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(p,q) - INTEGRAL INEQUALITIES

MEVLUT TUNC® AND ESRA GOV#A

ABSTRACT. In this paper, we establish (p,¢)-analogue of some of the most
important integral equalities as trapezoid, Ostrowski, Cauchy-Bunyakowski-
Schwarz, Griiss and Griiss-Chebyshev integral inequalities by using (p, ¢) —derivative
and (p,q) —integral on finite intervals.

1. INTRODUCTION

Mathematical inequalities play an important role on many branches of mathe-
matics as analysis, differential equations, geometry etc. In recent years g—integral
inequalities and some of generalization forms of quantum type inequalities have
been studied by many authors, see [3, 4, 5, 8, 14, 15, 16]. One of the generalization
of g—calculus is (p, ¢) —calculus, see [6, 7, 13, 17, 18]. The aim of this paper is to
establish some new integral inequalities on finite intervals via (p, ¢) —calculus.

Now, we give some definitions and results via (p, ¢) —calculus which will be used
in the sequel, [6, 7, 13]. Let 0 < ¢ < p < 1. The (p,q) —integers [n], , are defined
by

el n

_p"—q

n —_—
g =21
For each k,n € N, n > k > 0, the (p, ¢) —factorial and (p, ¢) —binomial are defined
by

n], ! = 1}:[1 k], ,» n>1, [0], =1
|: n :| _ [n]p,q!
k D.q [~ k]p,q! [k]p,q!
Definition 1. Let f : R — R. The (p,q) —derivative of the function f is defined
as
z) — f (qx
(1.1) Dp’qf(x):f(p) f(q)7$#0

P—qa
provided that D, ,f (0) = f'(0).
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Definition 2. Let f: C[0,a] — R (a > 0) then the (p,q) —integration of f defined

by
(1.2) /af(t)d t = (q—p)ai P f( P a> z‘f’p’<1
0 P,q o q’n,+1 qn+1 q
¢ — " 7" p
/Of(t)dp,qt = <p—q>a;pn+lf<pn+1a) if q‘>1

The formula of (p, ¢) —integration by parts is given by

b b
(1.3) / £ (92) Dyag (2) dygt = [ (2) g ()" — / 9.(q) Do (2) dp gt.

All notions written above reduce to the g—analogs when p = 1. For more details,
see [6, 13].

2. PRELIMINARIES

Let I := [a,b] C R be an interval and 0 < ¢, < pr < 1 be constants. The
(p, q) —derivative of a function f is defined on I at ¢t € I on [a,b] as:

Definition 3. [17]Let f : I — R be a continuous function and assume that t € I.
Then the following equality

B f(pH(l*p)a)*f(qH(l*q)a)u "
(21) aDp,qf(t) - (p—q)(t—a) 9 3& k

aDp,qf (t) = }g% aDp,qf (t)

is called the (p,q)-derivative of a function f at t.

Obviously, f is (p, ¢)-differentiable on I provided ,D, ,f (t) exists for all ¢ € I.
In Definition 3, if p = 1, then D,, ,f = D, f which is the g-derivative of the function
fand alsoif ¢ — 1,a = 0, (2.1) reduces to g-derivative of the function f, see [8, 16].

Example 1. [17]Fort € I, if f(t) = (t —a)", then

(2.2) Dpof () =[], (t—a)"

where [n]p’q = p;:gn.

(p, g)-integral of f on a interval I is defined as follows:

Definition 4. [17]Let f : I — R is a continuous function. Then for 0 < q <p <1,

ey [ P gt = (0 - ) (- ) S et (Lt (1- ) o)

n=0

is called (p, q)-integral of f fort e I.
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Moreover, if ¢ € (a,t), then (p,q) —integral is defined by

(2.4) / f(s) adpgs

/f qs—/f sy s

@—@@—@}jgﬂf(gﬂﬁ+g o))

n=0

e qn qn qn
—(r—q (C—“)anHf (pn+lc+ <1 N pn+1> a> :

n=0

Note that if a = 0 and p = 1, then (2.4) reduces to g—integral of the function. See,
[16].

