
QUADRATIC WEIGHTED GEOMETRIC MEAN IN HERMITIAN
UNITAL BANACH �-ALGEBRAS

S. S. DRAGOMIR1;2

Abstract. In this paper we introduce the quadratic weighted geometric mean

xs�y :=
����yx�1��� x��2

for invertible elements x; y in a Hermitian unital Banach �-algebra and real
number �. We show that

xs�y = jxj2 ]� jyj2 ;
where ]� is the usual geometric mean and provide some inequalities for this
mean under various assumptions for the elements involved.

1. Introduction

Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called
selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
In what follows we assume that A is a Hermitian unital Banach �-algebra.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) : We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) :
Thus a > 0 implies that its inverse a�1 exists. Denote the set of all invertible
elements of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1:
Also, saying that a � b means that a � b � 0 and, similarly a > b means that
a� b > 0:
The Shirali-Ford theorem asserts that [12] (see also [2, Theorem 41.5])

(SF) a�a � 0 for every a 2 A:

Based on this fact, Okayasu [11], Tanahashi and Uchiyama [13] proved the following
fundamental properties (see also [5]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only

if cbc � cac;
(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:
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Okayasu [11] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
In order to introduce the real power of a positive element, we need the following

facts [2, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose  to
be close recti�able curve in fRe z > 0g; the right half open plane of the complex
plane, such that � (a) � ins () ; the inside of : Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z


f (z) (z � a)�1 dz:

It is well known (see for instance [3, pp. 201-204]) that f (a) does not depend on
the choice of  and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z


z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [5], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [13,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;
(x) If 0 < a 2 A and � 2 R, then (a�)�1 =

�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:
We de�ne the following means for � 2 [0; 1] ; see also [5] for di¤erent notations:

(A) ar�b := (1� �) a+ �b; a; b 2 A
the weighted arithmetic mean of (a; b) ;

(H) a!�b :=
�
(1� �) a�1 + �b�1

��1
; a; b > 0

the weighted harmonic mean of positive elements (a; b) and

(G) a]�b := a
1=2
�
a�1=2ba�1=2

��
a1=2

the weighted geometric mean of positive elements (a; b) : Our notations above are
motivated by the classical notations used in operator theory. For simplicity, if
� = 1

2 ; we use the simpler notations arb; a!b and a]b: The de�nition of weighted
geometric mean can be extended for any real �:
In [5], B. Q. Feng proved the following properties of these means in A a Hermitian

unital Banach �-algebra:
(xii) If 0 < a; b 2 A; then a!b = b!a and a]b = b]a;
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(xiii) If 0 < a; b 2 A and c 2 Inv (A) ; then

c� (a!b) c = (c�ac)! (c�bc) and c� (a]b) c = (c�ac) ] (c�bc) ;

(xiv) If 0 < a; b 2 A and � 2 [0; 1], then

(a!�b)
�1
=
�
a�1

�
r�
�
b�1
�
and

�
a�1

�
]�
�
b�1
�
= (a]�b)

�1
:

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real
numbers, B. Q. Feng obtained in [5] the following inequality between the weighted
means introduced above:

(HGA) ar�b � a]�b � a!�b

for any 0 < a; b 2 A and � 2 [0; 1] :
In [13], Tanahashi and Uchiyama obtained the following identity of interest:

Lemma 1. If 0 < c; d and � is a real number, then

(1.1) (dcd)
�
= dc1=2

�
c1=2d2c1=2

���1
c1=2d:

We can prove the following fact:

Proposition 1. For any 0 < a; b 2 A we have

(1.2) b]1��a = a]�b

for any real number �:

Proof. We take in (1.1) d = b�1=2 and c = a to get�
b�1=2ab�1=2

��
= b�1=2a1=2

�
a1=2b�1a1=2

���1
a1=2b�1=2:

If we multiply both sides of this equality by b1=2 we get

(1.3) b1=2
�
b�1=2ab�1=2

��
b1=2 = a1=2

�
a1=2b�1a1=2

���1
a1=2:

