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1. INTRODUCTION

A function f: I C R — R, is said to be convex if for every x,y € I
and t € [0, 1],

fltz+ (L =t)y) <tf(x) + (1 —1t)f(y).

Let f: I — R be a convex function and a,b € I with a < b, we have
the following inequality

f(a+b> - bia/abf(x)dgﬁg f(a)+f(b)_

2 2

This remarkable result is well known in the literature as Hermite-
Hadamard inequality. Both inequalities hold in the reversed direction
if f is concave. We note that Hermite-Hadamard inequality may be re-
garded as a refinement of the concept of convexity and it follows easily
from Jensen’s inequality. Since then some refinements of the Hermite-
Hadamard inequality for convex functions have been extensively inves-
tigated by number of authors, see for example [1-3,5,7,8,10,14-16]). In
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2 A. BARANI AND F. MALMIR

[4], S.S. Dragomir defined convex functions on the co-ordinates (or co-
ordinated convex functions) on the set A := [a,b] X [c,d] in R? with
a < band ¢ < d as follows:

Definition 1.1. A function f : A — R is said to be convex on the
co-ordinates on A if for every y € [c,d] and = € |a,b], the partial
mappings,

fy: [0’76] _>R7 fy(u):f(u7y)7
and
foile, d =R, fo(v) = fz,v),
are convex. This means that for every (z,y), (z,w) € Aand t,s € [0, 1],
Ftx + (1 - )2, sy + (1 — s)w)
< tsf(x,y) +s(1 = 1)f(2y)
+t(1—s)f(z,w)+ (1 —t)(1 — s)f(z,w).
Clearly, every convex function is co-ordinated convex. Furthermore,
there exist co-ordinated convex functions which are not convex. The

following Hermit-Hadamard type inequality for co-ordinated convex
functions was also proved in [4].

Theorem 1.1. suppose that f : A — R is convexr on co-ordinates A.

Then,
a+b c+d
(55 )

IN

| /\

/fayder—/faydy}

<f(ac)+fad)—l—f(bc)+fbd
- 4

The above inequalities are sharp.

Since then several important generalizations introduced on this cat-
egory, see [11, 18-20] and references therein. Recall that a function
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: I C R — R, is said to be quasiconvex if for every x,y € I and
€ [0,1],

fz+ (1= Ny) <max{f(z), f(y)}.
In [13], M.E. Ozdemir et al. introduced the notion of co-ordinated

quasiconvex functions which generalize the notion of co-ordinated con-
vex functions as follows:

Definition 1.2. A function f : A = [a,b] X [¢,d] — R is said to
quasiconvex on the co-ordinates on A if for every y € [¢,d] and z €
[a, b], the partial mapping,

fy: [a,b]—)R, fy(u):f(u7y)
and
ffE: [Cad}%Ra fIE(U):f(SE?v)
are quasiconvex. This means that for every (z,y),(z,w) € A and
s,t €[0,1],
fltxe+ (1 —1t)z, sy + (1 — s)w)
< max{f(z,y), f(z,w), f(z,9), f(z,w)}.
Since then several important generalizations on this category proved
by by M.E. Ozdemir et al. in [9, 12, 13].
On the other hand F. Qi and B.A. Xi in [18] introduced the notion

of geometrically quasiconvex functions and established some integral
inequalities of Hermite-Hadamard type.

Definition 1.3. A function f : I C Ry := [0,00) — Ry, is said to be
geometrically quasiconvex on [ if for every z,y € I and X € [0, 1],

Faty'™) < max{f(2), f(y)}.

Note that if f decreasing and geometrically quasiconvex then, it is
quasiconvex. If f increasing and quasiconvex then, it is geometrically
quasiconvex. We recall some results introduced [18].