Example 2. Let f (t) =t fort € I, then we have

t
/f alpgs = /Sadp,qs
a

& n n n
q q q
(p—QHﬁ—ME:pml<pm13+<1—pwl>a>

n=0
(t—a)(t—a(l—p—q))
p+q
Example 3. Let c € I be a constant. Then

b b c
/ (s —¢)adpgs = / (s —¢) adp,qs 7/ (s —¢) adp,qs

[@—@a—au—p—@qb_[u—wu—au—p—w>C

(2.5) -

P+ Pty .
_ P —(pt@bet(ptg-1)¢c
a pP+q
06 Lab-9@-p-aq)
P+

It is easy to see that when p = 1, (2.6) reduces q—integration of the function and
also q — 1, it turns to the classical integration.

Theorem 1. [17] The followz'ng formulas hold fort e I:

(a) quff dpqs = (1)

(b) f aDpqof (s ) dpgs = [ (1)

(C)f aDpqf (8) adpgs = f(t) — f(c), for c € (a,t).
Theorem 2. [17]Let f,g: I — R are continuous functions. The following formulas
hold:

(a) ft g(8)] a qs —f F(8) adpgs +f g (8) adp,gs ;

(b)f >\f pqs—)‘ff adp,q5 ;

(Uﬁfp&%lf))d%w()ﬂmS:UQSM*ﬂﬂ%+ﬂ*®) Dypqf () a

wheret € I, A € R.

dp,q$
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Lemma 1. For A € R\ {—1}, the following formula holds:

! A pP—q A1
/a (S — a) adp7q8 = W (t — a) .
Proof. Let f(t) = (t —a)**', t € I and A € R\ {—1}. From Definition (), we have

a))‘H B (pt—i—(l—p)a—a)/\ﬂ—(qt+(1—q)a—a))‘+1

«Drpa(t= (p—q)(t—a)

(2.7) = [n+1],(t—a)

Taking (p, q) —integration of (2.7), we get the required inequality.
(Il

The (p, q) —Hermite-Hadamard, Holder and Minkowski integral inequalities are
defined on [a, b] as follows:

Theorem 3. [17]Let f : [a,b] — R be a convex function and 0 < ¢ < p < 1. Then
we have

at+b (p+q—1)f(a)+f(b)
2.8 — .
29 () i [ 10 sty < P
Theorem 4. [17]Let f and g be two functions defined on I, 0 < ¢ < p <1 and

1 1
s1,89 > 1 with — + — =1. Then
S1 S9

b b i b é
(2.9) / |f (t)g () alp,qt < (/ ‘f(t)|81 adp,qt> (/ lg (t)|82 adp,qt> :

Theorem 5. [17]Let f and g real-valued functions on [a,b] such that |f|™", |g|™
and |f + g|°* are (p,q)-integrable functions on [a,b], 0 < ¢ < p < 1 and 57 > 1.
Then
(2.10)

(/ If ) +g @)™ pq> (/ I () Pq>511+</ab|g(t)|81adp,qt>;1.

Equality holds if and only if f(t) = 0 almost everwhere or g(t) = uf (t) almost
everywhere with a constant p > 0.

3. MAIN RESULTS

Theorem 6. Let f : [a,b] — R be a (p, q) —differentiable function and oDy ,f be
continuous with 0 < ¢ < p < 1. Then

) S+ 1)

b
p/ f(gt+ (1= q)a) adyyt — (b—a)

(b—a)’p+q—pg+p*—1
< [lDyaf ( . .

p p+q
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Proof. By (p,q) —integration by parts, we have

b r=b b
[ (ot 5) D @ et = (1= “50) 10 = [ far Q-0 ap

2
b
M_p/ flat+ (1 —q)a)ady,t .

= (b—a)

Using the absolute value property, it is easy to see that

b
(32 p [ Fa+ 0= 0)0) syt 0- ) LD
b
< /a ot + (1 - p) a — GTH ‘aDp,qf (t)| adp,qt
b a
< MlaDpofll /a pt+ (1 —p)a— %b alp,qt

From Example 2 and Example 3, we obtain
+0b
pt+(1—p)a— 222

b
/ ;
- o b=a N 4 4 ' P ek
- P, oty ) et TR T gy ) et
2p
= e =) (o bz,
- F 2p 2p

(a—|—b;—pa—a> (a—i—b;—p‘l—a(l—p—q))
pP+q
b2—(p+q)b(a+b;—p“)+(p+q—1) (a+b2_—;)2
p+q
a(b— (a—i—%))(?—p—q)
p+q