Since �
a1=2b�1a1=2

���1
=

��
a1=2b�1a1=2

��1�1��
=
�
a�1=2ba�1=2

�1��
then by (1.3) we get

a]1��b = b]�a:

By swapping in this equality a with b we get the desired result (1.2). �

In this paper we introduce the quadratic weighted geometric mean for invertible
elements x; y in a Hermitian unital Banach �-algebra and real number �. We show
that it can be represented in terms of ]� ; which is the usual geometric mean and
provide some inequalities for this mean under various assumptions for the elements
involved.
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2. Quadratic Weighted Geometric Mean

In what follows we assume that A is a Hermitian unital Banach �-algebra.
We observe that if x 2 Inv (A) ; then x� 2 Inv (A) ; which implies that x�x 2

Inv (A). Therefore by Shirali-Ford theorem we have x�x > 0: If we de�ne the
modulus of the element c 2 A by jcj := (c�c)

1=2 then for c 2 Inv (A) we have
jcj2 > 0 and by (viii), jcj > 0: If c > 0; then by (viii) we have jcj = c:
For x; y 2 Inv (A) we consider the element

(2.1) d := (x�)
�1
y�yx�1 =

�
yx�1

��
yx�1 =

��yx�1��2 :
Since yx�1 2 Inv (A) then d > 0; d 2 Inv (A) ; d�1 =

��yx�1���2 ; and also
(2.2) d�1 =

�
(x�)

�1
y�yx�1

��1
= xy�1

�
y�1

��
x� =

����y�1�� x����2 :
For � 2 R, by using the property (viii) we get that d� =

��yx�1��2� > 0 and d�=2 =��yx�1��� > 0. Since
x�d�x = x�

��yx�1��2� x = �����yx�1��� x���2
and

��yx�1��� x 2 Inv (A) ; it follows that x�d�x > 0:
We introduce the quadratic weighted mean of (x; y) with x; y 2 Inv (A) and the

real weight � 2 R, as the positive element denoted by xs�y and de�ned by

(S) xs�y := x
�
�
(x�)

�1
y�yx�1

��
x = x�

��yx�1��2� x = �����yx�1��� x���2 :
When � = 1=2; we denote xs1=2y by xsy and we have

xsy = x�
�
(x�)

�1
y�yx�1

�1=2
x = x�

��yx�1��x = �����yx�1��1=2 x���2 :
We can also introduce the 1=2-quadratic weighted mean of (x; y) with x; y 2

Inv (A) and the real weight � 2 R by

(1=2-S) xs1=2
� y := (xs�y)

1=2
=
�����yx�1��� x��� :

Correspondingly, when � = 1=2 we denote xs1=2y and we have

xs1=2y =
�����yx�1��1=2 x��� :

The following equalities hold:

Proposition 2. For any x; y 2 Inv (A) and � 2 R we have

(2.3) (xs�y)
�1
= (x�)

�1s� (y
�)
�1

and

(2.4)
�
x�1

�
s�

�
y�1

�
= (x�s�y

�)
�1
:

Proof. We observe that for any x; y 2 Inv (A) and � 2 R we have

(xs�y)
�1
=
�
x�
�
(x�)

�1
y�yx�1

��
x
��1

= x�1
�
xy�1 (y�)

�1
x�
��
(x�)

�1
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and

(x�)
�1s� (y

�)
�1

=
�
(x�)

�1
�����

(x�)
�1
����1 �

(y�)
�1
��
(y�)

�1
�
(x�)

�1
��1��

(x�)
�1

= x�1
�
xy�1 (y�)

�1
x�
��
(x�)