Lemma 1.1. Let f : [ C Ry := (0,00) — R, be a differentiable
function on I° and a,b € I° with a < b. If ' € L([a,b]) then,

(i)

(Ind)f(b) — (Ina)f(a) 1 " flz)
nb—Ina _lnb—lna/a P

1 (1)
= / a' 7't In(a' i) £ (at iR dL.
0
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(i)

1
M(a,b) ::/ | In(a*~"0")|dt
0

1 1
na—Qi— nb’ a1, o)
(Ina)? + (Inb)?
= ,  a<1<hb,
llnb—llnba
~Ina+1In 7 <1
2
1
N(a,b) ::/ a' ' In(a*'0Y)|dt
0
( —_— pa— —_—
blnb—alna — (b a)’ 01
Inb—Ina (3)
blnb+alna+2—-b—a
=4 ,  a<1<hb,
b—a— (bbbl
—a—(bln —ana)’ b< 1.
. Inb—1Ina

Theorem 1.2. Let f : I C R, — R be a differentiable function on
I° and f" € L([a,b]) for a,b € I° with a < b. If |f’| is geometrically
quasiconvex on |a,b] then,

(Ind)f(b) — (Ina)f(a) 1 * f(2)
‘ _lnb—lna/a x d

Inb—1na

< N(a,b)sup {[f'(a)], | f'(b)[}-

Theorem 1.3. Let f : I C R, — R be a differentiable function on
I° and f" € L([a,b]) for a,b € I° with a < b. If |f'|? is geometrically
quasiconvex on |a,b| for ¢ > 1 then,

(4)

(Ind)f(b) — (Ina)f(a) 1 * f(2)
‘ _lnb—lna/a x de

Inb—1na

S

< [M(a,b)] {u]\](aq/q—l7 bq/q_l):| 1-1/q (5)

q
< [sup {I7"(@)|", |/ )} ],

Theorem 1.4. Let f : I C R, — R be a differentiable function on
I° and " € L([a,b]) for a,b € I° with a < b. If |f'|7 is geometrically
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quasiconvex on |a,b| for ¢ > 1 and ¢ > r > 0 then,

(Inb)f(b) — (Ina)f(a) 1 " f(2)
’ _lnb—lna/a x de

Inb—1Ina

(52 () e

x [N (@1 pla=nla=) |V T (1 F (@)l [F/(B)]7) ] 7.

Theorem 1.5. Let f : I C R, — Ry be a differentiable function on
I° and f € L([a,b]) for a,b € I° with a < b. If |f'| is geometrically
quasiconver on [a,b] then,

Q=

Flan?) < st [ M0 <sw (@), sy 0

In [14], M. E. Ozdemir defined geometrically convex functions on the
co-ordinates as following:

Definition 1.4. Let A, := [a,b] x [c,d] be a subset of R, ? with a < b
and ¢ < d. A function f: A, — R is said to be geometrically convex
on the co-ordinates if for every y € [c,d| and = € [a,b] the partial
mappings,

fyila,b] =R, fy(u) = fu,y),
and

foiled =R, fo(v) = flz,v),
are geometrically convex function. This means that for every (z,y), (z,w) €
Ay and t,s € [0,1],

f(xtzlft’ yswlfs>
< tsf(x,y) +s(1 —1)f(zy)
+t(1—s)f(z,w)+ (1 —=t)(1 — s)f(z,w).
The main purpose of this paper is to establish new Hadamard-

type inequalities for geometrically quasiconvex functions on the co-
ordinates.

2. MAIN RESULTS

In this section we introduce the notion; ”geometrically quasiconvex
functions on the co-ordinates” for a functions defined on a rectangle
in R?, which is a generalization of the notion 7 geometrically convex
functions on the co-ordinates” given in [14]. Then, we establish some
Hermite-Hadamard type inequalities for this class of functions.
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Definition 2.1. Let A, := [a,b] x [c,d] be a subset of R,* with a <
b and ¢ < d. A function f : Ay — R issaid to be geometrically
quasiconvex on the co-ordinates on A, C R if for every y € [c, d] and
x € [a,b] the partial mappings

fy: [avb]%Rv fy(u):f<u7y)
and
fo e, d] — R, fz(v) = f(z,v)

are geometrically quasiconvex. This means that for every (z,y), (z,w) €
A, and s,t € [0, 1],

fa'2 7 ytw'™") < max{f(z,y), f(z,w), f(2,9), f(z,w)}.