(b—a)i’p+q—pg+p*—1
2p pP+q

adp»qt

—-p

+p

-p

(3.3) =

Combining (3.2) with (3.3), we have

fla)+f(b)
2

b
p/ f(gt+ (1= q)a) adyyt — (b—a)

(b—a)’p+q—pg+p*—1
< ||aDp,qf< . .
D P+q

From which we obtain the required inequality. O
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Remark 1. If p =1, then (3.1) reduces to q—trapezoid inequality:

(414 (1= 0)a) adyt — (0 —a) LOTTD
< Dfl g

See [15, Theorem 3.3]. Also if ¢ — 1, it turns the classical form of trapezoid
inequality on [a, b} :

Y (GE (Ui -’

< |17l

See [2, 11].
Theorem 7. Let f : [a,b] — R be a twice (p, q) — differentiable function and aDiqf
be continuous with 0 < g < p < 1. Then

b —a
64 | [ fe+ - adpﬁqt—(b)p(if(qur(l—q)a)Jrf(a))’

p+q

(b—a)’ pPg?
(p+q) (P® + 2p%q + 2pg® + ¢%)
Proof. Applying (p, q) —integration by parts, we have

< lleDrafll

b
/ (pt+(1—p)a—a)(b—pt— (1—p)a) uD2 ,f (1) adpgt

b
~ [ aDpaf @+ (1= 0)0) wDy (=) (b= 1) ult
From the (p, q) —derivative of the product, we obtain
(3.5) aDyp g ((t—a) (b—1))
= (t+(0-pa—a)aDpg(b—1t) +(b—qt = (1 -q)a) aDpy(t—a)
= —pt-—a)+(b-a—q(t-a)=(b—-a)—(t—-a)(lp+q)
Applying (p, ¢) —integration by parts again and by using (3.5), we see

b
_/ aDp,qf (qt + (1 - q) a) aDp,q ((t - a) (b - t)) adp,qt .

_ /ab (b—a)— (t—a) (p+ ) aDpaf (@ + (1 - a)a) adpgt

- [((b_a)_ (1+j)) <t—a>) f(qt+<1—q)a>]:

n / " (%t + (1- %) a) Dy, ((b —a) - (1 + ;) (t— a)) adp,qt
-0 (L @+ =00 -1 )

(D) [ @ @) 0)
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Therefore,
(3.6)

’ (b—a)p (q
/a f(Pt+(1—¢%)a) adp,qtW(pf(qb+(1q)a)+f(a)>|

b
< /<pt+<1—p>afa><b—pt—<1f D) @) o2, f (1) ady

IN

b
||QD§7qu/ pt—a)(b—a—p(t—a))dpgt

From Lemma 1, we obtain

b
/ pt—a)(b—a—p(t—a)) odpqgt adpqt

b b
= (b— a)p/ (t —a) adp gt — p? / (t —a)? ady gt

2

p 3
= (b—a b—a)’——"— _(b—a
( )p+q( ) p2+pq+q2( )
2
o) ( P p >
(b-a) p+q p*+pg+q?
2
Pq
3.7 = (b-a)° .
37 O 4 ¢
Combining (3.6) with (3.7), we get the desired inequality. O

Remark 2. If p = 1, then (3.4) reduces to q—trapezoid inequality with the second
order as

b —a
/ f(Pt+ (1—¢%) a)dgt — (ll)Jrq) (af (@b+ (1 —q)a)+ f(a))

< D2 e s

- (1+4q) (1+2q+2¢% + ¢°)
See [15, Theorem 3.4]. Also if ¢ — 1, then (3.4) reduces to the well-known trapezoid
inequality with the second order as

/f Dit— (o LD O

h— 3
<y Ot

See, 2, 11].