�1
;

which proves (2.3).
If we replace in (2.3) x by x�1 and y by y�1 we get��

x�1
�
s�

�
y�1

���1
= x�s�y

�

and by taking the inverse in this equality we get (2.4). �

If we take in (S) x = a1=2 and y = b1=2 with a; b > 0 then we get

a1=2s�b
1=2 = a]�b

for any � 2 R that shows that the quadratic weighted mean can be seen as an
extension of the weighted geometric mean for positive elements considered in the
introduction.
Let x; y 2 Inv (A) : If we take in the de�nition of "]�" the elements a = jxj2 > 0

and b = jyj2 > 0 we also have for real �

jxj2 ]� jyj2 = jxj
�
jxj�1 jyj2 jxj�1

��
jxj = jxj

���jyj jxj�1���2� jxj = ������jyj jxj�1���� jxj���2 :
It is then natural to ask how the positive elements xs�y and jxj2 ]� jyj2 do

compare, when x; y 2 Inv (A) and � 2 R ?
We need the following lemma that provides a slight generalization of Lemma 1.

Lemma 2. If 0 < c; d 2 Inv (A) and � is a real number, then

(2.5) (dcd�)
�
= dc1=2

�
c1=2 jdj2 c1=2

���1
c1=2d�:

Proof. We provide an argument along the lines in the proof of Lemma 7 from [13].

Consider the functions F (�) := (dcd�)� andG (�) := dc1=2
�
c1=2 jdj2 c1=2

���1
c1=2d�

de�ned for � 2 R. It is obvious that F (1) = G (1) :
We have

G2
�
1

2

�
= dc1=2

�
c1=2 jdj2 c1=2

��1=2
c1=2d�dc1=2

�
c1=2 jdj2 c1=2

��1=2
c1=2d�

= dc1=2
�
c1=2 jdj2 c1=2

��1=2
c1=2 jdj2 c1=2

�
c1=2 jdj2 c1=2

��1=2
c1=2d�

= dcd� = F 2
�
1

2

�
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and

G2
2

�
1

22

�
=

 
dc1=2

�
c1=2 jdj2 c1=2

� 1�22
22

c1=2d�

!22

= dc1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2d�dc1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2d�

dc1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2d�dc1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2d�

= dc1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2 jdj2 c1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2d�

dc1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2 jdj2 c1=2
�
c1=2 jdj2 c1=2

�� 3
4

c1=2d�

= dc1=2
�
c1=2 jdj2 c1=2

�� 1
2

c1=2d�dc1=2
�
c1=2 jdj2 c1=2

�� 1
2

c1=2d�

= dc1=2
�
c1=2 jdj2 c1=2

�� 1
2

c1=2 jdj2 c1=2
�
c1=2 jdj2 c1=2

�� 1
2

c1=2d�

= dcd� = F 2
2

�
1

22

�
:

By induction we can conclude that G2
n � 1

2n

�
= F 2

n � 1
2n

�
for any natural number

n � 0: Since for any a > 0 we have
�
a2
�1=2

= a; [13, Lemma 6], hence G
�
1
2n

�
=

F
�
1
2n

�
for any natural number n � 0:

Since F (�); G (�) are analytic on the real line R and 1
2n ! 0 for n ! 0, we

deduce that F (�) = G (�) for any � 2 R. �

Remark 1. The identity (2.5) was proved by. T. Furuta in [6] for positive operator
c and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc1=2.

Theorem 1. If x; y 2 Inv (A) and � is a real number, then

(2.6) xs�y = jxj2 ]� jyj2

Proof. If we take d = (x�)�1 and c = jyj2 > 0 in (2.5), then we get

�
(x�)

�1 jyj2 x�1
��
= (x�)

�1 jyj
�
jyj
���(x�)�1���2 jyj���1 jyjx�1

= (x�)
�1 jyj

�
jyj
�
(x�)

�1
��
(x�)

�1 jyj
���1

jyjx�1

= (x�)
�1 jyj

�
jyjx�1 (x�)�1 jyj

���1
jyjx�1

= (x�)
�1 jyj

�
jyj (x�x)�1 jyj

���1
jyjx�1

= (x�)
�1 jyj

�
jyj jxj�2 jyj

���1
jyjx�1:
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If we multiply this equality at left by x� and at right by x, we get

x�
�
(x�)