Note that every geometrically convex function on co-ordinates is ge-
ometrically quasiconvex on co-ordinates, but the converse is not holds.
In the following we give an example of a geometrically quasiconvex
on co-ordinates which is not geometrically convex function on the co-
ordinates.

Example 2.1. Let A, := [1,4] x [4,9] and consider the function f :
A, — R defined by

f(xay) = xZ - y2'

It is easy to see that the functions

fy(x) =2 —y* x €[1,4],
and

f:L‘(y) = 332 - y27 y e [479]a
are geometrically quasiconvex. Hence, f is geometrically quasicon-
vex on co-ordinates on A,. This function is not geometrically con-
vex function on co-ordinates on A, . Indeed, if we take two points,
(z,y) = (1,4), (z,w) = (4,9) and s =t = 3, then

Jla' 1y ™) = f(2,6) = -32,
and
+ (1=t =5)f(zw)

= (), Flow), f(z ), f(z )} = 40

< f(xtzlft, yswlfs»
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Lemma 2.1. Let A, := [a,b] X [c,d] be a subset of R, * with a < b and
c < d. Suppose that f: Ay — R is a partial differentiable function on

int(Ay). If 24 € L(A), then

1
(Inb—Ina)(lnd —Inc)

(C+D+/ [lnc —(In d)f(”” dqu

+/d i )f( W)y / f )()

lttlss 1—tyt lssazf 1-t3t 1—s s
bt d® In(a"~'b!) In(c"*d* ) =—— (a0, ' d%)dtds,

dts
where

C:= (Ind)[(Inb) f(b,d) — (Ina)f(a,d)],
and

D = (Ine)[(Ina)f(a,c) — (nd)f(b,c)].

Proof. 1f we denote the right hand side of (8) by I and integrating by
parts on A, we have

(Inb—Ina)(Ind —Inc)l

= (Inb—1Ina)(Ind — Inc) // ottt =5 s

x In(a'~'b") ln(clsds)ﬁaé(altbt, %) dtds

1
= (Inb—1Ina)(Ind —Inc) / =5 d® In(c' = d®)
0

1 82]6
1—tyt 1—tyt 1—tyt 1—s js 9
X [/0 a7 In(a ) (a7 )dt]ds 9)

= (Inb—1Ina)(Ind —Inc)

! In(a'"'b") df !
1-s5 35 1-s5 35 ZJ o 1-tpt 1—s gs
x(/oc d®In(c d)[(lnb)—(lna)ﬁs(a b, c d)o
1 af

088

(a0, clfsds)dt] ds)



8 A. BARANI AND F. MALMIR

= (Inb—1Ina)(Ind —Inc)
! Inb Of
1—sd51 1—sds b l—sds
X(/OC n(c )[lnb—lnaas(’c )

B Ina %
Inb—1Ina Js

laf

l—sds _ ~J
) o Os

(@, cl—SdS)dt] ds>

1
= (Ind — In¢)(In b)/ ctsdf ln(cl_sds)g—f(b, c'5d*)ds
0 s

1
— (Ind —In¢)(In a)/ c s ds ln(clsds)g—i(a, c'5d*)ds
0

(a,c

—(Inb—Ina)(Ind —Inc)
1 1 8f
1-s 35 1-s 35 1-t3t 1—s gs
X (/0 [/0 ¢ In(e! ) S (a T e d)ds]dt).