Theorem 8. Let f : [a,b] — R be a (p,q) differentiable function and oDy qf be
continuous with 0 < ¢ < p < 1. Then

‘ _a/f

(3p+3g—4)a+(p+q)b
2(p+q—1)

— —8p—8q+2pg+p*+¢>+38

4(p+ 1

< JaDpgf ]| (b —a) | ZEEE2 | @ - D = = )
p+q a 8(p+q—1)(p+q)
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Proof. Using the Lagrange Mean Value Theorem, we obtain

b
f@) -5 [ 10

b
bia / (f () = f(t)) adpqt

< —/ [f (@) = F )] adp,qt
D
(3.9) < I qu”/| —t[ adpqt

From Example 2 and Example 3, we have

b T b
/ |z —t] odp gt = / (x — 1) adpqt Jr/ (t — ) odp,qt

(zr—a)(—a(l-p—q)

= z(zx—a)-— P
P rgbetptq-1)a
p+q
10 ab-2)2-p-q)
p+q
_ 2(p+g-1) (x_<3p+3q—4>a+<p+q>b>2
p+q 4(p+q-1)
(b—a)” (—8p— 8¢+ 2pq + p* + ¢° + 8)
8(p+q—1)(p+4q
Combining (3.9) with (3.10), we get the required inequality. O

Remark 3. If p =1, then (3.8) reduces to q— Ostrowski integral inequality as

1 b
o [ £yt
2q o— Ba=Dat(+a)d 2 —q2+6q—1
< oot | 25 ()

See [15, Theorem 3.5]. Also if ¢ — 1, then (8.8) reduces to the well known Ostrowski

integral inequality as
2
1 x — afb
< i+ ( — ) (=) 7]

Lemma 2. Let f,g: I — R be continuous functions on I and 0 < g <p < 1. Then

(3.11) / / 1)) (9 (@) — 9 1)) adpa® oy gy

= b*a/f pq$</f pq$> </ab9($)adp,qx>-

See, [2, 11].
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Proof. From Definition 4, we have

b b
[ ] 0@ =10 6@ - 90) s adpay
[ [ @9 -5 @90) -7 09+ 0)90)] st adpay

2= " q" q" q" q"
= b-ot-a nz:%p”“f (p"“b+ (1 - p”“) a) / (p"“b+ (1 - p”“) a)
5 2 [ " q" q"
—(p—a)7(b-a) (z;)anrlf <pn+1b+ (1 - pn+1> a))
— " q"
x ( pn+19 <pn+1b+ ( pn+1> a))
n=0
5 2 [ " q" q"
o (§ o (54
— " q q"
IS ENN)
n=0
2~ " q" q" q q"
+(-q)(b—-a) Z pn+1f <pn+1b+ (1 - pn+1> a) f (pn+1b+ ( - pn+1> a)

n=0

- 2(b—a)/abf(w)g( sl g 2 (/f x> (/abgmmp,qx)-

Thus, the proof is complete. ([l

Remark 4. Note that, if p =1 and both p =1 and ¢ — 1, then (3.11) reduces to
q—Korkine and the usual Korkine identity respectively, see [2, 15].

(p, q) —analogue of Cauchy-Bunyakovsky-Schwarz integral inequality for double
integrals on I is proved as follows:

Lemma 3. Let f,g: I — R be continuous functions on I and 0 < q <p < 1. Then

(3.12) //fzy (2,Y) adp.q® adp.qy

b b % b b %
( / / P (2,9) ady gt dy) ( / / 7 (2,9) adyqr adp,qy) .

Proof. From Definition 4, we have

b b
/ / f(@,9) adpgT adp,qy
a Ja
b > qn qn qn
A (p - Q) (b - a’) Z pn+1 f (p’"«-i-l b+ (1 - pn_;’_1> a, y) adp,qy

n=0

n k k
2 q q q
(p—9)* (b—a) Zzpn+k+1f( n+1b+< _pn+1)a’pk+1b+(1_pk+1)a>'

n=0 k=0
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By using discrete Cauchy-Schwarz inequality, we obtain

b b
/ / F(@,9) 9 (2,9) adpgT adp,qy

((p q)? (b—a) ZZ n+k+1f<Hb+<1_pn+1)a’pk+1b+<1_

n=0 k=0

n n k 2
q q" q
=g <pn+lb+ ( pn+l) pk+1b+ ( pk+1) a))

n+ n
q 2 q q q
< (omaro-a S 3L (e (1 ) o (-
n=0 k=0
n+k n
q" q q
(=02 0- 07 S5 (e (1 ) o -
n=0k=oP
b b b b
= //fz(xay) alp,qT alp gy //gz(l'ay) alp.q® adpqy | -
Thus, the proof is complete. ([

Remark 5. Note that, if p =1 and both p = 1 and ¢ — 1, then (3) reduces to
q— Cauchy-Bunyakovsky-Schwarz and the usual Cauchy-Bunyakovsky-Schwarz inte-
gral inequality for double integrals on I respectively, see [2, 15].