�1 jyj2 x�1
��
x = jyj

�
jyj jxj�2 jyj

���1
jyj

= jyj
�
jyj�1 jxj2 jyj�1

�1��
jyj ;

which means that

(2.7) xs�y = jyj2 ]1�� jxj2 :
By (1.2) we have for a = jxj2 > 0 and b = jyj2 that
(2.8) jyj2 ]1�� jxj2 = jxj2 ]� jyj2 :
Utilising (2.7) and (2.8) we deduce (2.6). �

Now, assume that f (z) is analytic in the right half open plane fRe z > 0g and
for the interval I � (0;1) assume that f (z) � 0 for any z 2 I: If u 2 A such that
� (u) � I; then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)
meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A:

Lemma 3. Let f (z) and g (z) be analytic in the right half open plane fRe z > 0g
and for the interval I � (0;1) assume that f (z) � g (z) for any z 2 I: Then for
any u 2 A with � (u) � I we have f (u) � g (u) in the order of A:

We have the following inequalities between means:

Theorem 2. For any x; y 2 Inv (A) and � 2 [0; 1] we have
(2.9) jxj2r� jyj2 � xs�y � jxj2!� jyj2 :

Proof. 1. Follows by the inequality (HGA) and representation (2.6)
2. A direct proof using Lemma 3 is as follows.
For t > 0 and � 2 [0; 1] we have the scalar arithmetic mean-geometric mean-

harmonic mean inequality

(2.10) 1� � + �t � t� �
�
1� � + �t�1

��1
:

Consider the functions f (z) := 1��+�z, g (z) := z� and h (z) =
�
1� � + �z�1

��1
where

z� is the principal of the power function. Then f(z), g (z) and h (z) are analytic in
the right half open plane fRe z > 0g of the complex plane and by (2.10) we have
f(z) � g (z) � h (z) for any z > 0:
If 0 < u 2 Inv (A) and � 2 [0; 1] ; then by Lemma 3 we get

1� � + �u � u� �
�
1� � + �u�1

��1
:

If x; y 2 Inv (A), then by taking u =
��yx�1��2 2 Inv (A) we get

(2.11) 1� � + �
��yx�1��2 � ��yx�1��2� � �1� � + � ��yx�1���2��1

for any � 2 [0; 1] :
If a > 0 and c 2 Inv (A) then obviously c�ac =

��a1=2c��2 > 0: This implies that,
if a � b > 0; then c�ac � c�bc > 0:
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Therefore, if we multiply the inequality (2.11) at left with x� and at right with
x; then we get

(2.12) x�
�
1� � + �

��yx�1��2�x � x� ��yx�1��2� x � x� �1� � + � ��yx�1���2��1 x
for any � 2 [0; 1] :
Observe that

x�
�
1� � + �

��yx�1��2�x = x� �1� � + � (x�)�1 y�yx�1�x
= x�

�
1� � + � (x�)�1 y�yx�1

�
x

= (1� �) jxj2 + � jyj2 = jxj2r� jyj2

and

x�
�
1� � + �

��yx�1���2��1 x = x��1� � + � �(x�)�1 y�yx�1��1��1 x
= x�

�
1� � + �xy�1 (y�)�1 x�

��1
x

= x�
�
x
�
(1� �)x�1 (x�)�1 + �y�1 (y�)�1

�
x�
��1

x

= x�
�
x
�
(1� �) (x�x)�1 + � (y�y)�1

�
x�
��1

x

= x� (x�)
�1
�
(1� �) (x�x)�1 + � (y�y)�1

��1
x�1x

=
�
(1� �) jxj�2 + � jyj�2

��1
= jxj2!� jyj2 :