Similarly integration by parts in the right side of (9) deduce that
(Inb—1Ina)(Ind —Inc)l

1

= (Inb) <1n(cl_sd5)f(b, c'*d*)| —(Ind —Inc) /01 f(b, cl_sds)ds)

0
1

— (Ind —1Inc) /1 f(a,clsds)ds>
0

Jat

0

11
+ (Inb—1Ina)(lnd —Inc) / / fla*™'!, ¢ =2 d%)dtds
o Jo

— (Ina) ( In(c'*d®) f(a, c' *d*)

0

1
— (Inb —In a)/ (ln(cl_sds)f(al_tbt, c'5d?)
0

= (1) ([ )/ 0. 0) = (1) 0.0)
—(Ind —Inc) /0 1 f(b, cl—SdS)ds)
() ([0, = ()0,
— (Ind — Inc) /01 f(a, clsds)ds)
~ (Inb-Ina) ((m 0) /0 " Fa W d)dt — (no) /0 o, c)dt)

1 1
+ (Inb—1Ina)(Ind — Inc) / / fla' ", o d¥)dtds.
0 0
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=tpt and y = c!7%d® for

) y)
(lna)([(lnd)f(a d) — (Inc)f(a, o) / f

y) (10)
—(lnd)/ fx’ —I—(lnc)/ UG // UG

Dividing both sides of (10) by (Inb—Ina)(lnd — Inc) 1mphes that the
equation (8) holds and proof is completed. O

If we using the change of variables x = «a
t,s € [0, 1], we obtain

(Inb—1Ina)(Ind —Inc)l

= Unb)([(lnd)f(b,d)—(lnc)f(b,c)]_/ fb

Theorem 2.1. Let A, := [a,b] x [c,d] be a subset of RZ with a < b

and ¢ < d. Suppose that f : A, — R is a partial differentiable function
on int(A,) and gw’; € L(Ay). If % 1s a geometrically quasiconvex
function on the co-ordinates on A, then the following inequality holds:

C+D S, S e dyda
‘(lnb—lna)(lnd—lnc)+(lnb—lna)(lnd—lnc)_ ‘
< N(a,b) N(c,d)

O f
X max{ 8t35<

[ wa] [ ZL oo [Zeaf).

where, C, D and N(a,b) are defined, respectively, in Lemma 2.1 and
Lemma 1.1, and

b= (lnb—lna)l(lnd—lnc) . (/b {(Md)f(g; 2 anc)f(g; C)] d
+/Cd [(1 p L) (m@@] dy).

)
Proof. From Lemma 2.1, it follows that

C+D o o [Ty
(Inb—Ina)(Ind —Inc)  (Inb—Ina)(Ind —Inc)

/ / 1— tbt 1— sds|ln( 1— tbt)ln( 1— sds>’

a f( 17tbt lesds)

ETER dtds.
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Since %‘ is geometrically quasiconvex on the co-ordinates we have
Pl
—bt l—sds
Otds (a ¢ )
0*f 0*f
<
= max{ a5 “ ) | gigs @D 87583 ’ ‘87583 ‘}

where ¢, s € [0, 1]. From this inequality and relationship (3) in Lemma 1.1,
it follows that

O*f

/ / 1— tbt 1— sds‘1n< 1- tbt) hl( 1— sds)‘ ata ( 17tbt’clfsds) dtds
< s ‘82f( : )‘ 0*f(a, d) ’82f<b,c> ‘82f(b,d)‘
- otos 'l otos 'l 0tds 'l Otds

1 1
X / / a7t o df | In(at ) In(ct o d®) |dtds
0 0
= N(a,b) N(c,d)

xmax{\ata

which is the required inequality (11), since

1 g1
/ / a9 4% In(al 710 In(c' =4 d®) |dtds
0 0

1 1
_ (/ a(l—t)bt| ln(al—tbt> |dt) (/ C(l—s)ds| ln(cl—sds) ’dS)
0 0

= N(a,b) N(c,d).

e

(b, c)],

s,

The proof of theorem is completed. O

The following corollary is an immediate consequence of theorem 2.1.