(p, q) — analogue of Chebyshev functional can defined on I as follows:

(3.13) T(f.g) =

alp,q

(b / f(z p,qx> (bla/:g(ac) adp,qat>.

Furthermore, we obtain (p,q) — analogue of Griiss integral inequality on I from
Lemma 2 and Lemma 3 with (3.13). The proof can be derived from the classical
Griiss integral inequality, see [2].

Theorem 9. Assume f,g: I — R be continuous functions on I and0 < g < p < 1.
Let < f(z) <P, v<g(zx)<T forallzel, ¢,P,v,I' € R. Then the following
inequality holds:

(3.14)

1@-0) ).

Remark 6. Note that, if p =1 and both p =1 and q — 1, then (3.14) reduces to
q— Griiss and the well-known Griiss integral inequality on I respectively, see [2, 15].

Theorem 10. Assume f,g: I — R be continuous functions on I and 0 < ¢ < p <
1. Let L1, Ly Lipschitzian continuous functions on I, such that

|f(x) = f(y)] < Lilz—yl, |g(z) —g(y)| < La|z —yl

q* )
pk—i-l

qk

pk+1

b—a/ fl pﬂx_( —a/ f(z p,qm> (bia/abg(x)adp,ﬂ)‘

)
)
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for all x,y € I. Then the following inequality holds

(3.15)

o [ 090 iar = (1 [ 10 stae) (7[00 st )

(b—a)®
< 2pq 7, 5 5 LyLs.
(r+q)° (P*+pq+q?)

Proof. (p,q) — analogue of Korkine identity on I is obtained as follows in below:

b b
(3.16) (b— a)/ f(@)g(2) adpqz — (/ [z p,qx> (/ g(z) adp,qx)
b b
[ [ @1 6@ - 90) st adpay

Under the assumptions of Theorem, we have

(3.17) If (@) = f (W19 (z) — g (y)| < L1La (z —y)°

for all 2,y € I. The double (p, q) — integration for (3.17) on I x I gives
/ / f (z Yl (@) =9 W)l adpg® adpqy

LLQ// T —=1Y)" aldpq® odpqy

= L1L2/ / (a:2 —2zy — y2) alp.q® adp.qy

2
b b
(3.18) = IL1Ly |2(b— a)/ 2% ody g — 2 (/ x adp7qz>

By direct computation, we get

b b
/ x? adp.qt = / (rt—a+ a)2 alp g

b b
= / (x — a)2 alp ¢ + 2a/ (x —a) odpq

b
2
+a / alp,q®
a

IA

3 2
(3.19) = 2(b %) 2—|—2a(b @) +a* (b— a)
p*+pq+q ptq
(b—a)

T PPt +d) 0+ (p+a) 0+ (" +pg—p+4° —q) 2

+(p3+2p2q—2p2+2pq2—2pq+p+q372q2+q)a2).
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Thus, from (3.19) and (2.5), we obtain
2

b b
(3.20) b- a)/ 2% odygr — / T odp g

(a—b)*
q .
(p+a)° (0 +pa + 2
Combining with (3.20) to (3.18), we have

/ / —FON9 (@) = 9 )] et ady gy
(b—a)
q
(p+9)° (0? +pg+ %)
Using (3.16), we get the required inequality. O

Remark 7. Ifp =1, then (3.15) reduces to q— Griiss-Chebyshev integral inequality

b b b
bia/af(x)g(x)adqx_ ﬁ/@f(m)adqx bia/ag(m)adqx

qL1Lo (b— a)?
(1+q+¢*) (1+0q)°

See [15, Theorem 3.7]. Also if ¢ — 1, then (3.15) reduces to the well known Griiss-
Chebyshev integral inequality

b—a/f x) dx — —a/f bia/abg(x)dx

LiL
< Bl o
See [2].
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