioni convesse, Ann. Math. Pura. Appl. 30 (1949)
173–183.

[2] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings
and applications to special means of real numbers and to trapezoidal formula,
Appl. Math. Lett. 11 (1998) 91–95.

[3] L. Fejer, Uberdie fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss. 24
(1906) 369–390.

[4] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math.
Soc. 3 (1952) 821–828.

[5] J. L. W. V. Jensen, On konvexe funktioner og uligheder mellem middlvaerdier,
Nyt. Tidsskr. Math. B. 16 (1905) 49-69.

[6] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special
means of real numbers and to midpoint formula, Appl. Math. Comp. 147(1)
(2004) 137–146.

[7] O. L. Mangasarian, Pseudo-Convex functions, SIAM Journal on Control, 3 (1965)
281–290.

8



[8] C. E. M. Pearce and J. Pecaric, Inequalities for differentiable mappings with
application to special means and quadrature formula, Appl. Math. Lett. 13 (2000)
51–55.

[9] J. E. Pecaric , F. Proschan and Y. L. Tong, Convex functions, partial orderings
and statistical applications, Academic Press, Boston, 1992.

[10] B. T. Polyak, Existence theorems and convergence of minimizing sequences in
extremum problems with restrictions, Soviet Math. Dokl. 7 (1966) 72–75.

[11] A. W. Robert and D. E. Varbeg, Convex Functions, Academic Press, (1973).

9