Corollary 2.1. Suppose the conditions of the Theorem 2.1 are satis-
fied. Additionally, if

(1) % is increasing on the co-ordinates on A, , then
C+D . Jo S dyde
(Inb —Ina)(lnd — Inc) (lnb—lna)(lnd—lnc)
02 (12)

< N(a,b) N(¢,d) ‘ £, d)‘.

0tos
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82 f

5ias | 1s decreasing on the co-ordinates on A, then

C+D N
(Inb—Ina)(Ind —Inc)  (Inb—Ina)(Ind — Inc)

(2)

(13)

< N(a,b) N(c,d) ’ f ~fla,0),

0
where, C', D, B and N(a,b) are defined, respectively, in Lemma 2.1,
Theorem 2.1 and Lemma 1.1.

Proof. Follows directly from Theorem 2.1. 0

Theorem 2.2. Let Ay := [a,b] x [c,d] be a subset of R? with a < b
and ¢ < d. Suppose that f : A, — R is a partial differentiable function

on int(Ay) and gtaf € L(AL). If |2 ata
function on the co-ordinates on Ay and p,q > 1, ;} + é =1, then the
following inequality holds:

z's a geometrically quasiconvex

C+D Jo S K dyda
(Inb —Ina)(lnd — Inc) * (Inb—Ina)(lnd —Inc) ’
1 0? a | 9? q
< [N(a?,b’) N(*,dP)]? x [max{ atafs(a,c) , fs(a,d) ,(14)

O*f

0% f
Otos (b;¢)

"1 0t0s

(b, d)

1/q
q}]
where, C, D, B and N(a,b) are defined, respectively, in Lemma 2.1,

Theorem 2.1 and Lemma 1.1.

Proof. suppose p > 1. From Lemma 2.1 and well-known Hélder in-
equality for double integrals, we obtain

C+D R ol
(Inb—1Ina)(Ind —Inc)  (Inb—1Ina)(Ind —Inc)

0 f
1—tyt 1—s5 gs 1-t1t 1—s gs
[ [ awemaima w5

( / / P10t 1=5) o3| In (1101 ln(cl_sd5)|pdtds) (1)

1
q ]
( dtds) .

—(a' ', ¢ 5d®) | dtds

IN

IN

17tbt lesds)
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a2r |1
otos
we obtain

Since is geometrically quasiconvex on the co-ordinates on A,

S (0t )| deds

°f
<
< max { 5105 (a,c)

We also notice that

q

9% f

@) | 2
"1 Otos

q? —(b> C) an

a,d)

‘q

(b, d)

} (16)

1 1
/ / ap(lft)bptcp(PS)dpsy In(a'~'0") In(c'~5d*)|Pdtds
o Jo

1 1
= ( / ap<1-t>bpt|1n(a1—tbt)|pdt) ( / cp<1—5>dp8|1n(c1—5d8)|pds) (17)
0 0

= N(a”,bP) N(c?,dP).

A combination of (15), (16) and (17), gives the desired inequality (14).
Hence the proof of the theorem is completed. 0

Corollary 2.2. Suppose the conditions of the Theorem 2.2 are satis-
fied. Additionally, if

(1) % is increasing on the co-ordinates on A, then

C+D R ol
(Inb—1Ina)(Ind — Inc) (lnb—lna)(lnd—lnc)
10 (18)
< [N(a", ) N(c,d")]” b.d)|
< [N W) N )] | (b
(2) g:g; is decreasing on the co-ordinates on Ay, then
d f
C+D N [P L) gy gy B
(Inb—1Ina)(Ind —Inc) (lnb—lna)(lnd—lnc)
i (19)

< [N(a®,0?) N(&",d")]”

ata (a7 C) )
where, C, D, B and N(a,b) are defined, respectively, in Lemma 2.1,
Theorem 2.1 and Lemma 1.1.