Therefore by (2.12) we get the desired result (2.9). �

We can de�ne the weighted means for � 2 [0; 1] and the elements x; y 2 Inv (A)
and � 2 [0; 1] by

xr1=2� y :=
�
jxj2r� jyj2

�1=2
=
�
(1� �) jxj2 + � jyj2

�1=2
and

x!1=2� y :=
�
jxj2!� jyj2

�1=2
=
�
(1� �) jxj�2 + � jyj�2

��1=2
:

Corollary 1. Let A be a Hermitian unital Banach �-algebra with continuous invo-
lution. Then for any x; y 2 Inv (A) and � 2 [0; 1] we have

(2.13) xr1=2� y � xs1=2
� y � x!1=2� y:

Proof. It follows by taking the square root in the inequality (2.9 ) and by using
Okayasu�s result from the introduction. �

Recall that a C�-algebra A is a Banach �-algebra such that the norm satis�es
the condition

ka�ak = kak2 for any a 2 A:
If a C�-algebra A has a unit 1, then automatically k1k = 1:
It is well know that, if A is a C�-algebra, then (see for instance [10, 2.2.5 Theo-

rem])
b � a � 0 implies that kbk � kak :
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Corollary 2. Let A be a unital C�-algebra. Then for any x; y 2 Inv (A) and
� 2 [0; 1] we have

(2.14) (1� �) kxk2 + � kyk2 �
(1� �) jxj2 + � jyj2 � ��yx�1��� x2 :

3. Refinements and Reverses

If X is a linear space and C � X a convex subset in X, then for any convex
function f : C ! R and any zi 2 C; ri � 0 for i 2 f1; :::; kg ; k � 2 with

Pk
i=1 ri =

Rk > 0 one has the weighted Jensen�s inequality:

(J)
1

Rk

kX
i=1

rif (zi) � f
 
1

Rk

kX
i=1

rizi

!
:

If f : C ! R is strictly convex and ri > 0 for i 2 f1; :::; kg then the equality case
hods in (J) if and only if z1 = ::: = zn:
By Pn we denote the set of all nonnegative n-tuples (p1; :::; pn) with the property

that
Pn

i=1 pi = 1: Consider the normalised Jensen functional

Jn (f;x;p) =
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
� 0;

where f : C ! R be a convex function on the convex set C and x = (x1; :::; xn) 2 Cn
and p 2Pn:
The following result holds [4]:

Lemma 4. If p; q 2Pn, qi > 0 for each i 2 f1; :::; ng then

(3.1) max
1�i�n

�
pi
qi

�
Jn (f;x;q) � Jn (f;x;p) � min

1�i�n

�
pi
qi

�
Jn (f;x;q) (� 0) :

In the case n = 2; if we put p1 = 1 � p; p2 = p; q1 = 1 � q and q2 = q with
p 2 [0; 1] and q 2 (0; 1) then by (3.1) we get

max

�
p

q
;
1� p
1� q

�
[(1� q) f (x) + qf (y)� f ((1� q)x+ qy)](3.2)

� (1� p) f (x) + pf (y)� f ((1� p)x+ py)

� min
�
p

q
;
1� p
1� q

�
[(1� q) f (x) + qf (y)� f ((1� q)x+ qy)]

for any x; y 2 C:
If we take q = 1

2 in (3.2), then we get

2max ft; 1� tg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
(3.3)

� (1� t) f (x) + tf (y)� f ((1� t)x+ ty)

� 2min ft; 1� tg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
for any x; y 2 C and t 2 [0; 1] :
We consider the scalar weighted arithmetic, geometric and harmonic means de-

�ned byA� (a; b) := (1� �) a+�b; G� (a; b) := a1��b� andH� (a; b) = A�1�
�
a�1; b�1

�
where a; b > 0 and � 2 [0; 1] :
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If we take the convex function f : R! (0;1), f (x) = exp (�x) ; with � 6= 0;
then we have from (3.2) that

max

�
p

q
;
1� p
1� q

�
[Aq (exp (�x) ; exp (�y))� exp (�Aq (a; b))](3.4)

� Ap (exp (�x) ; exp (�y))� exp (�Ap (a; b))