Proof. 1t is direct consequence of Theorem 2.2. 0
Theorem 2.3. Let Ay := [a,b] X [¢,d] be a subset of RE with a <

b and ¢ < d. Suppose that f : A, — R is a partial differentiable

function on int(A,) and gtafs € L(Ay). If )gfa];

q
s a geometrically
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quasiconver function on the co-ordinates on Ay for q > 1, then the
following inequality holds:

C+D e
(Inb—1Ina)(Ind — Inc) * (Inb—Ina)(Ind —Inc) ‘
< [M(a,b) M(c,d)]"/

_ ) 1-1/q
q—1 a/(a-1) 7a/(g—1) a/(a-1) a/(a=1)
x (T) N (a4, /DY N (/a1 go/(a=) 20)

q}] a
where, C', D, B and M (a,b), N(a,b) are defined, respectively, in Lemma 2.1,
Theorem 2.1 and Lemma 1.1.

0% f
X max{ atas(a, c)

0% f
0t0s

02 f

q? _(a’ d) a2f

"1 OtOs

q

(b, d)

b0,

Proof. By Lemma 2.1, Holder’s inequality, and the geometric quasican-

vexity of on [a, b], we have

8t8

C+D . S S dyde 5
(Inb—Ina)(Ind —1Inc)  (Inb—In a)(ln d—1Inc)
a f ( 1_tbt7cl_8ds)

1—-ty3t 1—s s 1-tyt 1-s 75
[ amwesaima-wyme—ay| 51

[ / / 40—/ (a=1) pat/(a—1) a(1=3)/(a=1) gas/(a—1)
0 0

1-1/q
x |In(a' ") In(ct*d¥) |dtd8]

dtds

IN

IA

1 pl 82f q 1/q
1 17tbt 1 1 sds 17tbt 1fsds dtd
L[] e e e v
1 1
< { / / 201-0)/ (=)t (a=1) pa(1=s)/(a=1) jas/ (a—1)
~ LJo Jo
1-1/q
x | In(a'~"b") ln(clsds)|dtds]
el pl 1/q
« / / |1n<a1tbf)ln(c”dmdzds]
LJO 0
_ 1
2 82 2 2 q
x max{ gtas(a,c) IS @l | 2L o, gtaf (b, d) }] .
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Note that relationship (3) in Lemma 1.1 shows,

// a(1=t)/(g=1) pat/(a=1) ;a(1=s)/(a=1) gas/(g=1)

x |In(a'~'") In(c'~*d®)|dtds

1
= (/ aq(l—t)/(q—l)bqt/(q—1)|ln(al—tbt)|dt>
0

1
X </ Cq(l—S)/(q—l)qu/(q—1)|ln(cl—sds>|d8)

0

2
_ (¢—1) N(aq/(q—l) bQ/(q—l)) N(CQ/(q—l) dq/(q—l))
q2 ) ) )
and
1 pl
/ / I In(al~"8") In(c'~*d*)|dtds = M(a, b) M(c,d).
0o Jo
The proof of theorem is completed. O

Theorem 2.4. Let Ay := [a,b] x [c,d] be a subset of RY with a < b

and ¢ < d. Suppose that f : Ay — R is a partial differentiable function
2 q

on int(A,) and gt@fs € L(Ay). If % is a geometrically quasiconvex

function on the co-ordinates on A, and g > { > 0, then

C+D N ffdf(”dydx -
(Inb —Ina)(Ind —1Inc)  (Inb—Ina)(Ind —Inc)

q— 1 2(1-1/q) 1 2/q 1/q
m) (z) |:N(a£, bg) N(Cg, de):|

X [N (als=0/@=D) pla=0/(@=1)) N ((a=0/a=D), d(q—é)/(q—l))} (a-1/)
2F
X .
[max{ o105 ")

where, C', D, B and N(a,b) are defined, respectively, in Lemma 2.1,
Theorem 2.1 and Lemma 1.1.

L 18 ot 2

qv _<b7 d)

(a,d)|"

(b, ¢)

q}] ;
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Proof. From Lemma 2.1, Holder’s inequality, and the geometric quasi-

convexity of

8t6

C+D e

on A, and by (3) it follows that,

IN

(Inb—1Ina)(Ind — Inc) * (Inb—Ina)(Ind —Inc)

/ / 1— tbt 1— sds|1n( 1— tbt) ( 1—sds)|

f(ltbt lsds)

ETEP dtds

1
< {/ / aa=01=t)/(a=1)p(a=0t/(a=1) (a—)(1=5)/(a—1)
0o Jo

1-1/q
% da=0s/(a=1) | In(a'~"b") ln(c15d8)|dtds]

1 1
x l/ / | ln(aﬂ(lft)bét) 1n<cé(lfs)d£s)’
0 0

% 0t0s

2
a f (alftbt’clfsds)

g 1/q
dtds]

1 pl
< { / / ala=00=1)/(g=1)p(a=0)t/(¢=1) (a—£)(1=s)/(a—1)
0o Jo

1-1/q
% dla—0s/(a=1) | In(a'~"b") ln(c1_5d8)|dtds]

X
‘ O*f Pf a0
X max{ 8t85(a’c) ——(a,d)| , —(b,c)
_ (I NV am0/a-1) pa-/a-1)
- (m) [NtV /)
X N(co-0/D) g0/~ 1>)T‘1/q
2/‘1 1/
x (%) [N(af,b’v’) (e, d)]
o*f a1 9*f a | 0*f g
X [max{ 8tas(a’c) N==(a,d)| ,|==(b,c)| ,

0*f
0tos

o0 f
Otos

roplopl 1/q
/ / a6 ) d" In(a' ') In(c'*d?) |dtds}
LJO JO

Prew (30

(b, d)

i

)

1
q

1
q
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The proof of theorem is completed. 0

Theorem 2.5. Let Ay := [a,b] x [c,d] be a subset of R? with a < b
and ¢ < d. Suppose that f : Ay — R is a geometrically quasiconvex
function on the co-ordinates on Ay. If f € L(Ay), then

f((ab)l/Z’(cd)l/Q)S (lnb—lna )(Ind — lnc // e
< max{f(a,¢), f(a,d), f ) <22)

Proof. By geometric quasiconvexity of f on co-ordinates on A, for
t € [0,1], we have

F((ab)'’?, (cd)?)
max{f(al_tbt, ctsd®), fla'b csdl_s)} (23)
max{f(m C), f(a’a d)a f(b7 0)7 f(b7 d)}

1l 11
//f(al_tbt,cl_sds)dtds:/ / f(a'*™t cd**)dtds
o Jo o Jo
b pd
_ 1 / / G
(Inb—1Ina)(Ind —Inc) J, J. yzx

by integrating in (23) we get
f((ab)'?, (cd)'?)

1 1 1 1
Smax{/ / f(al_tbt,cl_sds)dtds,/ / f(atbl_t,csdl_s)dtds}

f(z,y)
(lnb Ina) lnd lnc// Ty vde
<max{f(a,c), f(a,d), f

and proof is completed. O

Since

Theorem 2.6. Let Ay := [a,b] x [c,d] be a subset of R? with a < b
and ¢ < d. Suppose that f, g : A, — R are geometrically quasiconvez
functions on the co-ordinates on Ay. If fg € L(AL). Then,

f(z
)dyd
(lnb—lna )(Ind — Inc) // 9(x, y)dydz

< max{f u,v) g(w, 2) |u,w€{a,b}, v,ze{c,d}}.
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Proof. Let x = a'~'b", y = a'~%b°,s,t € [0, 1] and using the geometric
quasiconvexity of f, g on A, yields

f(x
dyd
(Inb— lna) (Ind —Inc) // 9(x, y)dyde
— / / f 1— tbt 1— sds) ( 17tbt’clfsds)dtd8

< max{f(a,c), f(a,d), f(b,c), f(b,d)}
and proof is completed. O
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