� min
�
p

q
;
1� p
1� q

�
[Aq (exp (�x) ; exp (�y))� exp (�Aq (a; b))]

for any p 2 [0; 1] and q 2 (0; 1) and any x; y 2 R.
For q = 1

2 we have by (3.4) that

2max fp; 1� pg [A (exp (�x) ; exp (�y))� exp (�A (a; b))](3.5)

� Ap (exp (�x) ; exp (�y))� exp (�Ap (a; b))
� 2min fp; 1� pg [A (exp (�x) ; exp (�y))� exp (�A (a; b))]

for any p 2 [0; 1] and any x; y 2 R.
If we take x = ln a and y = ln b in (3.4), then we get

(3.6) max

�
p

q
;
1� p
1� q

��
Aq (a

�; b�)�G�q (a; b)
�
� Ap (a�; b�)�G�p (a; b)

� min
�
p

q
;
1� p
1� q

��
Aq (a

�; b�)�G�q (a; b)
�

for any a; b > 0; for any p 2 [0; 1], q 2 (0; 1) and � 6= 0:
For q = 1

2 we have by (3.6) that

max fp; 1� pg
�
b
�
2 � a�2

�2 � Ap (a�; b�)�G�p (a; b)(3.7)

� min fp; 1� pg
�
b
�
2 � a�2

�2
for any a; b > 0; for any p 2 [0; 1] and � 6= 0:
For � = 1 we get from (3.7) that

max fp; 1� pg
�p
b�

p
a
�2
� Ap (a; b)�Gp (a; b)(3.8)

� min fp; 1� pg
�p
b�

p
a
�2

for any a; b > 0 and for any p 2 [0; 1] ; which are the inequalities obtained by
Kittaneh and Manasrah in [8] and [9].
For � = 1 in (3.6) we obtain

(3.9) max

�
p

q
;
1� p
1� q

�
[Aq (a; b)�Gq (a; b)] � Ap (a; b)�Gp (a; b)

� min
�
p

q
;
1� p
1� q

�
[Aq (a; b)�Gq (a; b)] ;

for any a; b > 0; for any p 2 [0; 1] ; which is the inequality (2.1) from [1] in the
particular case � = 1 in a slightly more general form for the weights p; q:
We have the following re�nement and reverse for the inequality (2.1):



QUADRATIC WEIGHTED GEOMETRIC MEAN 11

Theorem 3. For any x; y 2 Inv (A) we have for p 2 [0; 1] and q 2 (0; 1) that

(3.10) max

�
p

q
;
1� p
1� q

��
jxj2rq jyj2 � xsqy

�
� jxj2rp jyj2 � xspy

� min
�
p

q
;
1� p
1� q

��
jxj2rq jyj2 � xsqy

�
:

In particular, we have

(3.11) 2max fp; 1� pg
�
jxj2r jyj2 � xsy

�
� jxj2rp jyj2 � xspy

� 2min fp; 1� pg
�
jxj2r jyj2 � xsy

�
;

for any p 2 [0; 1] :

Proof. From the inequality (3.9) for a = 1 and b = t > 0 we have

max

�
p

q
;
1� p
1� q

�
(1� q + qt� tq) � 1� p+ pt� tp(3.12)

� min
�
p

q
;
1� p
1� q

�
(1� q + qt� tq) ;

where p 2 [0; 1] and q 2 (0; 1) :
Consider the functions f (z) := max

n
p
q ;

1�p
1�q

o
(1� q + qz � zq), g (z) := 1� p+

pz � zp and h (z) = min
n
p
q ;

1�p
1�q

o
(1� q + qt� tq) where z� , � 2 fp; qg; is the

principal of the power function. Then f(z), g (z) and h (z) are analytic in the
right half open plane fRe z > 0g of the complex plane and and by (3.12) we have
f(z) � g (z) � h (z) for any z > 0:
If 0 < u 2 Inv (A) and � 2 [0; 1] ; then by Lemma 3 we get

max

�
p

q
;
1� p
1� q

�
(1� q + qu� uq) � 1� p+ pu� up(3.13)

� min
�
p

q
;
1� p
1� q

�
(1� q + qu� uq) ;

where p 2 [0; 1] and q 2 (0; 1) :
If x; y 2 Inv (A), then by taking u =

��yx�1��2 2 Inv (A) in (3.13) we have
max

�
p

q
;
1� p
1� q

��
1� q + q

��yx�1��2 � ���yx�1��2�q�(3.14)

� 1� p+ p
��yx�1��2 � ���yx�1��2�p

� min
�
p

q
;
1� p
1� q

��
1� q + q

��yx�1��2 � ���yx�1��2�q� ;
where p 2 [0; 1] and q 2 (0; 1) :
By multiplying the inequality (3.14) at left with x� and at right with x we get

the desired result (3.10). �
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Remark 2. If 0 < a; b 2 A; then by taking x = a1=2 and y = b1=2 in (3.10) and
(3.11) we get

max

�
p

q
;
1� p
1� q

�
(arqb� a]qb) � arpb� a]pb(3.15)

� min
�
p

q
;
1� p
1� q

�
(arqb� a]qb) ;

for any p 2 [0; 1] and q 2 (0; 1) :
In particular, for q = 1=2 we have

2max fp; 1� pg (arb� a]b) � arpb� a]pb(3.16)

� 2min fp; 1� pg (arb� a]b) ;

for any p 2 [0; 1] :

4. Inequalities Under Boundedness Conditions

We consider the function f� : [0;1)! [0;1) de�ned for � 2 (0; 1) by
f� (t) = 1� � + �t� t� = A� (1; t)�G� (1; t) ;

where A� (�; �) and G� (�; �) are the scalar arithmetic and geometric means.
The following lemma holds.

Lemma 5. For any t 2 [k;K] � [0;1) we have
(4.1)

max
t2[k;K]

f� (x) = �� (k;K) :=

8>>>>>><>>>>>>:

A� (1; k)�G� (1; k) if K < 1;

max fA� (1; k)�G� (1; k) ; A� (1;K)�G� (1;K)g
if k � 1 � K;

A� (1;K)�G� (1;K) if 1 < k
and

(4.2) min
t2[k;K]

f� (x) = �� (k;K) :=

8>>>><>>>>:
A� (1;K)�G� (1;K) if K < 1;

0 if k � 1 � K;

A� (1; k)�G� (1; k) if 1 < K:

Proof. The function f� is di¤erentiable and

f 0� (t) = �
�
1� t��1

�
= �

t1�� � 1
t1��

; t > 0;

which shows that the function f� is decreasing on [0; 1] and increasing on [1;1);
f� (0) = 1 � �; f� (1) = 0; limt!1 f� (t) = 1 and the equation f� (t) = 1 � � for
t > 0 has the unique solution t� = �

1
��1 > 1:

Therefore, by considering the 3 possible situations for the location of the interval
[k;K] and the number 1 we get the desired bounds (4.1) and (4.2). �

Remark 3. We have the inequalities

0 � f� (t) � 1� � for any t 2
h
0; �

1
��1

i
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and
1� � � f� (t) for any t 2

h
�

1
��1 ;1

�
:

Assume that x; y 2 Inv (A) and the constants M > m > 0 are such that

(4.3) M �
��yx�1�� � m:

The inequality (4.3) is equivalent to

M2 � (x�)�1 jyj2 x�1 � m2:

If we multiply at left with x� and at right with x we get the equivalent relation

(4.4) M2 jxj2 � jyj2 � m2 jxj2 :
We have:

Theorem 4. Assume that x; y 2 Inv (A) and the constants M > m > 0 are such
that either (4.3), or, equivalently (4.4) is true. Then we have the inequalities

(4.5) ��
�
m2;M2

�
jxj2 � jxj2r� jyj2 � xs�y � ��

�
m2;M2

�
jxj2 ;

for any � 2 [0; 1] ; where �� (�; �) and �� (�; �) are de�ned by (4.1) and (4.2), respec-
tively.

Proof. From Lemma 5 we have the double inequality

�� (k;K) � 1� � + �t� t� � �� (k;K)
for any x 2 [k;K] � (0;1) and � 2 [0; 1] :
If u 2 A is an element such that 0 < k � u � K; then � (u) � [k;K] and by

Lemma 3 we have in the order of A that

(4.6) �� (k;K) � 1� � + �u� u� � �� (k;K)
for any � 2 [0; 1] :
If we take u =

��yx�1��2 ; then by (4.3) we have 0 < m2 � u � M2 and by (4.6)
we get in the order of A that

(4.7) ��
�
m2;M2

�
� 1� � + �

��yx�1��2 � ��yx�1��2� � �� �m2;M2
�

for any � 2 [0; 1] :
If we multiply at left with x� and at right with x we get

��
�
m2;M2

�
jxj2 � (1� �) jxj2 + �x�

��yx�1��2 x� x� ��yx�1��2� x(4.8)

� ��
�
m2;M2

�
jxj2

and since x�
��yx�1��2 x = x� (x�)

�1 jyj2 x�1x = jyj2 and x�
��yx�1��2� x = xs�y we

get from (4.8) the desired result (4.5). �

Corollary 3. With the assumptions of Theorem 4 we have

(4.9) R�

8>>>>><>>>>>:

(1�m)2 jxj2 if M < 1;

max
n
(1�m)2 ; (M � 1)2

o
jxj2 if m � 1 �M;

(M � 1)2 jxj2 if 1 < m;



14 S. S. DRAGOMIR1;2

� jxj2r� jyj2 � xs�y � r �

8>>>><>>>>:
(1�M)2 jxj2 if M < 1;

0 if m � 1 �M;

(m� 1)2 jxj2 if 1 < m;

;

where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :

Proof. From the inequality (3.8) we have for b = t and a = 1 that

R
�p
t� 1

�2
� f� (t) = 1� � + �t� t� � r

�p
t� 1

�2
for any t 2 [0; 1]:
Then we have

��
�
m2;M2

�
� R�

8>>>>><>>>>>:

(1�m)2 if M < 1;

max
n
(1�m)2 ; (M � 1)2

o
if m � 1 �M;

(M � 1)2 if 1 < m

and

��
�
m2;M2

�
� r �

8>>>><>>>>:
(1�M)2 if M < 1;

0 if m � 1 �M;

(m� 1)2 if 1 < m;

which by Theorem 4 proves the corollary. �

We observe that, with the assumptions of Theorem 4 and if A is a unital C�-
algebra, then by taking the norm in (4.5), we get

(4.10) ��
�
m2;M2

�
kxk2 �

jxj2r� jyj2 � xs�y
 � �� �m2;M2

�
kxk2 ;

for any � 2 [0; 1] ; which, by triangle inequality also implies that

(4.11) ��
�
m2;M2

�
kxk2 �

(1� �) jxj2 + � jyj2� ��yx�1��� x2 � 0
for any � 2 [0; 1] : This provides a reverse for the second inequality in (2.14).

Remark 4. If 0 < a; b 2 A and there exists the constants 0 < k < K such that

(4.12) Ka � b � ka > 0;

then by (4.5) we get

(4.13) �� (k;K) a � ar�b� a]�b � �� (k;K) a;
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while by (4.9) we get

R�

8>>>>>>>><>>>>>>>>:

�
1�

p
k
�2
a if K < 1;

max

��
1�

p
k
�2
;
�p
K � 1

�2�
a if m � 1 �M;

�p
K � 1

�2
a if 1 < k;

(4.14)

� ar�b� a]�b � r �

8>>>>>><>>>>>>:

�
1�

p
K
�2
a if K < 1;

0 if k � 1 � K;�p
k � 1

�2
a if 1 < k

;

where � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
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